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Abstract: We propose a homogenization scheme for 
metamaterials that utilizes causality to determine their 
effective parameters. By requiring the Kramers-Kronig 
causality condition in the homogenization of metamate-
rials, we show that the effective parameters can be cho-
sen uniquely, in contrast to the conventional parameter 
retrieval method which has unavoidable phase ambiguity 
arising from the multivalued logarithm function. We dem-
onstrate that the effective thickness of metamaterials can 
also be determined to a specific value by saturating the 
minimum-error condition for the causality restriction. Our 
causal homogenization provides a robust and accurate 
characterization method for metamaterials.
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1  �Introduction
Metamaterials composed of artificial subwavelength 
structures, namely meta-atoms, can exhibit extraordinary 
optical properties not found in natural materials. The basic 
characterization of such metamaterials is the homogeni-
zation of the meta-atoms such that the effective param-
eters of the homogenization describe the overall optical 
response of the particular collection of meta-atoms [1–3]. 
When the size of the meta-atoms is sufficiently small com-
pared to the wavelength of light, such a homogenization 
of the metamaterial well describes its optical properties. 

The Nicholson-Ross-Weir (NRW)-type parameter retrieval 
methods, which are easy to implement for the numerical 
design of metamaterials, are now used as the standard to 
determine effective metamaterial parameters [3–10].

Homogenization of the real-world metamaterials, 
however, occasionally results in noncausal artifacts in the 
resulting effective parameters. The magnetic permeabil-
ity, for example, sometimes exhibits antiresonant behav-
ior [11–13], which was criticized to be inconsistent with the 
Kramers-Kronig (KK) causality relation for passive media 
[14]. Efforts have been made to avoid the inconsistency by 
considering the effects of spatial dispersion and higher 
order multipoles [15, 16], generalizing the Ladau-Lifshitz’s 
modification of the KK relation [17, 18] or asserting the 
physical validity of antiresonance [19]. Even though meta-
materials do not exhibit antiresonances, the finite size a of 
meta-atoms also introduces the off-resonant noncausality 
to the effective parameters because the homogenization 
procedure of metamaterials necessarily brings up non-
causal time advance of the order ~a/c [20].

In addition to the noncausal artifacts in the homog-
enization scheme, the conventional NRW-type parameter 
retrieval method poses another technical problem, which 
leads to inconsistency with the KK relation. The method 
has difficulty fixing parameters uniquely for two reasons: 
(i) the real part of the refractive index Re(n) obtained from 
the multivalued complex logarithm function possesses 
integer-labeled multiple branches and the rules needed to 
choose a specific branch are absent, and (ii) the effective 
thickness of the homogenized slab is not uniquely deter-
mined because of the lack of a well-defined boundary for 
inhomogeneous meta-atom collections and the thickness 
is therefore usually selected according to the researcher’s 
own taste. These ambiguities are likely to exaggerate or 
underestimate the effective refractive index of the meta-
material but have been recognized as an inevitable limita-
tion of an otherwise effective parameter retrieval method.

Various methods have been proposed to overcome the 
parameter ambiguity caused by the multiple branches. 
The most prevalent method is choosing the branch that 
makes Re(n) continuous in the spectral range of interest 
[3, 21]. This method can determine the refractive index 
without discontinuity points in the spectrum, but there 
still remain infinite sets of continuous Re(n) resulting 
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from simultaneous constant shifts of the chosen branches 
to another set of branches. Sometimes the continuity of 
Re(n) cannot be restored even by a selective choice of 
m, given the interfering multiple resonances resulting 
in sharp Fano resonances. Another method of avoid-
ing parameter ambiguity is demanding that the effective 
refractive index neff satisfies the KK causality relation [8, 
22]. However, the refractive index neff does not generally 
satisfy the KK relation, and this method cannot be applied 
to metamaterials, which usually have strong electromag-
netic responses.

In this paper, we propose a causal homogenization 
method for metamaterials that determines their effective 
parameters without ambiguity. We impose the causality 
requirement on the effective permittivity εeff and perme-
ability μeff. This places a strict restriction on the refrac-
tive index neff and the impedance zeff of the metamaterials 
and removes the branch ambiguity of the real part of the 
refractive index Re(neff). We also demonstrate that the 
ambiguity surrounding the effective thickness deff can be 
resolved by minimizing the spectrally averaged branch 
error δm that arises when fixing the real part of the refrac-
tive index Re(neff). Our homogenization method enables 
an algorithmic determination of the effective parameters 
and can be used as a general method for metamaterial 
homogenization.

2  �Results

2.1  �Deterministic causal homogenization  
of metamaterials

In the standard method of metamaterial homogenization 
(Figure 1) [3], we retrieve the effective refractive index 
neff and the impedance zeff from the measured reflection 

coefficient r and the transmission coefficient t using the 
relations
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where the integer m is the branch, n0 is the effective 
refractive index of the zeroth-order branch (m = 0), k0 is 
the wavenumber of the incident light, and deff is the effec-
tive thickness of the homogenized slab. In Eqs. (1)–(3), 
the undetermined integer branch m makes the effective 
parameters non-unique although the passivity condition 
requires that Re(zeff) > 0 and Im(neff) > 0 [3]. Therefore, 
the homogenization procedure in metamaterial research 
admits multiple solutions for the homogenized permittiv-
ity and permeability.

In this work, we suggest that electromagnetic causality 
can determine the effective parameters uniquely. Causal-
ity is the most fundamental principle in physics because 
a physical action can occur only after its cause. In elec-
tromagnetics, the displacement field D(r, τ′) at the posi-
tion r and time τ is determined only by the electric field 
E(r, τ′) for time τ′ ≤ τ. For a linear medium, whose optical 
response is described by its permittivity ε(ω)/ε0 relative 
to vacuum, the constitutive relation D(r, ω) = ε(ω)E(r, ω) 
determines the connection between D and E at the single 
frequency ω. If the constitutive relation of the fields D and 
E obeys causality, then the relative permittivity ε(ω)/ε0 will 
have analyticity in the upper half ω plane [23]. This math-
ematical condition for ε(ω)/ε0 gives rise to the KK relations
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We may expect the same relation for the permeabil-
ity μ(ω)/μ0. However, it was noted that the KK relation 
applied to the permeability μ(ω)/μ0, given by Eqs. (6) and 
(7), is not consistent with diamagnetism at zero frequency 
if the imaginary part Im{μ(ω)/μ0} is positive for all ω [17]. 
Recently, it was argued that the imaginary part of perme-
ability can be negative without violating physical laws 
[19]. Metamaterials with negative refractive index have 
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Figure 1: Homogenization of metamaterials.
(A) Schematic of a gold nanoparticle array. (B) The homogenized 
slab with the effective parameters. r and t are the reflection and 
transmission coefficients, respectively.
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effective parameters showing resonant and anti-resonant 
behaviors; that is, the imaginary part of permittivity is 
positive and that of permeability is negative near reso-
nance [14]. On the other hand, we note that the induced 
magnetization is determined by the applied field B so that 
the causality should be applied to μ−1. Nevertheless, the 
analytic properties of μ are also possessed by μ−1 [17], i.e. 
μ−1 is analytic in the upper half-plane if μ is analytic and 
has no zeros in the upper half-plane. Thus we adopt the 
same KK relation for the permeability μ(ω)/μ0, namely
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Here, we require the effective parameters of homogenized 
metamaterials to obey the causality and show that this 
requirement uniquely fixes the branch without ambigu-
ity, thereby providing a deterministic parameter retrieval 
method. To impose the KK relation, we use the effective 
permeability μeff = neffzeff because the real and imaginary 
parts of neff and zeff themselves do not obey the causality 
relation [24].

To obtain the causal condition for the branch m(ω) at 
the frequency ω, we first express the real and imaginary 
parts of the effective permeability in terms of the refrac-
tive index [Eq. (1)] and the impedance [Eq. (3)]. They are, 
respectively, given by
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Plugging Eqs. (8) and (9) into the KK relation in Eq. (4), we 
obtain the Fredholm integral equation of the second kind 
for the integer branch m(ω) as follows:
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Equation (10) is the key result of this work. Previous 
works have applied the KK relation to the effective refrac-
tive index neff [8, 22]. However, the refractive index is not a 
physical response function respecting causality and there 
is no reason to require the KK relation [24]. Since Eq. (10) 
is a Fredholm integral equation of the second kind, it can 
be numerically solved. Discretizing the frequency by the N 
steps Δω′, Eq. (10) is converted to the matrix equation [25]
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with the discretized frequencies ωi and the identity matrix 
I of dimension N × N. By solving the matrix equation, 
Eq. (13), we can uniquely determine the branch integer m 
for the real part of the refractive index neff. Note that diago-
nal elements of the first matrix in Eq. (13) are zero because 
the principal values are defined to avoid the singularity of 
the integrand in Eq. (10).

The remaining ambiguity in determining the homog-
enized parameters is the effective thickness of the homog-
enized slab, deff. Metamaterials are usually composed of 
artificial nanostructures with uneven surfaces, and thus 
the boundary of the homogenized slab is often ambigu-
ous. To determine the boundary of the homogenized slab, 
we assert that the effective thickness deff can be deter-
mined by minimizing the spectral averaged branch error

	
( ) round{ ( )} .m m m

ω
∆ ω ω≡ 〈 − 〉 � (14)

The bracket in Eq. (14) represents the spectral average over 
the domain of interest. The branch m should be integer in 
the ideal case, but homogenization artifacts such as the 
finite size of meta-atoms can cause non-integer solutions 
of m in the integral equation Eq. (10). Therefore, the aver-
aged deviation of m from the integer in the spectral range 
of interest can be a measure of the homogenization arti-
facts. However, the following subsection will demonstrate 
that the choice of the effective thickness deff can minimize 
the deviation of m from an integer.

2.2  �Homogenization of a gold nanoparticle 
array

To demonstrate the causal homogenization of meta-
materials, we test the case of a gold nanoparticle array. 
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Figure  2A shows a monolayer of gold nanoparticles of 
radius R = 10 nm and periodicity P = 26 nm, homogenized 
by the effective parameters. We vary the effective thickness 
deff to find the optimum value for minimizing the spectral 
averaged branch error Δm in Figure 2B. As the effective 
thickness deff increases, the branch m starts to deviate 
from the integer. The deviation is small at small frequen-
cies but can be significant in the high-frequency region. 
Figure 2C shows that the spectral averaged branch error 
Δm is minimized at deff = 2R = 20  nm. Numerical simula-
tion was carried out using the home-built finite-difference 
time-domain (FDTD) software. The grid size for the FDTD 
simulation is 1 nm. Two outer surfaces of the simulation 
domain normal to the wave propagation direction were 
perfectly matched layers (PMLs) of 10 grids, and four outer 

surfaces parallel to the propagation direction were deter-
mined by the periodic boundary condition (PBC). Material 
property of gold was taken from tabulated data [26]. The 
transmission coefficient t (the reflection coefficient r) is 
evaluated by the ratio between the incident fields and the 
transmitted (reflected) fields, which is spatially averaged 
at the plane normal to the incident wave vector in order 
to obtain the zeroth-order transmission (reflection). The 
wavelength range spans from 300 to 900 nm with the step 
size 1 nm (N = 600), which corresponds to the frequency 
step size Δω′/2π = 1.11 THz.

Having determined the effective thickness, we can 
obtain the remaining effective parameters εeff, μeff, neff, and 
zeff. Figure 3 shows the effective parameters of the homog-
enized gold nanoparticles. Near the frequency of 600 THz, 
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Figure 2: Error minimizing choices of the effective thickness deff and the branch m.
(A) Schematic of a gold nanoparticle monolayer. (B) The branch m for different choices of effective thickness deff. (C) The spectral averaged 
branch error Δm against effective thickness deff.
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we can find the surface plasmon resonance of the gold 
nanoparticles, which gives resonant peaks in the refractive 
index neff in Figure 3B. The permittivity and permeability 
can be simply obtained by the relations εeff = neff/zeff and 
μeff = neffzeff, respectively. Note that the homogenized param-
eters presented in Figure 3 agree well with the theoretical 
predictions [27]. In Figure 3, our homogenization method 
for a monolayer yields m = 0 because the monolayer of gold 
nanoparticles is too thin to have a nonzero branch m.

To confirm the ability of our method to determine the 
nonzero branch m for bulky metamaterials, we homog-
enized seven layers of gold nanoparticles of periodicity 
P = 26 nm in Figure 4. The homogenized slab is thick com-
pared to the wavelength range of light. By minimizing the 
spectral averaged branch error Δm, we find that the effective 
thickness deff is 182 nm. Note that 7P = 182 nm. As shown in 
Figure 4A,B, the effective impedance zeff and the imaginary 
part of the refractive index Im(neff) are obtained uniquely 
because the homogenization procedure lacks ambiguity, 
as shown in Eqs. (1) and (3). The ambiguity occurs in the 
real part of the refractive index Re(neff). Figure 4C shows 
multiple branches of the real part of the refractive index 
Re(neff). Without considering the causality in the homog-
enization procedure, the branch m(ω) can be any integer 
that makes the refractive index continuous in the spectral 
window of interest. For example, the zeroth-order branch 
(m = 0) is chosen for frequencies below 493  THz  and the 
first-order branch (m = 1) is chosen for higher frequencies 

to avoid abrupt, noncontinuous changes in the refractive 
index. Other choices are also possible with the integer dif-
ference Δm = 1 at 493 THz. For example, we can choose m = 1 
below 493 THz and m = 2 above 493 THz when the causal-
ity condition is not imposed. Another noncausal choice of 
m depicted in Figure 4C is m = −1 below 493 THz and m = 0 
above 493 THz. This degree of freedom when choosing the 
branch cannot be reduced without the causality condition. 
However, the causality condition can determine the set of 
branches m(ω) in the spectrum uniquely. Figure 4D shows 
the branch m solution for the integral equation Eq. (10) 
for seven layers of gold nanoparticles. The solution auto-
matically guarantees the continuity of the real part of the 
refractive index Re(neff). We also confirm that the retrieved 
refractive indices of the seven layers are consistent with 
that of monolayer, as shown in Figure 3.

3  Conclusion
We would like to emphasize once again that the refrac-
tive index n does not obey the KK relations [Eqs. (4) and 
(5)] because the refractive index n may have singulari-
ties in the upper half-plane of the complex ω space [24]. 
The refractive index can be related to the KK relation 
only when the permittivity and the permeability are suf-
ficiently small, i.e. 0 0/ (1 / 2)(1 / 2),e mn εμ ε μ χ χ= ≈ + +  
where χe and χm are the electric and magnetic 
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susceptibility, respectively. This is obviously not the case 
for metamaterials because they usually have strong elec-
tric and magnetic responses. Imposing the KK relation 
to the refractive index n may result in non-integer values 
of the branch m, implying noncausal parameter-retrieval 
results [8].

The KK relation is composed of the four Hilbert trans-
formations between the permeability and the permittivity, 
as shown in Eqs. (4)–(7). Therefore, it provides the four 
equivalent forms of the causal branch m. (We introduce 
one of them in the main text. See Supplementary Mate-
rial for the full equations.) The four equivalent forms of 
branch m give the same result for the causal metamate-
rial homogenization, but the results may be differently 
influenced by the truncation errors introduced during the 
numerical integration. Although the integral in the KK 
relation includes integration over the whole frequency 
range, the numerical implementation requires truncation 
of the integration range. Therefore, it is recommended 
that the permeability relations [Eqs. (4) and (5)] are used 
for electrically resonant metamaterials because electric 
responses have a limited effect on permeability and thus 
doing so can minimize the truncation errors in the numer-
ical integration. However, for magnetically resonant met-
amaterials, the permittivity relations (6) and (7) should be 
used.

We demonstrated the homogenization scheme for 
linear dielectric metamaterials, but note that our method 
is also applicable to other media, such as anisotropic 
[28], chiral [29], bi-isotropic [4, 5], and gyrotropic media 
[30, 31]. The optical parameters of these media also obey 
causality and follow the KK relation [32, 33]. Thus, extend-
ing our method based on the KK relation to wide-ranging 
media types is straightforward.
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