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Abstract: Photonic bound states in the continuum (BICs) 
are eigenmodes with an infinite lifetime, which coexist 
with a continuous spectrum of radiating waves. BICs are 
not only of great theoretical interest but also have a wide 
range of practical applications, e.g. in the design of optical 
resonators. Here, we study this phenomenon in a new inte-
grated nanophotonic element consisting of a single dielec-
tric ridge terminating an abruptly ended slab waveguide. 
This structure can be considered as an on-chip analog of 
the Gires-Tournois interferometer (GTI). We demonstrate 
that the proposed integrated structure supports high-Q 
phase resonances and robust BICs. We develop a simple 
but extremely accurate coupled-wave model that clarifies 
the physics of BIC formation and enables predicting BIC 
locations. The developed model shows that the studied 
BICs are topologically protected and describes the strong 
phase resonance effect that occurs when two BICs with 
opposite topological charges annihilate.

Keywords: bound states in the continuum; resonance; 
mode coupling; integrated optics.

1  �Introduction

Resonances are a key concept in photonics since they lie 
behind many intriguing optical effects arising in various 
photonic structures. Resonances occur when an eigen-
mode of the structure is excited, which is manifested in 
pronounced peaks in the transmittance and reflectance 
spectra and leads to local field enhancement, giving rise 
to extraordinary magneto-optical, nonlinear, and other 
optical effects. This makes resonant structures an indis-
pensable building block for a wide range of photonic 
devices. High-Q resonators are particularly important in 
the design of lasers, filters, and sensors.

In the last decade, a fascinating phenomenon, which 
allows one to engineer resonances with an arbitrarily high 
quality factor, drew a lot of interest in photonics [1–4]. 
This phenomenon, referred to as bound states in the con-
tinuum (BICs), was first predicted for an electronic system 
by von Neumann and Wigner in 1929 [5]. In photonics, 
BICs are nonradiating eigenmodes of structures having 
open scattering channels. The leakage of the BIC energy 
into these channels is prevented by different mechanisms 
[3], including symmetry protection [6–8], interaction of 
several resonators [1, 9], and interference of several res-
onances in the same cavity [8, 10–16]. BICs have infinite 
quality factor, but a slight deviation from a BIC allows one 
to obtain resonances with extremely high-Q factors.

Different photonic structures have been shown to 
support BICs [3, 4]. Most studies on BICs are dedicated to 
periodic structures, in particular, photonic crystal slabs 
[1, 7, 12, 17–19], guided-mode resonant gratings [8, 15, 20], 
interfaces of photonic crystals [21], and infinite arrays of 
dielectric rods or spheres [19, 22–24]. In all these struc-
tures, the open scattering channels are the “free-space” 
diffraction orders. In Refs. [16, 25], the scattering chan-
nels are the waves propagating in anisotropic materials. 
In Refs. [2, 13, 14, 26–31], a different class of structures was 
studied, with the scattering channels being the modes of 
photonic crystal waveguides [2, 26–28], slab waveguides 
[13, 14, 29–31], or rectangular microwave waveguides [11]. 
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Concerning the number of open scattering channels, 
most of the existing studies on BICs consider structures 
with two channels (reflected and transmitted); however, 
in Refs. [16, 21], the authors investigate BICs supported by 
structures with only one (reflected) channel open.

It was recently shown that BICs can be endowed with 
a topological invariant – topological charge, which takes 
integer values and is conserved upon the variation of the 
parameters of the structure [32]. BICs having nonzero top-
ological charge are robust to these variations. Besides, the 
topological charge conservation law determines the pos-
sible interaction scenarios of several BICs [20, 24, 32, 33].

In this paper, we propose a new on-chip photonic 
structure – the integrated Gires-Tournois interferometer 
(GTI), which consists of a single dielectric ridge terminat-
ing an abruptly ended slab waveguide and operates in the 
total internal reflection geometry (i.e. it has a single open 
scattering channel). We demonstrate that, in contrast to its 
conventional (nonplanar) counterpart [34], the proposed 
integrated GTI supports high-Q phase-only resonances 
associated with the excitation of leaky eigenmodes of the 
ridge. Moreover, we show that these modes can acciden-
tally decouple from the radiation continuum of the guided 
modes supported by the slab waveguide, which results in 
the formation of BICs. To the best of our knowledge, inte-
grated structures supporting BICs associated with phase-
only resonances have not yet been investigated despite 
their important potential applications in dispersion engi-
neering, pulse compression, and phase encoding [34–36]. 
We present a simple and accurate analytical model that 
describes the optical properties of the studied integrated 
structure and reveals the mechanism behind BIC forma-
tion. By introducing the topological charge of the BICs, 
we prove that they are robust in the considered parameter 
space. Moreover, we show that the considered structure 
supports BICs only when the the coupling between the 
TE and TM guided modes at the second edge of the ridge 
is relatively weak. We formulate this “weak polarization 
coupling” condition analytically and show that when the 
structure is altered so that this condition becomes vio-
lated, BICs having opposite topological charges group in 
pairs, coalesce, and annihilate each other, leading to the 
strong phase resonance effect.

2  �Integrated Gires-Tournois 
interferometer

First, let us recall the conventional GTI, which dates back to 
1964 [34]. This interferometer (etalon) consists of a dielectric 

slab with the first interface being partially reflective and the 
second one having unit reflectivity (see the inset to Figure 1). 
Similar to the Fabry-Pérot interferometer, GTI exhibits reso-
nant optical properties as a result of multiple reflections 
between the interfaces of the slab. If there is no absorption 
inside the GTI, the intensity of the reflected light is always 
unity, whereas its phase changes in a resonant manner. This 
makes GTI extremely important for various applications 
including dispersion compensation and compression of 
frequency-modulated light pulses [34–36].

Let us consider an integrated analog of the GTI, which 
is shown in Figure 1. The proposed structure consists of a 
single dielectric ridge with thickness hr and width w ter-
minating an abruptly ended slab waveguide with thick-
ness ha (ha < hr). We restrict our consideration to the case 
where both the slab waveguides with thicknesses ha and 
hr support only the fundamental TE- and TM-polarized 
guided modes. However, the effects discussed below can 
also occur in thicker multimode waveguides.

We study the diffraction of the TE-polarized guided 
mode obliquely incident from region A at the angle of inci-
dence θ (Figure 1). We consider the monochromatic case 
with the time dependence exp(−iωt), where ω = 2πc/λ is 
the angular frequency and λ is the free-space wavelength 
of the incident light. The incident guided mode has a plane 
wavefront with the x-y dependence exp(ikxx + ikyy), where

	
θ θ= =0 TE,inc 0 TE,inccos , sinx yk k n k k n � (1)

are the wave vector components. Here, k0 = 2π/λ is the 
wavenumber, and nTE,inc is the effective refractive index of 
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Figure 1: Geometry of the integrated Gires-Tournois interferometer 
(the structure is translation-invariant in the y-direction).
The arrows depict the propagation directions of the slab waveguide 
modes inside the structure. Red arrows show TE-polarized modes 
and blue arrows show TM-polarized modes. The inset shows the 
conventional GTI.
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the incident TE-polarized guided mode (Figure 1). In some 
works, such waves are referred to as “semiguided planar 
waves” [37, 38].

At small angles of incidence, the outgoing field 
includes not only the reflected TE- and TM-polarized 
guided modes but also a continuum of propagating waves 
scattered out of the waveguide core layer. However, at 
relatively large angles of incidence, all these “parasitic” 
nonguided waves become evanescent and do not carry 
energy. We present a brief discussion of this scattering 
cancellation mechanism in the Supplementary Mate-
rial section; several integrated nanophotonic elements 
exploiting this mechanism have been proposed recently 
[13, 14, 37–39].

Since there is no waveguide in region B (see Figure 1) 
and no out-of-plane scattering, all the energy is reflected 
at the second edge of the ridge and eventually returns to 
region A. Therefore, the structure works in the total inter-
nal reflection geometry. Moreover, if nTE,inc sin θ > nTM,inc, 
where nTM,inc is the effective refractive index of the TM-
polarized guided mode in region A, the reflected field 
contains only the TE-polarized mode, which has the same 
intensity as the incident wave. Therefore, the proposed 
integrated structure, similar to [16, 21], has only one open 
scattering channel.

In this regime, the structure indeed turns out to be 
an integrated analog of the GTI: the first interface of the 
ridge acts as a “weak” front mirror, whereas the second 
interface corresponds to a back mirror with unit reflectiv-
ity. Thus, the ridge itself can be considered as an interfer-
ometer cavity. There is, however, an important difference 
between the investigated on-chip structure and the con-
ventional GTI. Indeed, at angles of incidence θ satisfying 
the inequality

	
θTM TE,inc TM,inc> sin > ,n n n � (2)

where nTM is the effective refractive index of the TM-
polarized mode in the ridge region, the outgoing field, as 
discussed above, consists of a single wave (the reflected 
TE mode), whereas in the ridge region, two different waves 
(the TE- and TM-polarized modes) propagate. This makes 
the proposed integrated structure somewhat similar to the 
recently investigated anisotropic layered structure [16].

In the rest of the article, we focus on the angle of 
incidence range defined by Eq. (2) and show that in this 
angular range the structure possesses remarkable reso-
nant optical properties. To illustrate these properties, 
we consider an example with the following parameters: 
free-space wavelength λ = 630 nm; refractive indices of the 
superstrate, waveguide core layer, and substrate nsup = 1, 
ninc = 3.32 (GaP), and nsub = 1.45, respectively; and the 

waveguide thicknesses in region A and in the ridge region 
ha = 90  nm and hr = 110  nm, respectively. We emphasize 
that the used parameter values are not unique (no optimi-
zation of the structure was performed) and that the effects 
described below can be observed for a wide range of mate-
rials and waveguide thicknesses.

For the example under study, the slab waveguide 
in region A supports a TE-polarized mode with effective 
refractive index nTE,inc = 2.681 and a TM-polarized mode 
with effective refractive index nTM,inc = 1.796. The slab wave-
guide with thickness hr corresponding to the ridge region 
supports TE- and TM-polarized modes with effective 
refractive indices nTE = 2.819 and nTM = 2.187, respectively. 
At these parameters, the inequality (2) is satisfied in the 
following angle of incidence range: 42.05° < θ < 54.64°.

Since the reflected TE-polarized mode has a constant 
(unit) amplitude in the angular range of interest, it is the 
phase of the reflected radiation that has to be investigated. 
The rigorously calculated dependence of the phase arg R on 
the ridge width w and the angle of incidence θ is shown in 
Figure 2A. The plot was arrived at using an efficient in-house 
implementation of the aperiodic Fourier modal method 
(AFMM), an established numerical technique for solving 
Maxwell’s equations in integrated optics problems [40–42].

Figure 2A demonstrates that along with the smooth 
fringes caused by Fabry-Pérot resonances of TE-polarized 
guided modes in the ridge region, sharp resonant features 
are also present in the phase spectrum. The calculation 
of arg R in a wider angular range (not presented here) 
shows that the high-Q resonances occur only at the angles 
of incidence considered in Figure 2. As discussed above, 
at these angles the reflected radiation contains only the 
TE-polarized guided mode, whereas in the ridge region 
both the TE- and TM-polarized modes exist. The fact that 
the high-Q resonance region is located between the cut-off 
angles of the TM modes outside and inside the ridge sug-
gests that these sharp features arise as a result of the exci-
tation of cross-polarized (quasi-TM) eigenmodes of the 
ridge.

However, the most interesting feature of Figure 2A 
is that the width and, consequently, the quality factor 
of the phase resonances strongly vary along the disper-
sion curves. At the points marked with magenta circles, 
the resonances vanish, i.e. their widths turn to zero and 
their quality factors diverge. This is demonstrated by the 
rigorously calculated [13, 43, 44] Q-factor plot shown with 
a blue line in the inset to Figure 2A, which indicates the 
presence of BICs in the considered structure. Let us note 
that absorption, which is inevitable in realistic structures, 
turns infinite-Q BICs into high-Q resonances, referred to 
as quasi-BICs (see the red line in the inset to Figure 2A). 



86      D.A. Bykov et al.: Bound states in the continuum and strong phase resonances

Simulation results presented in the Supplementary Mate-
rial section suggest that quality factor of the order k−1 can 
be achieved at quasi-BICs, where k is the extinction coef-
ficient of the waveguide material. In addition, in the pres-
ence of absorption, the resonances are manifected not 
only in the phase of the reflected light but also as narrow 
dips in the reflection coefficient. As we demonstrate in 
the Supplementary Material section, the reflectance can 
almost vanish near quasi-BICs in lossy structures, which 
makes the considered structure promising for sensing 
applications [45].

Figure 3A shows the cross-sections of Figure 2A in 
the vicinity of the BIC marked with “3”. The resonances 
in this plot are manifested in an arctangent-shaped rapid 
change of the phase. The angular widths of the resonances 
decrease when approaching the BIC condition. Similarly, 
the upper panel of Figure 3B, which shows the wavelength 
dependence of the phase arg R(λ), also contains resonant 
features narrowing to zero when approaching the BIC. 
The presented plots suggest that the proposed integrated 
GTI can be used as a narrowband all-pass filter for trans-
forming optical pulses and beams. The lower panel of 
Figure 3B shows the group delay −d arg R/dω introduced 
by the ridge structure (note the log scale used for the ver-
tical axis). The group delay plots exhibit sharp resonant 
peaks, which are characteristic of GTIs [34]. Note that the 
peaks provided by conventional GTIs are evenly spaced 
with respect to the frequency, whereas in the considered 
integrated structure, we can obtain a single group delay 
peak on a wide, constant background. Moreover, when 
approaching the BIC, the maximum group delay increases 
by orders of magnitude (see the lower panel of Figure 3B). 

The maximum group delay ranges from ~1 ps at θ = 42.5° 
to ~60 ps at θ = 46.5°. The width of the peaks is inversely 
proportional to the quality factor of the mode. For the con-
sidered parameters, the quality factor ranges from ~600 to 
~47,000. In order to obtain such high-Q resonances using 
a conventional GTI with comparable thickness and mate-
rials, the reflectance at the first interface (see the inset to 
Figure 1) should be quite high: 0.98 (at Q = 600) and 0.9997 
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(at Q = 47,000). At the same time, the rest of the incident 
wave energy has to be transmitted (and not absorbed), 
which would normally require the use of multilayer die-
lectric structures. In the proposed integrated GTI, high-Q 
phase resonances are achieved using a different mecha-
nism based on BICs.

In order to explain the BIC formation mechanism, in 
the following section we derive a simple but very accurate 
coupled-wave model, which proves the existence of BICs 
and enables predicting their locations in the parameter 
space.

3  �Bound states in the continuum
In this section, we develop a coupled-wave model 
describing resonant optical properties of the considered 
structure and, in particular, BICs. The model is based 
on the fact that once we neglect the near-field effects, 
we can represent the field inside region A and inside 
the ridge region as a superposition of a small number of 
slab  waveguide modes, which are coupled at the ridge 
edges.

As was shown in the previous section, the structure 
exhibits resonant properties when it has only one scatter-
ing channel, namely the reflected TE-polarized mode. We 
denote the complex amplitude of the wave corresponding 
to this channel by R and the amplitude of the incident 
wave by I. Inside the ridge region, there are both TE and 
TM slab waveguide modes with amplitudes U1,2 and V1,2, 
respectively. Here, the subscript “1” is used for the modes 
propagating from the first (left) edge of the ridge towards 
the second (right) one, and the subscript “2” denotes the 
modes that are reflected from the second edge and propa-
gate backwards. The propagation directions of these six 
waves are schematically shown in Figure 1.

The considered modes are coupled at the edges of the 
ridge. The coupling at the first edge can be described by a 
3 × 3 scattering matrix, which relates the complex ampli-
tudes of the “scattered” modes (R, U1, and V1) with the 
amplitudes of the modes that are incident on the first edge 
of the ridge (I, U2, and V2):

	

    
    =    
    
    ���������

1 2

1 1 1 2

1 2 2 2

1

.c

c

R r t t I
U t r r U
V t r r V

S

� (3)

Here, r and t denote reflection and transmission coeffi-
cients, respectively. The subscripts denote the scattering 
channels being coupled: “1” and “2” correspond to the 

TE- and TM-polarized waves inside the ridge, whereas 
“c” corresponds to the cross-polarization coupling of the 
modes. Note that these coefficients depend on the angle 
of incidence θ and can be easily calculated using AFMM 
[40].

Similarly, the coupling at the second edge of the ridge 
is described by a 2 × 2 scattering matrix S2:

	

i i
2 1 1

i i
22 1

2

e e
,

e e
c

c

U q q U
q qV V

φ φ

ψ ψ

−

−

    
=    

        
S

�������

� (4)

where the subscripts have the same meaning as in Eq. (3). 
Since U1,2 and V1,2 denote the amplitudes of the modes at 
the first edge of the ridge, the scattering matrix S2 couples 
the amplitudes of the waves multiplied by the exponents 
describing the phase change acquired upon propagation 
of the modes between the ridge edges. The phases φ and 
ψ can be obtained by multiplying the wave vector compo-
nents of the modes by the ridge width w:

	
φ ψ= =TE TM, ,x xk w k w � (5)

where

	

ω ω   
+ = + =      

2 2
TE 2 2 TM 2 2

TE TM( ) , ( ) ,
c cx y x yk k n k k n � (6)

and ky is defined in Eq. (1).
Equations (3) and (4) give a system of five coupled-

wave equations describing the optical properties of the 
considered structure. In the Supplementary Material 
section, we solve these coupled-wave equations and 
obtain a closed-form expression for the reflection coef-
ficient R. The obtained expression is quite complicated; 
however, since the considered structure is lossless, the 
scattering matrices S1 and S2 are unitary and it is possi-
ble to present the reflection coefficient in the following 
compact form:

	
φ ψ=

*
2 i 2 i

1 2e e .R d d D
D

�
 
(7)

Here, D is the determinant of the matrix of the system of 
linear equations (3) and (4); D* is the complex conjugate 
of D; and di = det Si, i = 1,2, denote the scattering matrix 
determinants. Since the matrices S1 and S2 are unitary, d1,2 
have unit magnitudes, and, hence, the presented form of 
the reflection coefficient makes it obvious that |R | = 1. The 
phase of the reflected light arg R, however, is not constant 
but changes resonantly when the eigenmodes of the struc-
ture are excited.
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Figure 2B shows the phase of the reflected light (arg R) 
calculated using Eq. (7). By comparing Figure 2A and B, 
we see that the developed coupled-wave model is in excel-
lent agreement with the full-wave simulation results. In 
particular, the presented model reproduces the sharp 
phase resonances with varying width, which are present 
in the rigorously calculated spectrum of Figure 2A.

The obtained Eq. (7) also makes it possible to prove 
BIC existence and allows one to calculate their positions in 
the parameter space. Since BICs are infinite-Q eigenmodes, 
the denominator D in Eq. (7) vanishes at a real frequency 
ω in the case of a BIC. This, however, does not lead to the 
divergence of R since the numerator in the case of a BIC 
vanishes as well [8, 13, 19]. In the Supplementary Material 
section, we present a rigorous proof of the fact that both 
the numerator and the denominator do indeed vanish at 
some real frequencies when the following constraint on 
the cross-polarization reflection coefficient qc holds:

	

1 2
2 2

1 2

2 | || |
| | .

| | | |c

t t
q

t t
≤

+ � (8)

According to this inequality, the considered structure sup-
ports BICs when qc is relatively small. In particular, BICs 
always exist when no cross-polarization coupling occurs 
at the second edge of the ridge (at qc = 0). Therefore, BICs 
arise only in a certain part of the parameter space where 
the inequality (8), which can be called “weak polariza-
tion coupling” condition, is fulfilled. Let us note that 
inequality (8) is the cut-off condition for the BICs, which, 
however, is not related to the cut-off of any guided or scat-
tered waves of the structure.

In the Supplementary Material section, we provide 
closed-form expressions for the phases φ and ψ satisfying 
the BIC condition. These phases, which are expressed in 
terms of the scattering matrices S1 and S2, are real when 
the inequality (8) holds. In this case, from Eqs. (5) and 
(6), we can find expressions for the ridge width w and 
the angle of incidence θ at which the structure supports 
a BIC:

	

φ ψφ ψ
θ

ω φ ψ

−−= =
− −

2 2 2 22 2
TM TE

2 2 2 2 2
TE TM TE,inc

c , arcsin .
( )

n n
w

n n n
� (9)

The BIC positions calculated using Eq. (9) and shown 
in Figure 2A are in perfect agreement with the features 
in the rigorously calculated phase of the reflected wave. 
Note that the positions of different BICs in Figure 2A were 
calculated by adding different integer multiples of 2π to 
the phases φ and ψ in Eq. (9). Similar equations can be 
obtained for the positions of the BICs in the ω-ky para-
meter space.

4  �Topological charge of the BICs
In this section, we demonstrate that BICs in the consid-
ered structure are topologically protected. We do this by 
showing that a nonzero integer topological charge can 
be assigned to each BIC. Usually, topological charge is 
defined as a curvilinear integral of some quantity calcu-
lated along a curve encircling a BIC in a certain parameter 
space [32]. Topological charge is introduced differently 
depending on the geometry of the structure. Approaches 
exploiting far-field polarization vector [32, 33] and argu-
ment of a quasimodal expansion coefficient [24] were 
recently proposed.

For the considered structure, we propose the follow-
ing quantity to define the topological charge:

	
φ ψ φ= − −i * i * i

1 1 2 2e ( e e ) ,cd q t q t tP � (10)

which can be interpreted as the coupling coefficient 
between the incident light and the eigenmode of the inte-
grated GTI (see Supplementary Material). To define the 
topological charge, we take the contour integral of the 
gradient of the argument of P:

	
γ

θ
π

= ∫�1 darg ( , ),
2

C wP � (11)

where θ θ
θ

∂ ∂= +
∂ ∂

arg argdarg ( , ) d d .w w
w
P P

P  We note 

here that the phases φ and ψ in P depend on both θ and 
w, whereas the coupling coefficients q1,c and t1,2 depend 
solely on θ.

When the integration path γ encircles a BIC, Eq. (11) 
defines its topological charge. Moreover, when the topo-
logical charge is nonzero, there should be a point inside 
the integration contour where the phase of P is undefined. 
Therefore, at this point P = 0 and, as we prove in the Sup-
plementary Material section, at this very point of the para-
meter space the considered structure supports a BIC.

Figure 4 shows arg P calculated in the considered w-θ 
parameter space. BICs are marked with white circles. One 
can see the singularities of arg P appearing at these points. 
Hence, if we move along a contour encircling a BIC, the 
phase will not return to its initial position but will differ by 
an integer multiple of 2π. For example, in the case of the 
BIC marked with “1” in Figure 4, the phase increases by 
2π when encircling the BIC counterclockwise, and there-
fore its topological charge is +1. The phase around the BIC 
marked with “2”, however, changes in the opposite direc-
tion, resulting in topological charge −1.

Small perturbations of the parameters of the struc-
ture result in small changes in the quantity P. The integer 
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value of the topological charge C, however, can only 
change in a discrete manner. Therefore, small perturba-
tions will not change the topological charge and the BIC 
will not disappear but move in the parameter space. Such 
BICs are called “robust” or “topologically protected”. Cal-
culations based on Eq. (11) show that all the BICs investi-
gated in this paper have nonzero topological charge and 
are, hence, robust.

Another important application of the topological 
charge is the investigation of the interaction of several 
BICs. To do this, let us choose the integration contour γ 
in such a way that it encircles several BICs. In this case, 
the value of C in Eq. (11) will be the sum of the topological 
charges of the encircled BIC. If the BICs interact in some 

manner, after the interaction the sum of the topological 
charges is conserved. One scenario for such an interaction 
is the annihilation of the BICs having opposite charges, 
which is discussed in the following section.

5  �Annihilation of the BICs and 
strong phase resonances

As we have shown in the previous section, adjacent BICs 
in the considered structure have opposite topological 
charges (−1 and +1). The total topological charge of the 
two BICs is zero. Therefore, according to the charge con-
servation law, the coalescence of these BICs may result in 
their annihilation, after which no BICs remain, resulting 
in the same total charge equal to zero. In this section we 
demonstrate this effect.

To “move” the BICs in the parameter space, we intro-
duce a nonzero thickness hb of the waveguide layer in 
region B (see the inset to Figure 5B). We will assume that 
hb is small enough so that the scattering channels cor-
responding to the transmitted modes in region B remain 
closed. In this case, the scattering matrix S2 changes but 
the coupled-wave model of Section 3 remains applicable.

Let us focus on the two BICs bounded by the white 
rectangle in Figure 2A. In the upper panels of Figure 5, 
we show the phase of the reflected wave calculated 
at different values of hb ranging from 0 to 25  nm. The 
lower panels of Figure 5 show the corresponding rigor-
ously calculated [43] quality factors of the modes. Note 
that the upper panel of Figure 5A is simply a magnified 
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fragment of Figure 2A, where two BICs are present. With 
an increase in hb, these BICs approach each other (Figure 
5B). Then, at a critical thickness hb = 22.5  nm, the BICs 
coalesce, as shown in Figure 5C. At this thickness, the 
topological protection of the BIC is lifted, i.e. the con-
sidered “second-order” BIC in Figure 5C gets topological 
charge zero. If we further increase hb, the BIC will disap-
pear; indeed, instead of a BIC, only a finite-Q resonance 
is seen in Figure 5D corresponding to hb = 25  nm. This 
demonstrates the annihilation of the BICs governed by 
their topological properties.

Now, let us focus on the lower panels of Figure 5 and 
investigate the w-dependence of the quality factor near 
the ridge width w0 satisfying the BIC condition. To do this, 
we write the complex frequency of the mode ωp in the 
big O notation: Re ωp = ω + O(w − w0), Im ωp = O((w − w0)2), 
which follows from the causality condition [19]. This 
expansion leads to a quadratic decay rate of the quality 
factor when moving away from the BIC: Q = Re ωp/(−2Im 
ωp) ~ (w − w0)−2. Indeed, in Figure 5A and B, the quadratic 
decay law (w − w0)−2 shown with dashed lines provides a 
good fit of the quality factor. However, this is not the case 
in Figure 5C, where the two BICs coalesce and the decay 
rate becomes quartic: Q ~ (w − w0)−4 (see the dotted lines in 
Figure 5). Note that a similar phenomenon was predicted 
for different periodic structures (photonic crystal slabs 
and arrays of cylinders or spheres) [20, 24, 33, 46, 47] and 
referred to as a strong resonance [24, 33, 46, 47]. There-
fore, in the case of a “second-order” BIC, the proposed 
integrated GTI exhibits a strong phase resonance, which 
provides a slower decay of the quality factor when moving 
away from the BIC. This effect is of practical importance 
for designing high-Q resonators with relaxed fabrication 
tolerances.

Therefore, in this section we have shown that if the 
structure is altered in such a way that the weak polariza-
tion coupling condition (8) becomes violated, BICs having 
opposite topological charges group in pairs, coalesce, 
and, finally, annihilate each other.

6  �Conclusion
In this work, we demonstrated that an integrated analog 
of the GTI, which consists of a single dielectric ridge ter-
minating an abruptly ended slab waveguide, supports 
topologically protected BICs. We developed a coupled-
wave model that accurately describes the resonant 
optical properties of the proposed structure. In particu-
lar, simple closed-form expressions were obtained for the 

condition of the BIC existence and for the positions of the 
BICs in the considered parameter space. The coupled-
wave model also allowed us to introduce the topological 
charge of the BICs, proving their robustness and limiting 
their possible interaction scenarios by the charge conser-
vation law.

The existence of BICs in the proposed structure makes 
it possible to use it as an integrated optical waveguide 
with an unconventional guiding mechanism [29–31]. 
Detuning from the BIC condition allows one to obtain an 
all-pass filter exhibiting sharp phase resonances. This 
makes the proposed structure promising for on-chip dis-
persion engineering, in particular for phase equalization 
and pulse compression. The existence of the so-called 
strong resonances in the considered structure relaxes the 
fabrication tolerances and makes the proposed integrated 
GTI an excellent candidate for creating high-Q optical res-
onators, which are widely used in filtering, sensing, and 
lasing. The latter application may fruitfully exploit the 
fact that the proposed structure has only one open scat-
tering channel.

We believe that the proposed concept of an integrated 
GTI supporting BICs and strong phase resonances can be 
extended to other on-chip platforms, in particular Bloch 
surface waves propagating along the interfaces of pho-
tonic crystals [48]. We also expect that the demonstrated 
charge-conserving interaction of the BICs including their 
coalescence and annihilation can be implemented not 
only by changing the geometry of the structure but also 
through an external stimulus of magneto-optical, electro-
optical, or nonlinear nature.
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