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Abstract: Data-driven design approaches based on deep 
learning have been introduced in nanophotonics to 
reduce time-consuming iterative simulations, which have 
been a major challenge. Here, we report the first use of 
conditional deep convolutional generative adversarial 
networks to design nanophotonic antennae that are not 
constrained to predefined shapes. For given input reflec-
tion spectra, the network generates desirable designs in 
the form of images; this allows suggestions of new struc-
tures that cannot be represented by structural parameters. 
Simulation results obtained from the generated designs 
agree well with the input reflection spectrum. This method 
opens new avenues toward the development of nanopho-
tonics by providing a fast and convenient approach to 
the design of complex nanophotonic structures that have 
desired optical properties.
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1  �Introduction
Progress in nanophotonics has yielded numerous extraor-
dinary optical properties such as cloaking objects [1, 2], 
imaging beyond the diffraction limit [3, 4], and negative 

refractive index [5, 6]. In nanophotonics, a sub-wave-
length antenna interacts with light, so precisely designed 
components can provide useful functionalities. Although 
several systematic design approaches for desired optical 
behaviors have been introduced [7–10], the procedure for 
inverse design of nanophotonic structures mostly still 
relies on a laborious method of optimization. Such a con-
ventional design method requires time-consuming itera-
tive simulations.

Recently, data-driven design approaches have been 
proposed to overcome this problem. These approaches 
use artificial neural networks (NNs) to design nanopho-
tonic structures [11–14]. Previous studies first set the 
shape, such as multilayers [11] or H-antenna [12], of the 
structures to be predicted, then trained NNs provide 
the output structural parameters that achieve the desired 
optical properties. Once the NNs are trained, they provide 
the corresponding design parameters without additional 
iterative simulations. Such attempts have greatly reduced 
the effort and computational costs of designing nanopho-
tonic structures. So far, these approaches have only been 
applied to conditions in which the basic structures are 
predefined where only the structural parameters are pre-
dictable. Most recently, a generative adversarial network 
(GAN) model has been used to inversely design metasur-
faces in order to provide arbitrary patterns of the unit cell 
structure [15].

In this article, we provide the first use of a condi-
tional deep convolutional generative adversarial network 
(cDCGAN) [16] to design nanophotonic structures. 
cDCGAN is a recently developed algorithm to solve the 
instability problem of GAN, and provides a very stable 
Nash equilibrium solution. The generated designs are pre-
sented as images, so they provide essentially any arbitrary 
possible design for the desired optical properties that are 
not limited to specific structures. Our research provides 
designs of a 64 × 64 pixel probability distribution function 
(PDF) in a domain size of 500 nm × 500 nm, which allows 
264×64 degrees of freedom of design.
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2  �Results and discussion

2.1  �Deep-learning procedure

For deep learning, we first collect a dataset consisting 
of 10,150  silver antennae with six representative shapes 
(circle, square, cross, bow-tie, H-shaped, and V-shaped). 
Each entry in the dataset is composed of a reflection spec-
trum with 200 spectral points and its corresponding cross-
sectional structural design with a 64 × 64 pixel image. 
Sixty-four coarse meshes are used for both the x- and 
y-directions for the simple calculation. The cross-sectional 
structure designs are prepared in the form of images with 
a physical domain size of 500 nm × 500 nm. The antenna 
of 30 nm thickness is placed on a 50-nm MgF2 spacer, a 
200-nm silver reflector, and a silicon substrate (Figure 1). 
To obtain the reflection spectrum of each structure, a 
finite-difference time-domain (FDTD) electromagnetic 
simulation is performed using the commercial program 
FDTD Lumerical Solutions. The simulation is conducted 
over the whole spectral range from f = 250–500 THz, and 
200 spectral points are extracted. Periodic boundary con-
ditions with the periodicity of 500 nm are used along the 
x- and y-directions, and perfectly matched boundary con-
ditions are used along the z-direction. At each simulation, 
y-polarized light is incident on the antenna with 0 inci-
dent angle. The current deep-learning setting solves the 
designing structure problem in a fixed physical domain 

and fixed wavelength. Designing structures with differ-
ent periodicity or wavelengths requires additional data-
collection or deep-learning procedures.

As a next step, we implement a deep-learning algo-
rithm using the Pytorch framework. Artificial intelligence 
has revolutionized the field of computer vision recently 
[17, 18]. A convolutional neural network (CNN) [18, 19] is 
among the most widely used techniques, inspired by the 
natural visual perception mechanism of the human brain. 
A CNN uses convolution operators to extract features 
from the input data, which are usually images. It greatly 
increases the efficiency of image recognition, because 
every channel extracts important features of the images. 
On the other hand, the development of GAN has resulted in 
major progress in computer vision [20]. A GAN is composed 
of a generator network (GN) that generates the images and 
a discriminator network (DN) that distinguishes the gen-
erated images from real images. GN is trained to generate 
authentic images to deceive the DN, and DN is trained not 
to be deceived by the GN. The two networks compete with 
each other in every training step; ultimately, the competi-
tion leads to mutual improvement of each network, so that 
GN can generate higher quality realistic images than when 
it learns alone. DCGAN combines the idea of a CNN and 
GAN to provide a very stable Nash equilibrium solution 
[16]. We employed the cDCGAN algorithm with a condition 
[21], which is the input reflection spectrum in this case.

The cDCGAN architecture to design nanophotonic 
structures is presented in Figure 2. cDCGAN is composed 
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Figure 1: Schematic of data preparation for deep learning.
Each entry in the dataset is composed of the reflection spectrum obtained from FDTD simulation and its corresponding cross-sectional 
structural design.
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of two networks: a GN that generates structural cross-
sectional images, and a DN that distinguishes the gen-
erated images given by the GN from user-given target 
designs group. GN is composed of four transposed CNN 
layers consisting of 1024, 512, 256, 128, and 1 channel, 
respectively; DN is a CNN with four layers. GN takes 
inputs of both the 100 × 1 size random noise (z) and the 
200 × 1  size input spectrum. GN provides a probability 
distribution function (PDF) of the antenna as output, 
which is generated from the random noise. The input 
spectrum guides the GN to generate a PDF that has such 
optical properties. On the contrary, DN takes input as 
a structural image from either a user-provided target 
designs group (x) or the generated PDF images by GN, 
GN(z). DN plays the role of discriminating GN(z) from the 
target designs group. Ultimately, GN and DN are simulta-
neously trained competitively: GN is trained to generate 
an authentic structural design to deceive the DN, and DN 

is trained to distinguish target designs from the design 
generated by GN. Mathematically, GN and DN are trained 
in the direction to minimize or maximize the objective 
function:

	

x ( )GN DN data

~ ( )z

min max (DN, GN) [log DN( )]

[log(1 DN(GN( )))],
P x

z P z

l E x

E z
←=

+ − � (1)

where DN(x) represents the probability of a struc-
tural image coming from the target design group (x), 
and DN(GN(z)) represents that coming from gener-
ated design G(z) by GN. In terms of DN, the network is 
trained to give maximized expectation values of E with 

x ( )data
[log DN( )]P xE x←  for a given image coming from the 

target design, and ~ ( )z
[log(1 DN(GN( )))]z P zE z−  for a given 

image generated by GN. On the other hand, GN is trained 
to give minimized expectation values to deceive DN. This 
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Figure 2: Schematic of the cDCGAN architecture to suggest the designs of structures.
GN is composed of a transposed CNN to generate the structural images, and DN is composed of conventional CNN to distinguish target 
structural designs from the generated designs. Each layer introduces nonlinear activation functions (ReLU, Tanh, Leaky ReLU, and Sigmoid) 
according to the guideline of Radford et al. [16].
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adversarial training allows GN to generate high-quality 
structural images.

In addition to adversarial training, we further modify 
the loss function of GN [22, 23] in the cDCGAN to fit our 
problem to

	 GN GN,design GN,adv(1 ) ,l l lρ ρ= − × + × � (2)

where lGN,design is the design loss, lGN,adv is the adversarial 
loss defined in Eq. (1), and ρ is the ratio of the adversarial 
loss. The design loss is introduced to explicitly guide the 
GN to generate structural images well. It directly measures 
the quantitative difference between two probability distri-
butions of the target design (xi) and the generated design 

ˆ( )ix  using a binary cross-entropy criterion:

	 GN,design ˆ ˆ( log  ( ) (1 )log(1 ( ))),i i i il x x x xσ σ= − + − − � (3)

where a σ is a Sigmoid function.
We optimized ρ to make the GN generate high-qual-

ity realistic designs. For a low ρ, a competition effect 
cannot be expected, whereas a high ρ can cause con-
fusion in the learning process. Therefore, an appropri-
ate value of ρ = 0.5  was chosen to maximize the ability 
of GN to produce convincing structural designs. During 
each training step, the network is trained to optimize 
the weights to describe the mapping between the input 
spectrum and the PDF (see Supporting Information for 
details about deep-learning procedure and network 
optimization).

After training, cDCGAN suggests designs on a 64 × 64 
pixel PDF p(i, j), which represents the probability that a 
silver antenna exists at the location (i, j). To reduce the 
PDF to a binary image representing the existence of anten-
nae at the locations, we employed a post-processing step 
according to Otsu [24]. This method determines the binary 
threshold t that minimizes the intra-class variance 2

ω
σ  of 

the black and white pixels as

	
2 2 2

0 0 1 1( ) ( ) ( ) ( ) ( ),t t t t t
ω

σ ω σ ω σ= + � (4)

where ω0 and ω1 represent the weights for the probabili-
ties of two classes separated by t, 2

0σ  is the variance of the 
black pixels, and 2

1σ  is the variance of the white pixels. In 
summary, for a given reflection spectrum, cDCGAN pro-
duces a PDF which is then converted to a binary design 
image in the post-processing step. At each training step, 
2000 validation samples are used to validate the trained 
network. The average loss of the validation set converged 
to 5.564 × 10−3 after 1000 training steps. Using a single 
GPU of GTX 1080-Ti, the training a network for one epoch 

requires about 4 min. However, once a network is trained, 
the trained network can generate a design for a desired 
spectrum within 3 s.

2.2  �Network evaluation

The trained cDCGAN is evaluated on test data that were 
not used in the previous training or validation steps. Ran-
domly chosen test results are shown in Figure 3. Target 
designs of various nanophotonic antennae (upper-right 
panel in Figure 3) and the corresponding suggested PDFs 
(lower-right panel in Figure 3) show good qualitative agree-
ment. For a quantitative evaluation of the suggested PDFs, 
FDTD simulation based on those suggested designs were 
conducted. The PDFs were converted to binary designs to 
be imported into the simulations. Reflection spectra of the 
suggested images agree well with the given input spectra. 
We introduce a mean absolute error (MAE) criterion

	
error

=1

1 ˆ| |,
n

i i
i

l Y Y
n

= −∑ � (5)

to quantitatively measure the average error of the reflec-
tion spectrum per spectral point between the FDTD sim-
ulation result (Yi) obtained from the suggested design 
and the input spectrum ˆ( )iY  that is originally fed into 
the network. The average MAE error of 12 test samples 
is 0.0322, which supports that the trained network can 
essentially provide an appropriate structural design that 
has the desired reflection spectrum. Interestingly, even if 
the antennae have similar shapes, there can be a discrep-
ancy between the predicted and input spectra, as shown 
in the second column and bottom row of Figure 3. This is 
due to the small artifacts in the provided PDF. These arti-
facts can be removed using a different image filter in the 
post-processing step (see Supporting Information for the 
effect on post-processing).

We also test our cDCGAN with completely new struc-
tures of triangle and star antennae whose shapes never 
existed in the training and validation dataset (Figure 4A, 
B). cDCGAN generated new designs that had distorted 
forms of the antennae, which were used for training. The 
results imply that our cDCGAN can suggest any designs, 
unconstrained by structural parameters. The generated 
images are different from the target designs, but the gen-
erated reflection spectra are similar to the input reflec-
tion spectra. This is because of the non-uniqueness of the 
correlation between the optical properties and designs: 
several different designs can have the same optical prop-
erty. Among the several possible designs, the generated 
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Figure 3: Twelve examples of cDCGAN-suggested images and their simulation results.
Each panel is composed of reflection spectra and their corresponding structural cross-sectional images. The upper-right structural images 
are the target designs (black), and the lower-right images are the suggested images by cDCGAN (red). The left spectra show the desired input 
spectra (black solid lines) that we fed into the network and the predicted responses obtained from the suggested designs (red dotted lines).
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Figure 4: cDCGAN suggestion results of completely new structures.
New structures of (A) triangle and (B) star shape antennae, whose shapes have never been used in training, are used. The first columns are 
the target of desired designs and the second columns are PDFs suggested by cDCGAN. The last columns show the reflection spectra of the 
input (black solid lines) and the simulation result obtained from the suggested designs (red dotted lines), respectively. 
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results are most likely to be found in areas that do not 
deviate much from the trained dataset space.

Finally, our cDCGAN was further tested with ran-
domly generated, hand-drawn spectra of the Lorentzian-
like function

	
2 2

2( ) ,
4( )

a cf x
x b cπ

=
− +

� (6)

with three cases: (A) a = 120, b = 900, c = 150, (B) a = 70, 
b = 850, c = 70, (C) a = 100, b = 1150, c = 70, and (D) a = 80, 
b = 900, c = 80. For each case, the generated image and its 
corresponding reflection spectrum are shown in Figure 5. 
The MAE of the reflection spectrum for the four examples 
are (a) 0.0496, (b) 0.0396, (c) 0.0409, and (d) 0.0408. The 
predicted responses show reasonably good agreement with 
the input spectrum in terms of the overall behavior. Most 
interestingly, the generated images (insets in Figure 5A–D) 
deviate much from the shapes that are used for training. 
Such extraordinary structural shapes are not constrained 
by predefined structures and are even not describable; 
this is the key advantage of our method over previous ones 
which can only suggest given structural parameters. The 

results also indicate that cDCGAN actually learns well the 
correlation between structural designs and their overall 
optical responses and hence can be widely used to sys-
tematically design nanophotonic structures.

3  �Conclusion
In conclusion, we demonstrated the first use of cDCGAN 
to design nanophotonic structures. The two networks 
of GN and DN in cDCGAN competitively learn to suggest 
appropriate designs of nanophotonic structures that have 
the desired optical properties of reflection. Our cDCGAN 
is not limited to suggesting predefined structures but can 
also generate new designs. It has numerous design pos-
sibilities with 264×64 = 24096 degrees of freedom. The 7.8 nm 
pixel size used in the current design makes it very difficult 
to fabricate the suggested design within this resolution. 
This fabrication difficulty can be overcome by increas-
ing the pixel size up to the feasible fabrication scale of 
20–30  nm. Here, we limited the input to a single reflec-
tion spectrum. This method can also be extended in the 

B

C

A

D

Input spectra Predicted responses

R
ef

le
ct

io
n

1

0.5

0

R
ef

le
ct

io
n

600 900 1200

Wavelength (nm)

1

0.5

0
600 900 1200

Wavelength (nm)

Figure 5: cDCGAN suggestion results of hand-drawn spectra.
Lorentzian-like function of (A) a = 120, b = 900, c = 150, (B) a = 70, b = 850, c = 70, (C) a = 100, b = 1150, c = 70, and (D) a = 80, b = 900, c = 80. 
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network, and red dotted lines indicate the simulation results obtained from the suggested PDFs.
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diffraction regime, where additional diffraction orders 
may appear, if multiplexed input spectra with several dif-
fraction orders are used. Because of the limitation on the 
used training dataset, it is not always possible to generate 
structural images with extraordinary reflection spectra. 
Such weakness may be overcome by collecting additional 
data that can represent extraordinary reflection spectra. 
Although our examples set the thickness of each layer 
and the material type of the antenna, they can also be 
added as output parameters to be suggested. This modi-
fication would allow artificial intelligence to be used to 
design nanophotonic devices completely independently 
and would thereby greatly reduce the time and computa-
tional cost of designing them manually. We believe that 
our research findings will lead to the rapid development 
of nanophotonics by solving the main problem of design-
ing the structures.

4  �Supplementary Material
Supplementary Material is available online on the jour-
nal’s website or from the author.
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