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Abstract: Singular graphene metasurfaces, conductivity 
gratings realized by periodically suppressing the local 
doping level of a graphene sheet, were recently proposed 
to efficiently harvest THz light and couple it to surface 
plasmons over broad absorption bands, thereby achieving 
remarkably high field enhancement. However, the large 
momentum wavevectors thus attained are sensitive to the 
nonlocal behavior of the underlying electron liquid. Here, 
we extend the theory of singular graphene metasurfaces 
to account for the full nonlocal optical response of gra-
phene and discuss the resulting impact on the plasmon 
resonance spectrum. Finally, we propose a simple local-
analogue model that is able to reproduce the effect of 
nonlocality in local-response calculations by introducing 
a constant conductivity offset, which could prove a valu-
able tool in the modeling of more complex experimental 
graphene-based platforms.

Keywords: graphene plasmonics; nonlocality; singular 
metasurfaces; singularities; plasmonics; local-analogue 
model.

1  �Introduction
Over the past two decades singular plasmonic structures, 
such as touching metallic wires and spheres, demon-
strated enticing capabilities for controlling light in the 
subwavelength regime, thanks to their ability to bridge 
very different length scales, namely, the wavelength of the 
photon and that of the electron [1–3]. Characterized by fea-
tures much smaller than their overall size, such as sharp 
points and regions of adiabatically vanishing thickness, 
these structures, so far, enabled extreme confinement of 
electromagnetic fields, with a plethora of far-reaching 
applications, including the access to quantum regimes of 
light–matter interactions [4–6]. More recently, extended 
structures featuring geometrical singularities were inves-
tigated in the context of metasurfaces [7, 8], which enable 
larger scattering cross-sections and lower losses, as well 
as unprecedented tunability and dynamical control of 
electromagnetic waves [9–11].

The working principle of singular structures, which 
was recently shown to be intimately linked to the concept 
of compactification encountered in high-dimensional 
field theories [12, 13], may be summarized in the follow-
ing consideration. In a conventional one-dimensional 
(1D) periodic scattering problem (Figure 1), such as that 
of a plasmon propagating on a inhomogeneously doped 
graphene sheet, one can identify two distinct scenar-
ios: hard-boundary scattering, which is often modeled 
through boundary conditions, commonly results in 
reflection, and the subsequent quantization of scattered 
fields into effective Fabry–Pérot modes (Figure  1A); the 
opposite regime consists of the weak scattering limit, 
often modeled with WKB-type approaches, whose main 
effect is the phase change of a largely transmitted wave 
(Figure 1B), which results in the opening of band-gaps as a 
result of Bragg scattering from the periodic inhomogeneity. 
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Singular structures constitute a narrow intermediate 
regime, whereby the scattering process is not abrupt 
enough to generate significant back-reflection, while not 
being smooth enough to let the wave be significantly 
transmitted and interfere. As a result, the wavelength of 
the excitation becomes increasingly short as it approaches 
a so-called singular point, which we shall define as a point 
where the local wavevector effectively diverges. Its group 
velocity is dramatically reduced, such that the wave never 
reaches the singularity, and energy is absorbed close to 
it in the presence of material loss, realizing a remarkable 
concentration of electromagnetic energy within nanoscale 
volumes. Recently, graphene-based singular metasurfaces 
were proposed as a promising platform for the focusing 
of THz plasmons, as well as for their broadband, tunable 
plasmonic response to far-field illumination [7]. The 
plasmonic response of graphene recently demonstrated 
unprecedented field confinement, concentrating waves 
which propagate with free-space wavelengths of tens to 
hundreds of microns down to the atomic scale [14–17]. In 
addition, the technological relevance of these THz plas-
mons for vibrational sensing [18–22] and high-speed wire-
less communication [23–25] attracted enormous interest 
in these surface excitations.

However, it was recently shown that the account of 
nonlocal effects – arising from the quantum nonlocal 
response of the 2D electron gas – is of paramount impor-
tance when the plasmon wavelength becomes comparable 
to the electronic Fermi wavelength, in order to correctly 

predict their electromagnetic response [15, 16]. The nonlo-
cal response of singular metallic structures featuring 3D 
electron gases was widely studied [26], primarily via the 
so-called hydrodynamic model [27, 28], which accounts 
for charge screening at a dielectric–metal interface [29–
31]. Alternative theoretical models were also developed in 
the past, which simplify the account of nonlocal effects in 
complex plasmonic structures [32–35]. More recently, non-
local effects attracted renewed interest and, in particular, 
due to the sizable impact of quantum mechanical effects 
in plasmon-enhanced light–matter interactions [16, 36] 
at the nanoscale, as well as for applications to all-optical 
signal processing [37].

In these singular metasurfaces, the nonlocal response 
of graphene arises from the onset of different types of 
electronic transitions within the regions of phase space 
shown in Figure 2. Region 1B constitutes the so-called 
lossless regime (in the absence of electronic scattering 
processes). Here, interband transitions are forbidden due 
to Pauli blocking, and the small plasmon momentum 
– i.e. k  kF, where kF is the Fermi wavevector – does not 
allow for any indirect transitions. Hence, in this regime, 
the only loss channels for graphene plasmons arise from 
electronic scattering processes (e.g. with phonons, defects, 
etc.) [17, 38], which are commonly introduced phenomeno-
logically via the so-called relaxation-time approximation 
[20]. Nevertheless, the incorporation of quantum nonlocal 
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Figure 2: Electronic contributions to the graphene conductivity in 
different regions of phase space [20].
Region 1B (k < ω/vF, k < 2kF − ω/vF) of phase space is protected 
from Landau damping arising from both interband and intraband 
transitions. The lossy (shaded) regions are 1A (ω/vF < k < 2kF − ω/vF) 
and 2A (ω/vF < k < 2kF + ω/vF, k > 2kF − ω), dominated by 
Landau damping resulting from intraband transitions, and 2B 
(2kF − ω/vF < k < ω/vF, ω/vF < 2kF + k) and 3B (k < ω/vF − 2kF) dominated 
by indirect and direct interband transitions, respectively.
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Figure 1: Traveling towards a geometrical singularity, a wave is unable 
to be reflected or transmitted, becoming increasingly compressed. 
(A) The in-plane scattering of an electromagnetic wave in a periodic 
system, e.g. a plasmon propagating along a periodically modulated 
conductive surface is typically dominated by reflection at hard 
boundaries or transmission through soft boundaries, leading to 
discrete Fabry–Pérot modes or Bloch waves, respectively. (B) At a 
singular boundary, both transmission and reflection channels are 
virtually inaccessible, and the only available path for a wave is to 
shrink its wavelength and concentrate its energy as it travels toward 
the singular point.
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effects is reflected in the reactive (imaginary) component 
of the conductivity for large plasmon momenta k → ω/vF. 
In fact, the divergent character of graphene’s conductiv-
ity at the boundary between region 1B and 1A constitutes 
a main detrimental effect for the realization of conductiv-
ity singularities in graphene. Region 1A suffers from the 
onset of Landau damping, which arises due to the match-
ing between the phase velocities of the electrons and of the 
plasmons. This has the effect of dramatically enhancing 
the loss. Similarly, region 2A is affected by additional intra-
band channels, which become accessible once the plasmon 
momentum k > kF. Finally, indirect (region 2B) and direct 
(region 3B) interband transitions occur once the plasmon 
energy ħω > 2EF − ħvFk and ħω > 2EF + ħvFk, respectively.

Because of the extreme values of plasmon momenta 
to which a singular structure can couple incident photons 
to, a rigorous account of the momentum dependence of 
the optical response of these metasurfaces is pivotal. In 
this work, we explore the nonlocal behavior of plasmons 
in singular graphene metasurfaces and show that these 
systems are able to probe the strong nonlocal response of 
2D electron gases by coupling far-field radiation to deeply 
subwavelength plasmon modes. By means of a nonlocal 
mode-matching technique [20], supported by numerical 
calculations, as well as a phenomenological local-ana-
logue model, we unravel the physics underpinning the 
onset of nonlocality in these metasurfaces. We believe 
that our method constitutes a valuable tool for incorporat-
ing nonlocal effects in complex metasurface setups and 
may be employed as an alternative approach to fully non-
local conductivity models.

2  �Methods
Nonlocal effects in plasmonics manifest themselves when 
the plasmon wavelength approaches the typical electronic 
wavelength λF in a material. In this regime, the spatial 
variation of the electric field E(x) is sufficiently abrupt to 
sample the underlying inhomogeneity of the electron gas, 
so that the constitutive relation for the surface current 
density can be written as

	
( , ) ( , ) ( , )xJ x x x E x dxω σ ω ω= − ′ ′ ′∫ � (1)

and thus can no longer be approximated assuming a spatial 
dependence of the conductivity of the form σ(x − x′, ω) =  
σ(ω)δ(x − x′), where δ(x) is the Dirac delta function.

However, when the structuring of a THz metasurface 
is performed over scales much larger than the Fermi’s 

wavelength (L  λF), a separation of length scales can 
be assumed. Hence, we can write, under the adiabatic 
approximation:

	
( , ) ( , ) ( ) ( , )xJ x x x x E x dxω σ ω ζ ω= − ′ ′ ′ ′∫ � (2)

where ζ(x′) is a dimensionless variable, which describes 
the spatial modulation of the conductivity of graphene 
[39, 40], the latter depending monotonically on the local 
doping level of graphene. This has the desirable property 
of being actively tunable (e.g. electrostatically, chemi-
cally, or optically). In this work, we assume that a periodic 
conductivity modulation is applied, which, for simplic-
ity and definiteness, is herein assumed to be of the form 
ζ(x) = 1 + ζ1cos(gx), where L = 2π/g is the period of the 1D 
metasurface and g the reciprocal lattice vector associated 
with the same.

Using Bloch’s theorem and expanding the Bloch 
modes of the in-plane electric field and the surface current 
as a Fourier series, one may write

	
,( ) ikx ingx

x n x
n

E x e E e= ∑ � (3)

and a simple relation between the Fourier amplitudes of 
the electric field and the surface current hereby takes the 
form

	
1

, , 1, 1,( ) ( )
2n x n x n x n xJ k ng E E E
ζ

σ + −

 
= + + +  � (4)

which is accurate as long as the reciprocal lattice vector 
of the metasurface satisfies g  kF. For concreteness, 
the nonlocal conductivity model [20] is described in 
Appendix 1.

3  �Results
The main effect of nonlocality in graphene is to oppose 
the formation of a singularity by increasing the conduc-
tivity probed by large-momentum Fourier components. 
In Figure 3, we plot the transmission spectra under plane 
wave illumination at normal incidence (k = 0) for differ-
ent modulation strengths Δ = −log10(1 − ζ1), correspond-
ing to the number of orders of magnitude by which the 
conductivity is suppressed at a singular point. We assume 
an average Fermi level EF = 0.4 eV, a conductivity grating 
period L = 5 μm, and a mobility μm = 104 cm2/(V s) resulting 
in an electron scattering time 2

m /( ) 0.44 ps,F FE v eτ μ= ≈  
where the Fermi velocity vF = 9.5 × 105 m/s [41] is assumed. 
Our results are obtained via the nonlocal mode-matching 
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method outlined above; these were benchmarked, in the 
local-response limit, against finite-element method (FEM) 
numerical calculations using a commercially available 
package (COMSOL Multiphysics). For weak conductivity 
modulation, i.e. far from the singular limit (Figure 3A), the 
local and nonlocal spectra are effectively equivalent. In 
this limit, only momentum states well below the Landau 
damping regime k ≈ ω/vF are populated, so that the metas-
urface can be accurately described via a local Drude-type 

conductivity model 
2

2( ) ,
( )

F
D

Ee
i

σ ω
γ ωπ

=
−

 where γ = τ−1. 

As we increase the modulation strength to 99.9% of the 
average value (Figure 3B, Δ = 2), the local and nonlo-
cal spectra start deviating, the latter exhibiting a clear 
blueshift, which is a consequence of nonlocality (see, e.g. 
Ref. [20]), as plasmon resonance frequencies ω ∝ σ [see 

dispersion relation, Eq. (5)], and nonlocal effects lead to 
an increase in conductivity. Finally, for Δ = 3 (Figure 3), 
nonlocality becomes a dominant effect, which effectively 
saturates the plasmonic spectrum, opposing any further 
merging of the plasmon resonances.

For completeness we show in Figure 4 the plasmonic 
band structure of our metasurfaces over the rest of the 
Brillouin zone, where a few additional effects are present. 
In order to visualize the bands, we plot in log-scale the 
absolute value of the reflection coefficient, which was 
color saturated in order to allow both propagating and 
evanescent modes to be identifiable. In the non-singular 
regime (Figure 4A), plasmonic band gaps resulting from 
the periodic modulation are clearly visible at k = π/L, 
whereas the bands are degenerate at k = 0 due to the 
inversion symmetry of the modulation. By contrast, as 
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Figure 3: Nonlocality leads to saturation of the density of states in a singular graphene metasurface.
Local (red) and nonlocal (blue) transmittance spectra for plane wave illumination through the graphene metasurface at normal incidence, 
obtained with the mode-matching (continuous lines) and finite-element method (dots) for three increasingly singular metasurfaces 
corresponding to Δ = 1 (A), Δ = 2 (B), and Δ = 3 (C), respectively. The nonlocal contribution, which is negligible away from the singular regime, 
becomes dominant as the singular limit is approached, opposing the merging of surface plasmon modes.
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Figure 4: (Left-to-right) Plasmonic band structures for non-singular, singular (local) and singular (nonlocal) graphene metasurfaces. 
Plasmonic band structure of the non-singular (Δ = 1) (A) and singular (Δ = 3) (B, C) metasurfaces, visualized by plotting the logarithm of 
the absolute value of the reflection coefficient. Note that to the right of the light line, the incoming waves are evanescent. Local (A, B) and 
nonlocal (C) spectra differ significantly for the singular case Δ = 3 only. (A) In the non-singular regime, band gaps are clearly visible at the 
edge of the Brillouin zone, with the respective upper bands showing significantly larger broadening compared to the lower ones. (B) In 
the singular limit, local calculations predict that the band above of each band gap becomes indistinguishable from the lower band of the 
gap above, effectively realizing a series of flat bands, with extremely low group velocities. However, the onset of Landau damping in the 
nonlocal case (C) greatly broadens these bands, in addition to saturating their compression as in Figure 3. In addition, note that the bands 
are effectively degenerate at k = 0, due to the inversion symmetry of the modulation.
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the modulation strength is increased (Figure 4B), the 
bands flatten as a result of the stronger Bragg scatter-
ing, so that in the singular limit, they become effectively 
indistinguishable. In this regime, plasmons are dramati-
cally slowed down. However as in the previous case, the 
introduction of nonlocality saturates the merging of the 
plasmon spectrum, opposing the flattening of the bands. 
However, in this case, we clearly see how nonlocality has 
the additional effect of broadening the reflection spectra 
dramatically, as a result of the losses introduced by 
Landau damping.

The account of nonlocality can be somewhat 
demanding in the modeling of more complex experi-
mental setups. Consequently, local-analogue models, 
which are able to incorporate the effects of nonlocality 
in a local simulation are valuable tools for the theoreti-
cal modeling of plasmonic systems. Here, we propose 
a simple local-analogue model, which can accurately 
reproduce the results of the fully nonlocal calculation 
carried out above. Local-analogue models were originally 
proposed for metallic plasmonic systems [32] in order 
to capture nonlocal effects under the framework of the 
hydrodynamic model of the free-electron gas at the inter-
face between nearly touching metallic structures. In that 
context, the effect of nonlocality is the inward shift of 
the induced charges, i.e. away from the metallic surface 
and into the bulk, thereby effectively widening the gap 
between the components of the dimer (e.g. metallic cylin-
ders or spheres). Consequently, the substitution of a thin 
metallic layer by an effective dielectric one was able to 
accurately reproduce the optical response of such nearly 
touching metallic structures.

Conversely, the type of singular structure described in 
this work entails the inverse effect: since the conductivity 
is strongly enhanced as k → ω/vF, the effect of nonlocality 
is to smear out the singularity by effectively saturating the 
local conductivity to a minimum level σs dictated, qualita-
tively, by the condition k(σs) ≈ ω/vF, i.e. when the plasmon 
wavelength λp → λF, and Landau damping opposes any 
further confinement of the plasmonic field. The quasi-
static dispersion relation of graphene plasmons is read 
as [20]:

	
1 2

0

0,i kσ
ε ε

ε ω
+ + = � (5)

where σ ≡ σ(k, ω) and σ ≡ σ(ω) = σ(k → 0, ω) in the nonlo-
cal and local cases, respectively. Herein, we set ε1,2 = 1 
(for simplicity alone). Moreover, we can then substitute 
the wavevector k = βω/vF, where β is a phenomenological 
factor of order ~1, which quantifies the fraction of electron 

momentum to which the plasmon can couple before sat-
urating (which is exactly one if momentum saturation 
occurs exactly at the electron momentum). In this fashion, 
we thus obtain the saturation value for the conductivity, 
σs = 2iε0vF/β. In Figure 5, we add a positive surface conduc-
tivity offset

	 1( ) [ (1 ) ( )][1 /( )]s Di i
σ

∆ ω σ ζ σ ω ωτ= ℑ − − − � (6)

in a local FEM calculation, where the factor in the first 
square bracket is responsible for the smearing of the imag-
inary part of the surface conductivity, whereas the second 
ensures that the loss tangent [ ]/ [ ]σ σℜ ℑ  is preserved upon 
the conductivity offset. It is worth remarking that, as our 
model hinges on the relation between the plasmonic and 
electronic momentum, the linear dependence of the latter 
on frequency implies that the conductivity offset is fre-
quency dependent.

For β = 1, the agreement between the previous non-
local result (Figure 3C) and the spectrum obtained using 
the local-analogue model is only qualitative. However, 
as the figure plainly shows, by choosing β  1.29, this 
simple model is able to reproduce the entire transmis-
sion spectrum with remarkable accuracy, hereby validat-
ing the physical assumptions behind our local-analogue 
model. While insightful, our semiclassical theory does 
not provide a quantitative evaluation of the saturation 
parameter β. However, it can shine further insight into 
our nonlocal description: in fact, given that β > 1, meaning 

σ (ω, k)

σ
σ (ω)

σ

σ

β

β

∆

Figure 5: Local (red), nonlocal (blue line), and local-analogue (green 
triangles for β = 1.29 and gray dashed line for β = 1) transmittance 
spectra of the singular (Δ = 3) graphene conductivity grating.
The inset shows how a local-analogue metasurface can be obtained 
by saturating the conductivity of graphene near the value, which 
causes the local plasmon dispersion to cross the electron dispersion 
ω = vFk, a regime dominated by Landau damping.



314      E. Galiffi et al.: Probing graphene’s nonlocality with singular metasurfaces

that the saturation momentum surpasses the electron 
momentum, this result is worthy of a closer inspection. In 
the most singular regime, the assumption leading to the 
first-order Fourier expansion in Eq. (2) may lose accuracy 
for larger wavevectors, resulting in an underestimation 
of the extent of nonlocal effects in this extreme regime. 
In this sense, comparisons with future, fully quantum-
mechanical investigations would prove extremely useful 
in providing an exact evaluation of the saturation momen-
tum. Nevertheless, our local-analogue model offers a 
useful and intuitive method for the incorporation of non-
local effects in the future modeling of complex metasur-
faces based on 2D materials.

4  �Conclusions
In this work, we presented a theoretical description of 
nonlocal effects in singular graphene metasurfaces. By 
calculating the transmission spectra under plane wave 
illumination, as well as the plasmon band structure, we 
demonstrated how such conductivity gratings are able to 
probe the nonlocal response of graphene. Furthermore, 
we discussed the consequent limitations imposed by non-
locality to the field confinement and spectral degeneracy 
induced by the singularity, which is effectively smeared 
out by the increased conductivity probed by large plasmon 
wavevectors. Finally, we proposed a simple local-analogue 
model, which is able to reproduce the effects of nonlocal-
ity by means of an effective surface conductivity offset, 
which saturates the plasmon wavevector to the electronic 
one. An analogous effective model could also be devised 
to account for nonlocality in metallic surfaces with sin-
gular points, extending previous work on local-analogue 
models for metal nanostructures [32]. This would find par-
ticular interest in the context of the recent advances in the 
fabrication of ultrathin metals [42, 43].

To conclude, singular graphene metasurfaces con-
stitute a platform for probing nonlocality in graphene 
with far-field measurements. Our results form the basis 
for a quantitative account of nonlocality in these 2D 
systems, and should be valuable for guiding future exper-
imental efforts, as well as incorporating fully quantum-
mechanical theoretical investigations into effective local 
descriptions.
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Appendix 1

Nonlocal conductivity model

The nonlocal conductivity of graphene can be written in 
terms of graphene’s 2D polarizability as [20]

	
2

2( , ) ( , )k ie P k
k γ

ω
σ ω ω= � (7)

where P
γ
(k, ω) is the 2D density-density response func-

tion (or 2D polarizability) in the relaxation-time approxi-
mation (which incorporates a finite plasmon lifetime 
while preserving electron number density [20, 44]). The 
2D polarizability in the relaxation-time approximation is 
given by [20, 44]

	

(1 / ) ( , )( , )
1 / ( , ) / ( , 0)

i P k iP k
i P k i P kγ

γ ω ω γ
ω

γ ω ω γ
+ +=

+ ⋅ +
� (8)

where P(k, ω) denotes the zero-temperature density-
density response function in the four regions outlined in 
Figure 2, which may be written as:
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2 F

F

k
F

vπ
=


 and the 
auxiliary functions:

12( ) 1 ( ),coshhC z z z z−= − −

12( ) 1 ( ).cosC z z z z−= − −
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