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Abstract: We propose a nanospaser made of an achiral 
plasmonic–metal nanodisk and a two-dimensional chiral 
gain medium – a monolayer nanoflake of a transition-
metal dichalcogenide (TMDC). When one valley of the 
TMDC is selectively pumped (e.g. by a circular-polarized 
radiation), the spaser (surface plasmon amplification by 
stimulated emission of radiation) generates a mode car-
rying a topological chiral charge that matches that of 
the gain valley. There is another, chirally mismatched, 
time-reversed mode with exactly the same frequency but 
the opposite topological charge; it is actively suppressed 
by the gain saturation and never generates, leading to a 
strong topological protection for the generating matched 
mode. This topological spaser is promising for use in 
nano-optics and nanospectroscopy in the near field espe-
cially in applications to biomolecules that are typically 
chiral. Another potential application is a chiral nanolabel 
for biomedical applications emitting in the far field an 
intense circularly polarized coherent radiation.

Keywords: near-field optics; spaser; optical pumping; 
plasmonics; symmetry protected topological states; topo-
logical materials; valleytronics.

1  �Introduction
Spaser (surface plasmon amplification by stimulated 
emission of radiation) was originally introduced in 2003 
as a nanoscopic phenomenon and device: a generator and 
amplifier of coherent nanolocalized optical fields. Since 
then, the science and technology of spasers experienced 

a rapid progress. Theoretical developments [1–4] were fol-
lowed by the first experimental observations of the spaser 
[5, 6] and then by an avalanche of new developments, 
designs, and applications. Currently, there are spasers 
whose generation spans the entire optical spectrum, from 
the near-infrared to the near-ultraviolet [7–15].

Several types of spasers, which are synonymously 
called also nanolasers, have so far been well developed. 
Historically, the first is a nanoshell spaser [5] that con-
tains a metal nanosphere as the plasmonic core that is 
surrounded by a dielectric shell containing gain material, 
typically dye molecules [5, 16]. Such spasers are the small-
est coherent generators produced so far, with sizes on 
the order of 10 nm. Almost simultaneously, another type 
of nanolasers was demonstrated [6] that was built from 
a semiconductor gain nanorod situated over a surface of 
a plasmonic metal. It has a micrometer-scale size along 
the nanorod. Its modes are surface plasmon (SP) polari-
tons with nanometer-scale transverse size. Given that 
the spasers of this type are relatively efficient sources 
of far-field light, they are traditionally called nanolas-
ers, although an appropriate name would be polari-
tonic spasers. Later, this type of nanolasers (polaritonic 
spasers) was widely developed and perfected [7, 12, 17–20]. 
There are also spasers that are similar in design to the 
polaritonic nanolasers but are true nanospasers whose 
dimensions are all on the nanoscale. Such a spaser con-
sists of a monocrystal nanorod of a semiconductor gain 
material deposited atop of a monocrystal nanofilm of 
a plasmonic metal [21]. These spasers possess very low 
thresholds and are tunable in all visible spectra by chang-
ing the gain semiconductor composition, while the geom-
etry remains fixed [11, 14, 22]. There are also other types 
of demonstrated spasers. Among them, we mention sem-
iconductor-metal nanolasers [23] and polaritonic spasers 
with plasmonic cavities and quantum dot gain media [24].

A fundamentally different type of quantum genera-
tors is the lasing spaser [4, 25, 26]. A lasing spaser is a 
periodic array of individual spasers that interact in the 
near field and form a coherent collective mode. Such 
lasing spasers have been built of plasmonic crystals that 
incorporate gain media. One type of lasing spasers is a 
periodic array of holes in a plasmonic metal film depos-
ited on a semiconductor gain medium [10]; another type 
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is a periodic array of metal nanoparticles surrounded by 
a dye molecules solution [27]. We have recently proposed 
a topological lasing spaser that is built of a honeycomb 
plasmonic crystal of silver nanoshells containing a gain 
medium inside [28]. The generating modes of such a 
spaser are chiral SPs with topological charges of m = ± 1, 
which topologically protects them against mixing. Only 
one of the m = ± 1 topologically charged modes can gener-
ate at a time selected by a spontaneous breaking of the 
time-reversal (T ) symmetry.

The spasers not only are of a significant fundamental 
interest but also are promising for applications based on 
their nanoscale-size modes and high local fields. Among 
such demonstrated applications are those to sensing of 
minute amounts of chemical and biological agents in 
the environment [18, 19, 29]. Another class of the demon-
strated applications of the spasers is that in cancer thera-
nostics (therapeutics and diagnostics) [16]. An important 
perspective application of spasers is on-chip communica-
tions in optoelectronic information processing [30].

It is of a great interest to explore intersections of the 
spaser technology and topological physics. In our recently 
proposed topological lasing spaser [28], the topologically 
charged eigenmodes stem from the Berry curvature [31, 32] 
of the plasmonic Bloch bands of a honeycomb plasmonic 
crystal of silver nanoshells. In contrast, the gain medium 
inside these nanoshells is completely achiral. This topo-
logical lasing spaser is predicted to generate a pair of 
mutually time-reversed eigenmodes carrying topological 
charges of ±1, which strongly compete with each other, so 
only one of them can be generated at a time.

Topology plays an important role in all fields of 
physics, from condensed matter physics to cosmology. In 
solids, the topological properties are determined by the 
change of the phase of an electron wave function and are 
quantified by the Berry connection and the correspond-
ing Berry curvature. The Berry curvature acts as a mag-
netic field in the reciprocal space, and the flux of the Berry 
curvature through the first Brillouin zone determines the 
total topological charge that is quantized and is called the 
Chern number.

Although for the systems with the T  symmetry the 
total topological charge is zero, it can have nonzero values 
and even quantized within some regions of the reciprocal 
space called valleys. An example of such systems is gra-
phene, which is semimetal with two inequivalent points, 
K and K′, in the reciprocal space, where the electron 
energy dispersion is of a relativistic Dirac type. The Berry 
curvature at these two points is singular and zero else-
where. The total flux of the Berry curvature through any 
surface that encloses K or K′ point is quantized topological 

charge, which is (in units of π) 1 at the K point and −1 at the 
K′ point. The corresponding electron states at these two 
points are chiral, as completely determined by their topol-
ogy, with opposite chiralities, which is protected by the T  
symmetry.

While for the gapless graphene the topological charge 
at the K or K′ point is quantized, in two-dimensional 
semiconductors such as transition-metal dichalcoge-
nide (TMDC) materials, which have the same honeycomb 
crystal structure as graphene but broken inversion sym-
metry and, consequently, a finite bandgap, there is no 
quantization of the topological charges at the two valleys, 
K or K′. In the TMDCs, the Berry curvature has a maximum 
at the K points, but it is not singular. It monotonically 
decreases away from the K points, and the corresponding 
Berry flux is nonuniversal and, by modulus (in units of π), 
is always less than 1. Despite this, the chiral nature of the 
electron states at the K points is preserved. Namely, the 
state are chiral with opposite chiralities at two valleys, K 
and K′, as protected by T -reversal symmetry. This prop-
erty is crucial for our analysis below, where the interaction 
of the TMDC material with plasmon modes is considered.

In this article, we propose a topological nanospaser 
that also generates a pair of mutually time-reversed chiral 
SP eigenmodes with topological charges of ±1, whose 
fields are rotating in time in the opposite directions. In 
a contrast to the findings of Wu et al. [28], this proposed 
spaser is truly nanoscopic, with a radius ~10 nm. The top-
ological charges (chiralities) of its eigenmodes originate 
from the Berry curvature of the gain-medium Bloch bands. 
This gain medium is a two-dimensional honeycomb 
nanocrystal of a TMDC [33–35]. The plasmonic subsystem 
is an achiral nanodisk of a plasmonic metal. Note that 
previously the TMDCs have been used as the gain media 
of microlasers where the cavities were formed by micro-
disk resonators [36, 37] or a photonic crystal microcavity 
[38]. None of these lasers generated a chiral, topologically 
charged mode.

2  �Spaser structure and main 
equations

The geometry and the fundamentals of functioning of 
the proposed topological nanospaser are illustrated in 
Figure  1. This spaser consists of a thin silver nanosphe-
roid placed atop of the two-dimensional gain medium (a 
nanodisk of a monolayer TMDC) (Figure 1A). As Figure 
1B illustrates, the gain medium is pumped with cir-
cularly polarized light, which is known to selectively 



R. Ghimire et al.: Topological nanospaser      867

populate one of the K or K′ valleys, depending on its 
helicity [39, 40]. Because of the axial symmetry, the plas-
monic eigenmodes, φ(r), depend on the azimuthal angle, 
ϕ: φm(r) ∝ exp(imϕ), where m = const is the magnetic 
quantum number. Figure  1B illustrates that the conduc-
tion band (CB) to valence band (VB) transitions in the 
TMDC couple predominantly to the SPs whose chirality 
matches that of the valley: the transitions in K or K′ valley 
excite the m = 1 or m = −1 SPs, respectively.

The SP eigenmodes φn(r) are described by the quasi-
static equation:

	
2( ) ( ) ( ),n n nsΘ φ φ∇ ∇ = ∇r r r � (1)

where n is a set of the quantum numbers defining the 
eigenmode; sn is the corresponding eigenvalue, which is 
a real number between 0 and 1; and Θ(r) is the charac-
teristic function, which is equal to 1 inside the metal and 
0 outside. We assume that the metal nanoparticle is a 
spheroid whose eigenmodes can be found in oblate sphe-
roidal coordinates (see Supplementary Materials). They 
are characterized by two-integer spheroidal quantum 
numbers: multipolarity l = 1, 2, … and azimuthal or mag-
netic quantum number m = 0, ±1, …. We will consider a 
dipolar mode, l = 1, where m = 0, ±1. Note that the dipole 
transitions in the TMDC at the K, K′ points are chiral, and 

they couple only to the modes with m = ± 1. The Hamilto-
nian of the SPs is

	

†
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where ωsp is the SP frequency, and †ˆ
ma  and ˆ

ma  are the SP 
creation and annihilation operators (we indicate only the 
magnetic quantum number m). The electric field operator 
is 
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 The monolayer TMDC 

is coupled to the field of the SPs via the dipole interac-
tion. We choose the proper thickness of the silver spheroid 
so that the SP energy ħωsp is equal to the bandgap of the 
TMDC gain medium. The Hamiltonian of the TMDC near 
the K or K′ point can be written as

	

2

=v,c
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α
α

α α= + + 〉〈 +∑∫ q q q q
K

K K K � (5)

where K=K  or K′, and v and c stand for the VB and the CB, 
correspondingly. We expand the Hamiltonian around the 
K and K′ points as

	 , 
( ) | , , |,

c v
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α
α
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K K K� � (6)

where ν
K
 is the density of electronic states in the K 

valley, which we adopt from experimental data [36, 41]: 
12 27.0 10  cm .'ν ν −= = ×K K

The field of the SPs in nanoparticles is highly nonu-
niform in space, which gives rise to a spatial nonuniform-
ity of the electron population of the TMDC monolayer. 
To treat this, we employ a semiclassical approach where 
the state | , , α 〉rK  represents an electron in the K valley 
at position r. The corresponding Hamiltonian in the semi-
classical approximation can be written as

	

2

, 
( ) | , , , , |

c v
H E d

α
α

ν α α
=

= 〉〈∑ ∫ r r r
K K

K K K � (7)

The interaction between the monolayer TMDC and the 
SPs is described by an interaction Hamiltonian

	

2
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= 1= ,
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K K

r F r d r
K

K
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Figure 1: Schematic of the spaser geometry and operation.
(A) Geometry of the spaser: silver nanospheroid on TMDC. (B) 
Schematic of spaser operation. Pumping with a circular-polarized 
light excites the valley whose chirality is matched to the light 
helicity. The stimulated VB → CB transitions at the corresponding 
K or K′ point excite SPs matched by chirality to that of the valley; 
the other, mismatched valley couples only weakly to these SPs.
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where the dipole operator is given by

	
gˆ ( ) | , , , , | h.c. ,

i t
e c v

∆
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and ħΔg is the bandgap (at the K or K′ point).
The transition dipole element, ,d

K
 is related to the 

non-Abelian (interband) Berry connection (cv)( )kA  as
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where u
αk is the normalized lattice-periodic Bloch 

function.
In this article, we consider the dynamics of the system 

semiclassically; we treat the SP annihilation and creation 
operators as complex c numbers, ˆ

m ma a=  and †ˆ ,m ma a∗=  and 
describe the electron dynamics quantum mechanically by 
density matrix ˆ ( , ).tρ r

K
 Furthermore, we assume that the 

SP field amplitude is not too large, 
, g ,mΩ ∆�
K
�  where the 

Rabi frequency is defined by
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1( ) ( )  .m mAΩ φ ∗= − ∇r r d�
�K K � (11)

Then we can employ the rotating wave approximation 
[42, 43], where the density matrix can be written as
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Following Stockman, the equations of motion of 
the SPs and the monolayer TMDC electron density matrix 
are
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where S is the entire area of the TMDC, γsp is the SP relaxa-
tion rate, Γ12 is the polarization relaxation rate for the 
spasing transition 2 → 1, and g

K
 is the pumping rate in 

valley ; the population inversion, ,n
K

 is defined as

	
(c) (v) ,n ρ ρ≡ −

K K K
� (16)

and the spontaneous emission rate of the SPs is 
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3  �Results and discussion

3.1  �Parameters of spaser and chiral coupling 
to gain medium

We consider a spaser consisting of an oblate silver sphe-
roid with semimajor axis a = 12  nm placed atop of a cir-
cular TMDC flake of the same radius. We assume that the 
system is embedded into a dielectric matrix with permit-
tivity εd = 2. We choose the value of the semiminor axis c 
(the height of the silver spheroid) to fit ωsp to the K point 
CV → VB transition frequency in the TMDC, ωsp = Δg. We 
employ the three-band tight-binding model for monolay-
ers of group-VIB TMDCs of Liu et  al. [44]. We also set 
ħΓ12 = 10 meV.

From the tight-binding model, we calculate the band 
structure, including bandgap Δg and the transition dipole 
matrix element d. Note that at the K and K′ points the 
bandgaps are the same, Δg(K) = Δg(K′), while the transition 
dipole matrix elements are complex conjugated, ,'

∗=K K
d d  

as protected by the T  symmetry. The values used in the 
computations are listed in Supplementary Materials. Here 
we give an example for MoS2: c = 1.2  nm; ħΔg = 1.66 eV; 
dK = 17.7 e+ D, and 17.7  D,' −=

K
d e  where ( ) / 2x yi± = ±e e e  

are the chiral unit vectors.
A fundamental question regarding any spaser is the 

existence of a finite spasing threshold. There are two 
modes with the opposite chiralities, m = ± 1, and identi-
cal frequencies, ωsp, which are time-reversed with respect 
to each other, whose wave functions are ∇φ ∝ e ± iφ. In the 
center of the TMDC patch, i.e. at r = 0, the point symme-
try group of a metal nanospheroid on the TMDC is C3v. It 
contains a C3 symmetry operation, i.e. a rotation in the 
TMDC plane by an angle ϕ = ± 2π/3, which brings about 
a chiral selection rule m = 1 for the K point and m = −1 for 
the K′ point, i.e. the chirality of the SPs matches that of 
the valley. For eccentric positions, which are not too far 
from r = 0, this selection rule is not exact, but still there is 
a preference for the chirally matched SPs.

We assume that the pumping is performed with the cir-
cularly polarized radiation, and one of the valleys, say the K 
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valley, is predominantly populated. Consequently, the first 
mode that can go into generation is the m = 1 SP. To find the 
necessary condition that the corresponding threshold can 
be achieved, we will follow Stockman and set 1.n =

K
 Then 

from (13) and (15), we obtain this condition as

	

2( ) 2( ) d 1 ,mS
Iν ± ≥∫K r r � (18)

where ± is the chirality of the pumped TMDC valley, and 
the coupling amplitude is

	

( ) ,

sp 12 sp 12

( ) ( )  .m m
m m

A d
I

Ω
φ

γ Γ γ Γ
±

±= = ∇r r e
�

�
K K � (19)

Note that ( ) ( ).m mI I± ∗
−= ∓

This coupling amplitude is illustrated in Figure 2 for 
( ).mI +  As we see, for the chiral-matched SP with m = 1, the 

coupling amplitude is approximately constant, ( ) 1mI + ≈  
within the geometric footprint of the silver spheroid, 
which is seen in Figure 2A as an almost uniform orange 
disk with radius a = 12 nm. In sharp contrast, the chiral-
mismatched mode with m = −1 (Figure 2B) has virtually no 
coupling to the TMDC transitions in the K valley, which 
means that only for one mode the transition dipole matrix 
element and the corresponding Rabi frequency are large. 
This property illustrates selectivity of the coupling of elec-
tronic states in TMDC and plasmonic modes in nanosphe-
roid. Thus, for the gain medium whose radius Rg is within 
the footprint of the metal spheroid, i.e. for Rg ≤ a, only one 
mode with chirality m = 1 will be generated. However, for 
a larger gain medium, Rg ≥ 13 nm, there is a circle of strong 
coupling of the mismatched mode, which can potentially 
go into the generation.

3.2  �Kinetics of continuous-wave spasing

Below in this article, we provide numerical examples of 
the spaser kinetics. For certainty, we assume that the K 
valley is selectively pumped, which can be done with the 
right-hand circularly polarized pump radiation. (As pro-
tected by the T  symmetry, exactly the same results are 
valid for the left-handed pump and the K′ valley.) Thus, 
we set gK = g and 0.'K

g =
A continuous-wave solution can be obtained by 

solving (13–15), where the time derivatives in the left-
hand sides are set to zero. The calculated dependences 
of the generated coherent SP population, Nm = | am | 2 
where m = ± 1, on the pumping rate, g, for various TMDCs 
are shown in Figure 3A. As we can see, there is a single 
spasing threshold for each of the TMDCs. Significantly 
above the threshold, for 1> 30 ps ,g −

K
 the number of 

SPs, Nm, grows linearly with pumping rate g. This is a 
common general property of all spasers; it stems from 
the fact that the feedback in the spasers is very strong 
due to the extremely small modal volume. Therefore, the 
stimulated emission dominates the electronic transitions 
between the spasing levels, which is a prerequisite of the 
linear dependence Nm(g). The slope of this straight line 
(the so-called slope efficiency) is specific for every given 
TMDC. For all these spasers, the threshold condition 
of (18) for the generation of the matched mode is satis-
fied. We have verified that the mismatched mode (m = −1) 
does not have a finite threshold; i.e. it is not generated at 
any pumping rate. The reason is that the matched mode 
(m = 1) above its threshold clamps the inversion at a con-
stant level, preventing its increase with the pumping and 
thus precluding the generation of the mismatched mode. 

Figure 2: Coupling amplitude between SPs and TMDC dipole transitions is shown for different modes m.
(A) m = +1 and (B) m = −1. The magnitude is color coded by the bar to the right. The radius of the metal spheroid is a = 12 nm.
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In this case, the single chiral mode generation enjoys a 
strong topological protection.

At the threshold, the spasing curves experience a 
bifurcation behavior. This is clearly seen in the magnified 
plot in Figure 3B; there is the threshold at the bifurcation 
point and two branches of the spasing curve above it. As 
we see from Figure 3C, these two branches differ by the 
stationary values of population inversion n

K
; for the upper 

branch, it is significantly lower than for the lower branch. 
To answer the question whether these two branches are 
stable, we slightly perturb the accurate numerical solu-
tions at g = 25 ps−1 by changing the number of SPs by a 
minuscule amount, ΔNm = 0.0001. The density matrix 
solution for the dynamics of the SP population induced by 
such a perturbation is shown in Figure 3D. As we see, the 
upper branch is absolutely stable, but the lower branch is 
unstable, and it evolves in time toward the upper branch 
within less than half a picosecond. As a result of this 
bifurcation instability, the system actually evolves with 
the increase of pumping along a path indicated by arrows 
in Figure 3B: Below the threshold, the population of the 
coherent SPs Nm = 0; it jumps to the apex of the curve at 
the bifurcation point and then follows the upper branch. 
One can state that the spatial inhomogeneity of the field 
and the inversion cause the spasing transition to become 

the first order. This is in contrast to the previous homoge-
neous case of Stockman, where this transition was con-
tinuous, i.e. of the second order.

The chiral optical fields generated by the topological 
spaser are not stationary – they evolve in time rotating 
clockwise for m = 1, as illustrated in Figure 4, and coun-
terclockwise for m = −1. The magnitude of the field is large 
even for one SP per mode, |E | ~ 107 V/Å, which is a general 
property of the nanospasers related to the nanoscopic size 
of the mode. Note that with increase of the SP population 
the field increases as .mN∝E

3.3  �Stability and topological protection of 
spaser modes

In Figure 5A, we test the stability and topological protec-
tion of the spasing mode. Figure 5A displays the dynamics 
of the SP population of the topological spaser, Nm(t), for 
different initial numbers of SPs, Nm(0), and for their differ-
ent chiralities, m = ± 1. As these data show, the left-rotating 
SPs (m = −1) are not amplified irrespective of their initial 
numbers; the corresponding curves evolve with decay-
ing relaxation oscillations tending to N−1 = 0. In contrast, 
the m = 1 SPs exhibit a stable amplification; their number 
increases to a level that is defined by the pumping rate, g, 
and does not depend on the initial populations.

Figure 3: Spaser kinetics.
(A) Dependence of the number of SP quanta in the spasing mode 
on the pumping rate for gain medium of the matched radius, 
Rg = a = 12 nm. Only the chirality-matched SPs with m = 1 are 
generated. (B) Magnified near-threshold portion of panel (A) for 
MoS2. The number of SPs, Nm, is indicated for the points shown 
on the graphs for the two branches. (C) Radial distribution of the 
inversion, nk, for each of the two branches. (D) Test of stability of 
the two SP branches. The kinetics of the SP population, Nm, after the 
number of the SPs in each branch is increased by ΔNm = 0.0001.

Figure 4: Temporal dynamics of the local electric field, |E |, in 
topological spaser generating in the m = 1 mode.
The curved arrow indicates the rotation direction of the field 
(clockwise). The magnitude of the field is calculated for a single SP 
per mode, Nm = 1; it is color coded by the bar to the right. The phase 
of the spaser oscillation is indicated at the top of the corresponding 
panels.
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The chirality of the generating (spasing) SP mode is 
always a clean m = 1 (in this case) or m = −1 for the K′ valley 
pumping. It is determined by the underlying chirality of 
the electron states of the corresponding (K or K′) valley. 
It is stable with respect to even nonsmall perturbations; 
the injected m = −1 SPs are not amplified and decay to zero 
because the corresponding mode is below the spasing 
threshold. Despite the fact that the underlying chiral elec-
tronic state of the K valley does not have a perfectly quan-
tized topological charge, the spasing SP mode does; it is a 
pure m = 1 (or, m = −1) chiral state, which corresponds to a 
conserved topological charge of ±1. This “purification” of 
the state is due to the highly nonlinear, threshold nature 
of the spaser amplification. This stable topological charge 
m = 1 (or, m = −1) of the spasing mode is determined by the 
sign of the underlying Berry curvature of the valley electron 
states, and its conservation and stability with respect to 
perturbations can be interpreted as topological protection.

As a complementary test, we show in Figure 5B the 
temporal dynamics of the SP population for equal initial 
number of SPs but different pumping rates. The dynamics 
in this case is again stable with the mismatched m = −1 SPs 
decaying to zero and the matched m = 1 being amplified to 
the stable levels that linearly increase with the pumping 
rate.

3.4  �Far-field radiation of spaser

The spaser is a subwavelength device design to gener-
ate intense, coherent nanolocalized fields. Generation of 

far-field radiation is not its primary function. However, 
the proposed spaser, as most existing nanospasers, 
generates in a dipolar mode that will emit in the far field. 
This emission, in absolute terms, can be quite intense for 
a nanosource. In particular, the spaser emission was used 
to detect cancer cells in the blood flow model [16]; it was, 
actually, many orders of magnitude brighter than from 
any other label for biomedical detection.

To describe the spaser emission, we note that the radi-
ating dipole uniformly rotates with the angular velocity of 
ωsp. The emitted radiation will be right-hand circularly 
polarized for the pumping at the K point and left-hand 
circularly polarized for the K′ pumping. Note that the cor-
responding two radiating modes are completely uncou-
pled. This is equivalent to having two independent chiral 
spasers in one.

To find the intensity, I, of the emitted radiation, we 
need to calculate the radiating dipole. To do so, we will 
follow Stockman [45]. We take into account that the modal 
field, Em = ∇φm, inside the metal spheroid is constant. Then 
from (32) in see Supplementary Materials, we can find
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where Vm is the spheroid’s volume. The physical field 
squared inside the metal is found from (3) and (4),
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Figure 5: Number of SPs, Nm, as a function of time t for a spaser with MoS2 as a gain material.
The pumping is performed by a radiation whose electric field rotates clockwise in the plane of system (m = 1). The solid lines denote the 
chiral SPs with m = −1, and the dashed lines denote the SPs with m = 1. The pumping rates are indicated in the panels. (A) Dependence of 
SP number, Nm, on time t after the beginning of the pumping for different initial SP populations (color coded as indicated) for pumping rate 
g = 50 ps−1. (B) Dependence of SP number Nm on time t for different pumping rates g (color coded). The initial SP number is Nm = 10.
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From this, we find the radiating dipole squared as
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The dipole radiation rate (photons per second) can be 
found from a standard dipole-radiation formula [46] as
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where c0 is speed of light in vacuum.
For our example of MoS2, substituting parameters that 

we used everywhere in our calculations (see Parameters 
of spaser and chiral coupling to gain medium), we obtain

	
12 1

sp2.1 10  s ;   0.55  W ,m mI N P I Nω µ−= × = =� � (24)

where P is the power of the emission. From these numbers, 
we conclude that the emission is extremely bright for 
a nanoemitter and easily detectable. This is in line with 
the observation of the emission from single spasers of the 
comparable size in Galanzha et al. [16].

4  �Concluding discussion
In this article, we introduce a topological nanospaser that 
consists of a plasmonic metal spheroid as the SP resona-
tor and a nanoflake of a semiconductor TMDC as the gain 
medium. This spaser has two mutually T -reversed dipole 
modes with identical frequencies but opposite chiralities 
(topological charges m = ± 1). Only the mode whose chiral-
ity matches that of the active (pumped) valley, i.e. m = 1 
for the K valley and m = −1 for the K′ valley, can be gener-
ated while the conjugated mode does not go into genera-
tion at any pumping level. The topological spaser is stable 
with respect to even large perturbations: the SP with mis-
matched topological charge injected into the system even 
in large numbers decay exponentially within a ~100-fs 
time. This implies a strong topological protection.

This protection is not trivial because the exact valley 
selection rule matching its chirality to that of the SPs 
is strictly valid only on the symmetry axis of the metal 
spheroid (in the center of the TMDC gain-medium flake). 
Off-axis, there is a coupling of the gain to the chirally mis-
matched SPs. However, the strong topological protection 
appears because of the fact that the spaser is a highly non-
linear, threshold phenomenon. In fact, it is the nonlinear 

saturation of the gain and the concurrent clamping of the 
inversion that cause the strong mode competition. The top-
ologically matched mode (m = 1 for the K valley and m = −1 
for the K′ valley) reaches the threshold first and saturates 
the gain, thus preventing the mismatched mode from the 
generation under any pumping or any perturbations.

The chiral selectivity of the topological nanospaser 
stems from the valley-selective pumping of the gain-
medium TMDC. The direct intervalley scattering of car-
riers, which would compromise such a selectivity, is a 
low-probability process due to the very large required 
crystal momentum transfer and can be safely neglected. 
However, there is another process related to a long-range 
exciton exchange interaction (EEI) that can induce valley 
polarization decay [47–49]. This long-range-EEI valley 
polarization decay can potentially compromise the valley-
specific pumping and population inversion and affect the 
topological spasing process. However, the valley polariza-
tion decay induced by the EEI is relatively slow; it occurs 
with a characteristic time of τEEI ~ 4–7 ps. This process 
appears to be too slow to affect the spasing because the 
characteristic relaxation times for the spaser are much 
shorter due, in part, to the plasmonic enhancement of the 
relaxation by the metal. A typical spontaneous decay time 
of the upper spasing level of the gain medium calculated 
from (17) is estimated to be τ2 ≈ 250 fs. This time is an order 
of magnitude shorter than τEEI; note that the correspond-
ing stimulated decay time is typically yet another order 
of magnitude shorter. This renders the EEI to be orders of 
magnitude too slow to compete with the functioning of 
the topological spaser.

The proposed topological spaser is promising for use 
in nano-optics and nanospectroscopy where strong rotat-
ing nanolocalized fields are required. It may be especially 
useful in applications to biomolecules and biological 
objects, which are typically chiral. It may also be used 
as a nanosource of a circularly polarized radiation in the 
far field, in particular, as a biomedical multifunctional 
agent similar to the use of spherical spasers in the study 
of Galanzha et al. [16].
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