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Abstract: We provide a critical analysis of some of the
commonly used theoretical models to describe quantum
plasmons in finite size media. We summarize the standard
approach based on a Fano diagonalization and we show
explicit discrepancies in the obtained results by taking the
limit of vanishing coupling between the electromagnetic
field and the material medium. We then discuss the deri-
vation of spontaneous emission in a plasmonic environ-
ment, which usually relies on a Green tensor and is based
on an incomplete identity. The effect of the missing terms is
calculated in a one-dimensional model.
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1 Introduction

With the development of quantum sources and single-
photon detectors on one hand, and classical plasmonics on
the other hand, new theories have been developed to
describe the behavior of light when interacting with dissi-
pative and dispersive media (typically, metals). One can
date the first article on the matter back to 1992, by Huttner
and Barnett [1]. Their goal was to introduce dissipation in
the quantization of light in a homogeneous (therefore
infinite) medium. It was followed by many other works
[2-17] which used two main approaches:
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— aphenomenological approach formulated in terms of
quantum Langevin equations first introduced by Gru-
ner and Welsch in 1995 [3] and 1996 [4];

— microscopic oscillator models for the medium coupled
to the electromagnetic field.

The latter are variations of models of the type first
proposed by Hopfield [18], which was the approach
originally used by Huttner and Barnett. Extensions of
their work to inhomogeneous media were treated in [7-
10]. They involve a Fano-type diagonalization in terms of
bosonic creation and annihilation operators. The results
of the microscopic approach were meant to provide a
justification of the phenomenological quantum Langevin
noise models. The main criterion for the choice of the
microscopic model is that if one integrates the equations
for the medium and one inserts the obtained currents into
the microscopic Maxwell equations one should obtain the
macroscopic Maxwell equations [10, 11].

In a recent work [17] another quantization procedure,
designed specifically to treat plasmonic systems with a
finite-size medium, was formulated. Starting from the same
classical model, this approach leads to results substantially
different from the formulas derived and used in the past
literature. In particular, it was shown to give a different
spectral structure of the diagonalized system and a different
expression of the electric field operator. Our interpretation
of this discrepancy is that the former results [1-11] were
obtained under the implicit hypothesis of an infinite bulk
medium, although it has been extensively extrapolated to
finite media in later works. Our results [17] have some
conceptual consequences and may lead to quantitative di-
vergences from past studies. The present article aims at
addressing in detail the reasons that the formulas obtained
for bulk systems cannot be applied to systems with a finite
medium.

We first summarize the quantization procedure of Refs.
[7-10] in Section 2. In Section 3 we point out explicitly how
the formulas obtained in this approach lead to inconsistent
results in some regimes. In Section 4 we briefly review some
criticism of the bulk approach which has been formulated

8 Open Access. © 2020 Vincent Dorier et al., published by De Gruyter. [[c<) 528 This work is licensed under the Creative Commons Attribution 4.0

International License.


https://doi.org/10.1515/nanoph-2020-0061
mailto:jauslin@u-bourgogne.fr
https://orcid.org/0000-0002-5545-6019
https://orcid.org/0000-0002-5545-6019

3900 —— V. Dorier et al.: Critical review of quantum plasmonic models

in the literature [15-17]. Finally in Section 5 we analyze
other discrepancies that occur when calculating the decay
rate of an emitter assuming the bulk formulas, which are
based on Green tensors.

2 Summary of the previous
approaches in the literature

The diagonalization and quantization of the model was
performed in the past using a Fano diagonalization
method, based on the seminal work of Friedrichs [19, 20]
that was rederived by Fano [21]. We first review this
method.

The initial point is the classical Hamiltonian of the
system, where the medium is described as an infinite set
of harmonic oscillators interacting with the electromag-
netic field through a coupling function a. It reads [7-10]:

H=Helm+Hmed +Hint) (1)
with
Haw = [dr iﬁ2+€—02-<C2VXVXZ) (2a)
elm 2€0 A 2 >
0 122 1,22
Hypea = jdvjcfr[—nx +v'X ] (2b)
0 v 2 2
1,5 = @ N~
Hie=—[dr T4~ [ dv a(v, r)X
€y )
1 o =1
+—jd3r[ [ av a(v, r)X] , (2c)
263, o

where A is the vector potential, II, is its conjugate mo-
mentum,

M, = —€E - [av a(v, r))?(v, ?), )

which satisfy the transversality constraints V- A= 0,
V.- 1l = 0, and X, — Iy are the canonical variables of the
oscillators of the medium. We denote by v the frequency of
the oscillators, and V is the volume of the medium. The
integrals will be written with no boundary when the inte-
gration is performed over all space or over all (positive)
frequencies.

We consider only an electric interaction but the
model can be extended to magnetic interactions by
adding a second set of harmonic oscillators [10]. The
Hamiltonian system described by Eq. (1) was shown [10]
to imply the macroscopic Maxwell equations, provided
that the coupling constant function a is chosen such
that
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a2<v, 7) = a&vel(v, 7), (4)

where €; is the imaginary part of the dielectric coefficient of
the medium.

In [7-10] the diagonalization of the Hamiltonian (1) is
formulated along with the quantization. It consists in

finding a family of bosonic operators C (v, r) satisfying the
commutation relations

(G 7). (v.7 )] =808(7 -7 Jsv-v. )

[C;(V, ?), E']»(v', 7')] =0,

such that the Hamiltonian, once quantized, is equal to

(5b)

H= _[d3r j dv hv E*(v, ?) E‘ (v, 7), (6)

plus an (infinite) constant that can be dropped.

The construction proceeds by writing the bosonic
operator as a linear combination of the canonical vari-
ables:

with some tensors f . The ansatz (6) implies that the bosonic
operators must satisfy:

[E‘ (v, 7), FI] =hv E‘ (v, ?). (8)

We remark that this is only a necessary condition. In
order to make it a sufficient condition it must be com-
plemented with the commutation relations (5). This en-
sures that the diagonalization is performed canonically,
which also allows the quantization to be formally per-
formed before the diagonalization.

Inserting (1) and (7) into (8), one obtains a system of

linear integro-differential equations for the coefficients f .
After some suitable algebraic operations, the general so-
lution of this system can be expressed in terms of a Green
tensor and some free undetermined functions. The latter
are determined by imposing the commutation relations (5).
The solution is still not unique, since there is always the
freedom to perform a unitary transformation within the
degeneracy subspace. For the remaining free functions
one can make a choice that leads to the possibly simplest
formulas.
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The validity of this construction depends critically on the
choice of the ansatz (6). In order to check whether this ansatz
is justified we can consider two different ways to proceed:
(1) One can check whether one recovers the initial Hamil-

tonian (1) when inserting the obtained coefficients f into

the expression (7) and then into (6). This check involves
relatively complicated calculations and, to our knowl-
edge, it has not been provided in the literature.

(2) Another simpler check consists in verifying whether if
one takes the limit of zero couplinga — 0 (i. e., € — 1)
one obtains the expressions corresponding to the
uncoupled medium and the free electromagnetic field.
We will show that for a finite medium, these limits lead
to the expressions for the uncoupled medium, but one
does not recover the electromagnetic field. The
conclusion is that the ansatz (6) for the diagonalized
Hamiltonian is not valid for a finite medium.

3 The problem of the no-coupling
limit

We analyze specifically the equations in Ref. [10], Sections
3 and 4 (without the magnetic part of the model). Our
discussion can be formulated similarly for the models used
in Refs. [7-9], since the quantization procedure followed
and the final results are essentially the same as what was
described in [10] and in the section above. What we present
in this Section is based on the assumption of a finite me-
dium. The case of an infinite bulk medium will be dis-
cussed specifically in Section 3.4.

In order to check whether the no-coupling limits
(a — 0) of the results presented above are consistent, we
need to compare them with the uncoupled model, i. e.,
when H;,, = 0in Eq. (1) and @ = 0 in Eq. (3). We expect to find
two families of bosonic operators: one corresponding to the
free electromagnetic field, given by a linear combination of

A and — Il,, and one corresponding to free matter, given by

a linear combination of )? and — IIx. The diagonalization of
this uncoupled model indeed yields

= J@ks ho Dy (k. 0)Bo(k.0)  (90)

(9b)

B = jdvder hv C ( ) -C (v 7)
with k the wave Vector in vacuum and ¢ the index of po-
larization. Here D, is the operator for photons in free space

and C , is the operator for the elementary excitations of the
free medium,
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1 SN2
Co :W[VWX (v, r) + v V0 X(v, r)] (10)

Since the electromagnetic field is not coupled to mat-
ter, the electric field operator is the one in vacuum,

E()-if s e () he],

5
where ¢-

. §0 k,o
lacian.

are the transverse eigenfunctions of the Lap-

3.1 Limit for the bosonic operators

We first analyze the limit of no coupling in the expression

—

of the bosonic operators C given by the linear combination
(7). In order to check whether they split into the two fam-

—

ilies of operators Do and C , in the no-coupling limit, we

need to calculate the coefficients f . They are given by Egs.
(80)—(83) of reference [10]:

fA = _é'[fE]b (12a)
erA == eoef}s - a’zlx) (12b)
):cx = é]inx, (12c)

z it v v z = i
fi v [1 B <v'—v—i0+ T iO*)]fE - Whxb(v -V,
(12d)

where — 0+ denotes the limit hmgﬁmx - The coefficients are

expressed in terms of the two tensors

fEr,rv (wovav, ér,?,v), (13)
(7 7v) = (7 -7 )i (14)

where G is the Green tensor verifying

[MX_E(V,?)Q&(?,?,V):5(?_7f)ﬁ. 15)

An inspection of these expressions allows one to show
that for a finite medium, the no-coupling limit a — 0 is well
defined, and one can calculate it explicitly. We start with
Eq. (13). The limit of the Green tensor is
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lin(}é<7', T v) = G0<?', T v>, (16)
a—
and thus
lim }:‘E<?’, T, v) =0. 17)
a—0
Inserting this result in Eq. (12), we obtain
}115% fu, =0, (18a)
lim f, =0, (18b)
a—0

limfiy, = v 8 (v —v) = -i %5(7 -7 )80 -k
(18¢)

. 2 z n o h — -, N
}Xlirgfx_hxfi(v—v)_\/z:v&(r—r )5(v—v)1. (18d)

We can now take the limit in the expression of the
bosonic operator (7) and we obtain the expression (10), i. e.,

hmé = Eo.

a—0

(19)

—

Thus, in the uncoupled limit, the bosonic operator C

—

becomes the bosonic operator of the free medium C  and it
contains no information on the bosonic operator of the free
electromagnetic field.

3.2 Limit for the Hamiltonian

The limit (19) can be taken in the diagonal Hamiltonian (6)
and compared with Eq. (9). One obtains

limH=[dr[dv v Co' (v, 7) : E‘O(v, ?) =,

a—0

(20)

which corresponds to the Hamiltonian of the uncoupled
medium only; the Hamiltonian of the free electromagnetic
field is missing. As mentioned in [17], this could be ex-
pected from the structure of the ansatz (6) which integrates
only over the degrees of freedom of matter (v, r).

3.3 Limit for the electric field operator

In the construction of the diagonalization procedure from
[7-10] (as well as in the phenomenological approach [3—
6]), the electric field operator reads
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E (}) = \/Z:IZ(Z) J dv J &Er vzelw(v, ?)G(?, ;, v)g (v, 7)

+ h.c.
(1)

This formula has been widely used in the literature
[7-9, 12, 22, 24-54]. In order to show that it cannot be
applied to a finite medium, we follow the same procedure:
the limits of the Green tensor (16) and of the bosonic
operator (19) are regular and well defined. Since the limit
a — 0 is equivalent to €; — 0, the limit yields

limE =0,

a—0

(22)

i.e., the electric field observable would disappear in the
uncoupled limit, which of course is not consistent. This
conclusion was already presented by [15, 16].

3.4 Remarks on an infinite bulk medium

The situation for an infinite bulk medium might be
different. The uncoupled limit a — 0 is highly singular,
since the dissipation disappears, and it does not seem
likely to us that it allows one to recover the expressions
of the uncoupled medium and electromagnetic field.
The singularity of the limit entails that if one does not
recover the expressions for the uncoupled fields in a
direct way, it does not mean that formulas for the
infinite bulk medium are not correct. At this point we
do not make any definite affirmation about the infinite
bulk case. In particular, the diagonalization procedure
presented in [17] is not applicable to this case, since it
relies on a Mgller wave operator which may not exist in
an infinite medium. In that case, the spectral structure
of the coupled model can be different from the one of
the uncoupled model, leading to a possible loss of
degrees of freedom. The singular nature of an infinite
medium was also evoqued in [58] as a reason for the
lack of electromagnetic degrees of freedom in the final
results of [3, 4] and subsequent works.

We emphasize that for the applications with nano-
structures, the relevant models involve a finite medium. A
bulk model can be a good approximation for some specific
experimental setups, e. g., if one considers an emitter
embedded in the interior of the medium. It is however not
appropriate when the emitters are outside the medium,
which is a far more common situation, in particular
for metallic media.
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4 Justifications and proposed
corrections in the literature

It has been remarked in several instances in the literature
[15, 59, 16] that the expression of the electric field observ-
able (21) cannot yield the free electric field observable in
the limit €; — 0. Since this formula is of fundamental
importance to study plasmonic structures, some authors
have tried to either justify its validity nonetheless, or to
correct it.

An approach to justify the validity of Eq. (21) in the case
of a finite medium can be found, e. g., in [6, 59, 52]. It
consists of adding artificially to the dielectric coefficient

e(v, 7) a small homogeneous dissipative background term

€ (V), which is set to zero at the very end of the calcula-

tions, when one has obtained an expression for a quantity
of physical interest, like the spontaneous decay rate of an

emitter or the expectation value of a Casimir force. This is a

mathematical trick that would allow one to use for practical

calculations for a finite medium the expressions obtained
for an infinite medium. The difficulty is that the validity of
this trick is not easy to justify for the following reasons:

— Certainly, the infinite background medium does not
correspond to the considered physical situation. It can
only be seen as a mathematical trick, and one has to
determine in which sense it can be justified, which does
not seem to be an easy task. The procedure clearly shows
that taking the limit €., (v) — 1 at the beginning of the
calculation does not give the same result as taking the
limit at the end. Thus the exchange of the limit and the
intermediate calculations do not commute. Cases like
this are difficult to handle mathematically and one has
to figure out why one order of the operations can be
declared correct and not the other one.

— One can ask how to determine whether the results ob-
tained with this trick are correct. In order to make this
verification one needs to have an independent method
of calculating the desired physical quantities that is
known to yield the correct results. The exact diagonal-
ization described in Ref. [17] provides such an inde-
pendent method. Until such a comparison is made we
cannot make any definite claim on the status of this
trick.

Some authors [15, 16] have stated that formula (21) is
not complete when a finite medium is considered.
Although these authors did not derive a formula from the
diagonalization of the initial model, they proposed to
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correct it by adding to the electric field observable (21) a

—

contribution E,

E(x)=Eo(x)+Eox).
with E ; given by Eq. (21), and E, is related to the
vacuum field and converges to it in the no-coupling
limit. The expression (23) has by construction the cor-
rect limit when €; — 0. However, there is no justification
for claiming that this is the expression that one would
obtain from the exact diagonalization of the initial
Hamiltonian. In fact, it was shown in [17] that the exact
diagonalization in a finite medium leads to an expres-
sion for the electric field observable that is different
from (23) (although it takes a similar form in first order
perturbation theory).

Reference [17] provides an exact diagonalization of the
Hamiltonian in the case of a finite medium. The procedure
does not rely on any ansatz of the form (6). It is based on
Lippmann-Schwinger equations to calculate the eigen-
modes of the Hamiltonian. These equations can be con-
structed from the definition of a Mgller wave operator. The
key remark from this procedure is that it ensures the
preservation of the uncoupled spectral structure in the
diagonalization of the coupled model. Consequently, all
the degrees of freedom of the uncoupled model are pre-
served when the coupling is on.

The diagonal Hamiltonian reads

(23)

, (24)

5
v, r

H= Jd3k§ hw D%’UD;,U + fdv£d3r w C v .C
withDand C two families of commuting bosonic operators
which tend to the uncoupled ones in the no-coupling limit.
The electric field in the exterior of the medium has an
expression (Eq. (25) in [17]) in terms of both families of
operators, and it is easily shown that it gives the correct
limit as well.

We remark that the model verifies causality at the
microscopic as well as at the macroscopic level: the
microscopic model is causal since it is Hamiltonian, and
the causality of the macroscopic model is ensured by the
fact that the coupling coefficient is given by the imaginary
part of a dielectric function that satisfies the Kramers—
Kronig relations [7-11]. The boundary conditions that are
used both at the microscopic and the macroscopic level are
a square-integrable decrease of the fields, which guaran-
tees that all the considered physical states are of finite
energy.
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5 Spontaneous emission and
Green identity

The discussion of this Section is focused on spontaneous
emission. Similar arguments apply to the calculation of
commutators between the field observables and of corre-
lation functions of the fields, since they use the same Green
identity.

We now describe how the spontaneous decay rate is
constructed in the literature using the Fermi golden rule and
assuming formula (21) for the electric field observable. The
same calculation can be performed using the Weisskopf-
Wigner theory. We first introduce a coupling operator W
between the emitter and the electric field. The Fermi golden
rule yields

(%o w0) = S B0y -w0). @
where |i) is the initial state of the system, with the emitter in
its excited state |e) and the plasmonic field in its ground state
|@). The final states accessible in the resonant approxima-
tion correspond to the emitter in its ground state |g) and one
plasmon excited at a frequency v and position r. Thus,

)=1oee), If)= (26)

11,, T ® g )’
and the decay rate (25) is written

r=2 [ av[ @1, oglW|om el 6w-wy). @)
v

We consider a dipolar interaction W = -d - E , with

QY l

= d [0, + 0_] and 6. the ladder operators for the emitter:

0.lg)=1le), G_le)=1g), 0_lg)=0. (28)

We insert the electric field (21) into the operator W and
then into the Fermi golden rule (27). After a few manipu-
lations in the rotating wave approximation, one obtains

— 26()4 - o= -
(i) = 2 i (5 0.)
0

where we have used ]10(—2062 =1, and with

j(?{, w) = [dr €,-<w, ?)(:}T<a), T, ;)(:}*<w, T, }) (30)
v

(29)

It is usually stated [4, 5, 12—-14, 24, 42-50] that this term
can be simplified using

w? A\=T/> - \z*/> > P2
Fjd3r e,-(r)G (r, rA)G (r,r3> =Im G(rA, rB), (31)
14
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where the frequency dependence is implicit in € and G.1f
this were true, the decay rate would simplify into the
expression that is mostly used in practice:

-

- 2w} : oo -
FG<X0, CU()) = heOCZ {d . Im[G<w0, Xo, Xo)] . d} (32)

If one assumes the validity of this expression, the
question of how to compute the decay rate of the
emitter (and also field correlations and commutators) in
a given configuration is narrowed to the question of
how to find the Green tensor corresponding to this
configuration [12, 22, 24, 25, 33-54, 60-65]. Many
analytical and numerical methods have been developed
for this specific technique.

The construction above can however not be true for a
finite medium. An easy way to see it is by taking the limit
€ — 1 in the Green identity (31), which gives zero for the
left-hand side while the right-hand side is not zero in
general. It is already not the case in vacuum [66]. The
correct evaluation of the left-hand side of (31) brings an
extra boundary term, and provided that the Green tensor

RN =T - >
is reciprocal, i. e., G(rp, r4) =G (rya, rg), we have
instead the identity [58]

(33)

with
=/ 1r=1/- = Lty SN
f(rA, rs) =5[b (rB, rA>—b (rA, rg)], (34)

B(Far 7o) =~ was (726 (% 7)) (v <6(x. 7))
(35)

where .% denotes a boundary surface which contains T
and 73 in its interior, n is the outer unit normal vector on
the surface, and ds is the surface element. This relation is
valid for any reciprocal tensor G satisfying Eq. (15). The
identity (3_3) leads to the correct limit in vacuum where it
becomes f, (T4, '5) = —Im Go (74, T'5).

In conclusion, if the usual formula (21) were correct for
a finite medium, and if we use the correct Green identity
(33) for this case, the decay rate would read

2
_ 2w

"~ heoc? (36)

f [im6+7]-d.

and not (32) as stated in the literature [22-25,33-50,55,60—
65] (some of these references study the power spectrum,
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which can be directly linked to the decay rate [2]). In the no-
coupling limit, it would lead to lim,_,I" = O, which is also
unsatisfactory.

One could ask whether the addition of the boundary
terms in the Green identity has a significant effect on the
decay rate in a non-perturbative scenario. In the Supple-
mentary Material we calculate it in detail in a one-
dimensional configuration where the medium is a slab of
metal (which is equivalent to a configuration analyzed,
e. g., in [15, 22, 52]). The conclusion of this calculation is
that the missing boundary terms can have a significant
effect since it cancels all position-dependent oscillations
of the decay rate. Furthermore, the discrepancy with the
no-coupling limit implies that one cannot use the
expression (21) of the electric field to calculate the decay
rate (or related quantities) as in Refs. [12, 22-25, 33-57,
60-65].

6 Conclusion

We have presented a brief summary of the standard
approach of the literature to diagonalize and quantize
the microscopic plasmon-polariton models. The Fano
diagonalization technique used relies on an ansatz for
the spectral and degeneracy structure of the system
which is not adapted when the material medium is of
finite size. This conclusion was drawn by studying the
limit case where the dissipation in the medium van-
ishes. We have shown that in this limit, none of the
main results of the theory (the Hamiltonian operator,
the electric field observable and the creation-annihila-
tion operators) are consistent with the ones of the non-
interacting model.

We have also pointed out some inconsistencies in the
derivation of the spontaneous emission rate of an emitter in
a lossy (but finite) environment when it is done assuming
the commonly used expression of the electric field (21). This
was shown using the Fermi golden rule, but it can also be
applied to the derivation of other quantities such as com-
mutators, field correlations and Casimir forces [12, 23, 31,
51, 52, 56, 57].

Reference [17] provides a direct (i. e., ansatz-free)
diagonalization and quantization of the model with a finite
medium, and it differs from the standard results obtained
for an infinite medium. We conclude that many phenom-
ena in quantum plasmonics should be reassessed with the
revised construction in finite media. In particular, one can
try to establish whether some of the formulas constructed
for an infinite medium give a good approximation in some
regimes.
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Supplementary material

Included in the Supplementary material is the calculation
of the effect of the discrepancy in the Green identity in a 1D
problem.

Acknowledgments: This work was supported by the
“Investissements d’Avenir” program, project ISITE-BFC/
IQUINS (Grant No. ANR-15-IDEX-03), QUACO-PRC (Grant
No. ANR-17-CE40-0007-01), and the EUR-EIPHI Graduate
School (Grant No. 17-EURE-0002). We also acknowledge
support from the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-Cu-
rie Grant Agreement No. 765075 (LIMQUET).

Author contribution: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.

Research funding: This work was supported by the
“Investissements d’Avenir” program, project ISITE-BFC/
IQUINS (Grant No. ANR-15-IDEX-03), QUACO-PRC (Grant
No. ANR-17-CE40-0007-01), and the EUR-EIPHI Graduate
School (Grant No. 17-EURE-0002). We also acknowledge
support from the European Union’s Horizon 2020 research
and innovation program under the Marie Sklodowska-
Curie Grant Agreement No. 765075 (LIMQUET).

Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

[1] B.HuttnerandS. M. Barnett, “Quantization of the electromagnetic
field in dielectrics,” Phys. Rev. A, vol. 46, no. 7, pp. 4306-4322,
1992.

S. M. Barnett, B. Huttner, and R. Loudon, “Spontaneous emission in
absorbing dielectric media,” Phys. Rev. Lett., vol. 68, no. 25,

pp. 3698-3701, 1992.

T. Gruner and D. G. Welsch, “Correlation of radiation-field ground-
state fluctuations in a dispersive and lossy dielectric,” Phys. Rev.
A, vol. 51, no. 4, pp. 3246-3256, 1995.

T. Gruner and D. G. Welsch, “Green-function approach to the
radiation-field quantization for homogeneous and
inhomogeneous Kramers-Kronig dielectrics,” Phys. Rev. A, vol. 53,
no. 3, pp. 1818-1829, 1996.

[5] H.T.Dung, L. Knéll, and D. G. Welsch, “Three-dimensional
quantization of the electromagnetic field in dispersive and
absorbing inhomogeneous dielectrics,” Phys. Rev. A, vol. 57, no.
5, pp. 3931-3942, 1998.

S. Scheel, L. Knéll, and D. G. Welsch, “QED commutation relations
forinhomogeneous Kramers-Kronig dielectrics,” Phys. Rev. A, vol.
58, no. 1, pp. 700-706, 1998.

L. G. Suttorp and M. Wubs, “Field quantization in inhomogeneous
absorptive dielectrics,” Phys. Rev. A, vol. 70, 2004, Art no. 013816.

[2

[3

[4

[6

[7



3906 —— V. Dorier et al.: Critical review of quantum plasmonic models

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

L. G. Suttorp and A. ). van Wonderen, “Fano diagonalization of a
polariton model for an inhomogeneous absorptive dielectric,”
Europhys. Lett., vol. 67, no. 5, pp. 766-772, 2004.

L. G. Suttorp, “Field quantization in inhomogeneous anisotropic
dielectrics with spatio-temporal dispersion,” J. Phys. A: Math.
Theor., vol. 40, no. 13, pp. 3697-3719, 2007.

T. G. Philbin, “Canonical quantization of macroscopic
electromagnetism,” New/. Phys., vol. 12, no. 12, p. 123008, 2010.
N. A. Bhat and J. E. Sipe, “Hamiltonian treatment of the
electromagnetic field in dispersive and absorptive structured
media,” Phys. Rev. A, vol. 73, 2006, Art no. 063808.

S. A. R. Horsley and T. G. Philbin, “Canonical quantization of
electromagnetism in spatially dispersive media,” New J. Phys.,
vol. 16, 2014, Art no. 013030.

H.T.Dung, L. Kn6ll, and D. G. Welsch, “Spontaneous decay in the
presence of dispersing and absorbing bodies: general theory
and application to a spherical cavity,” Phys. Rev. A, vol. 62,
2000, Art no. 053804.

C. Raabe, S. Scheel, and D. G. Welsch, “Unified approach to QED
in arbitrary linear media,” Phys. Rev. A, vol. 75, 2007, Art no.
053813.

0. Di Stefano, S. Savasta, and R. Girlanda, “Mode expansion and
photon operators in dispersive and absorbing dielectrics,”

J. Mod. Opt., vol. 48, no. 1, pp. 67-84, 2001.

A. Drezet, “Quantizing polaritons in inhomogeneous dissipative
systems,” Phys. Rev. A, vol. 95, 2017, Art no. 023831.

V. Dorier, J. Lampart, S. Guérin, and H. R. Jauslin, “Canonical
quantization for quantum plasmonics with finite
nanostructures,” Phys. Rev. A, vol. 100, 2019, Art no. 042111.

J. ). Hopfield, “Theory of the contribution of excitons to the
complex dielectric constant of crystals,” Phys. Rev., vol. 112, no.
5, pp. 1555-1567, 1958.

K. O. Friedrichs, “Uber die Spektralzerlegung eines
Integraloperators,” Math. Ann., vol. 115, p. 249-272, 1938.

K. O. Friedrichs, “On the perturbation of continuous spectra,”
Comm. Pure Appl. Math., vol. 1, no. 4, pp. 361-406, 1948.

U. Fano, “Effects of configuration interaction on intensities
and phase shifts,” Phys. Rev., vol. 124, no. 6, pp. 1866-
1878, 1961.

R. Matloob, R. Loudon, S. M. Barnett, and J. Jeffers,
“Electromagnetic field quantization in absorbing dielectrics,”
Phys. Rev. A, vol. 52, no. 6, pp. 4823-4838, 1995.

R. Matloob and H. Falinejad, “Casimir force between two
dielectric slabs,” Phys. Rev. A, vol. 64, 2001, Art no. 042102.

H. T. Dung, S. Y. Buhmann, L. Knéll, D. G. Welsch, S. Scheel, and J.
Kastel, “Electromagnetic-field quantization and spontaneous decay
in left-handed media,” Phys. Rev. A, vol. 68, 2003, Art no. 043816.
L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge,
Cambridge University Press, 2012.

R. Fermani, S. Scheel, and P. L. Knight, “Spatial decoherence near
metallic surfaces,” Phys. Rev A, vol. 73, 2006, Art no. 032902.

R. Carminati and J. J. Greffet, “Near-field effects in spatial
coherence of thermal sources,” Phys. Rev. Lett., vol. 82, no. 8,
pp. 1660-1663, 1999.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-
field spectral effects due to electromagnetic surface
excitations,” Phys. Rev. Lett.,vol. 85, no. 7, pp. 1548-1551, 2000.
C. Henkel, K. Joulain, R. Carminati, and ). J. Greffet, “Spatial
coherence of thermal near fields,” Opt. Commun., vol. 186, no.
1-3, pp. 57-67, 2000.

[30]

31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

DE GRUYTER

K. Joulain, R. Carminati, J. P. Mulet, and J. . Greffet, “Definition
and measurement of the local density of electromagnetic states
closetoaninterface,” Phys. Rev. B, vol. 68,2003, Art no. 245405.
K. Joulain, J. P. Mulet, F. Marquier, R. Carminati, and J. J. Greffet,
“Surface electromagnetic waves thermally excited: radiative heat
transfer, coherence properties and Casimir forces revisited in the
near field,” Surf. Sci. Rep., vol. 57, no. 3-4, pp. 59-112, 2005.

A. Archambault, T. V. Teperik, F. Marquier, and . . Greffet,
“Surface plasmon Fourier optics,” Phys. Rev. B, vol. 79, 2009, Art
no. 195414.

D. Martin-Cano, A. Gonzalez-Tudela, L. Martin-Moreno, F. ).
Garcia-Vidal, C. Tejedor, and E. Moreno, “Dissipation-driven
generation of two-qubit entanglement mediated by plasmonic
waveguides,” Phys. Rev. B, vol. 84, 2011, Art no. 235306.

A. Delga, . Feist, ]. Bravo-Abad, and F. ). Garcia-Vidal, “Quantum
emitters near a metal nanoparticle: strong coupling and
quenching,” Phys. Rev. Lett., vol. 112, no. 25, 2014, Art no. 253601.
A. Delga, ). Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Theory of
strong coupling between quantum emitters and localized
surface plasmons,” J. Opt., vol. 16, no. 11, 2014, Art no. 114018.
R. C. Ge and S. Hughes, “Quantum dynamics of two quantum
dots coupled through localized plasmons: an intuitive and
accurate quantum optics approach using quasinormal modes,”
Phys. Rev. B, vol. 92, 2015, Art no. 205420.

R. Carminati, A. Cazé, D. Cao, et al., “Electromagnetic density of
states in complex plasmonic systems,” Surf. Sci. Rep., vol. 70,
no. 1, pp. 1-41, 2015.

V. D. Karanikolas, C. A. Marocico, P. R. Eastham, and A. L.
Bradley, “Near-field relaxation of a quantum emitter to two-
dimensional semiconductors: surface dissipation and exciton
polaritons,” Phys. Rev. B, vol. 94, 2016, Art no. 195418.

H. Varguet, B. Rousseaux, D. Dzsotjan, H. R. Jauslin, S. Guérin,
and G. Colas des Francs, “Dressed states of a quantum emitter
strongly coupled to a metal nanoparticle,” Opt. Lett., vol. 41, no.
19, pp. 4480-4483, 2016.

C.J.Yang and ). H. An, “Suppressed dissipation of a quantum
emitter coupled to surface plasmon polaritons, Phys. Rev. B, vol.
95, 2017, Art no. 161408.

V. Y. Thanopulos and E. Paspalakis, “Non-Markovian dynamics
in plasmon-induced spontaneous emission interference,” Phys.
Rev. B, vol. 95, 2017, Art no. 075412.

R. Matloob and R. Loudon, “Electromagnetic field quantization in
absorbing dielectrics. I1,” Phys. Rev. A, vol. 53, no. 6, pp. 4567-
4582, 1996.

A. Tip, L. Knoll, S. Scheel, and D.G. Welsch, “Equivalence of the
Langevin and auxiliary-field quantization methods for absorbing
dielectrics,” Phys. Rev. A, vol. 63, 2001, Art no. 043806.

D. Dzsotjan, A.S. Sgrensen,and M. Fleischhauer, “Quantum
emitters coupled to surface plasmons of a nanowire: A
green’s function approach,” Phys. Rev. B, vol. 82, 2010, Art
no. 075427.

T. Hiimmer, F. ). Garcia-Vidal, L. Martin-Moreno, and D. Zueco,
“Weak and strong coupling regimes in plasmonic QED,” Phys.
Rev. B, vol. 87, 2013, Art no. 115419.

A. L. Grimsmo, A. H. Vaskinn, P. K. Rekdal, and B. S. K.
Skagerstam, “Memory effects in spontaneous emission
processes,” Phys. Rev. A, vol. 87, 2013, Art no. 022101.

J. Hakami, L. Wang, and M. S. Zubairy, “Spectral properties of a
strongly coupled quantum-dot—-metal-nanoparticle system,”
Phys. Rev. A, vol. 89, 2014, Art no. 053835.



DE GRUYTER

[48]

[49]

[50]

(51

[52]

(53]

[54]

[55]

[56]

[57]

D. E. Chang, K. Sinha, J. M. Taylor, and H. J. Kimble, “Trapping
atoms using nanoscale quantum vacuum forces,” Nat. Commun.,
vol. 5, p. 4343, 2014.

D. Dzsotjan, B. Rousseaux, H. R. Jauslin, G. Colas des Francs, C.
Couteau, and S. Guérin, “Mode-selective quantization and
multimodal effective models for spherically layered systems,”
Phys. Rev. A, vol. 94, 2016, Art no. 023818.

A. Castellini, H. R. Jauslin, B. Rousseaux, et al., “Quantum
plasmonics with multi-emitters: application to stimulated
Raman adiabatic passage,” Eur. Phys. J. D, vol. 72, p. 223, 2018.
T. G. Philbin, “Casimir effect from macroscopic quantum
electrodynamics,” New J. Phys., vol. 13, 2011, Art no. 063026.
T. G. Philbin, “Damped vacuum states of light,” J. Opt., vol. 18,
2016, Art no. 095201.

S. Ribeiro, S. Y. Buhmann, T. Stielow, and S. Scheel, “Casimir-
Polder interaction from exact diagonalization and surface-induced
state mixing,” Europhys. Lett., vol. 110, 5, 2015, Art no. 51003.
C.J. Yang, ). H. An, and H. Q. Lin, “Signatures of quantized
coupling between quantum emitters and localized surface
plasmons,” Phys. Rev. Res., vol. 1, 2019, Art no. 023027.

T. V. Shahbazyan, “Spontaneous decay of a quantum
emitter near a plasmonic nanostructure,” Phys. Rev. B, vol.
98, 2018, Art no. 115401.

H. Falinejad, “Quantization of the electromagnetic field at the
presence of two dielectric slabs and application to the Casimir
effect,” Euro. Phys. J. D, vol. 71, p. 165, 2017.

H. Falinejad and S. N. Ardekani, “Electromagnetic field
quantization near a dielectric slab and spontaneous
emission rate determination,” Appl. Phys. B, vol. 125,

p. 208, 2019.

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

V. Dorier et al.: Critical review of quantum plasmonic models =—— 3907

A. Drezet, “Equivalence between the Hamiltonian and Langevin
noise descriptions of plasmon polaritons in a dispersive and
lossy inhomogeneous medium,” Phys. Rev. A, vol. 96, 2017, Art
no. 033849.

S. Y. Buhmann, Dispersion Forces |, Berlin, Springer Verlag,
2012.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and
quenching of single-molecule fluorescence,” Phys. Rev. Lett.,
vol. 96, no. 11, 2006, Art no. 113002.

A. Archambault, F. Marquier, ). J. Greffet, and C. Arnold,
“Quantum theory of spontaneous and stimulated emission of
surface plasmons,” Phys. Rev. B, vol. 82, 2010, Art no. 035411.
G. M. Akselrod, C. Argyropoulos, T. B. Hoang, et al.,
“Probing the mechanisms of large Purcell enhancement in
plasmonic nanoantennas,” Nat. Phot., vol. 8, no. 11,

pp. 835-840, 2014.

A. F. Koenderink, “Single-photon nanoantennas,” ACS Phot., vol.
4, no. 4, pp. 710-722, 2017.

K. Sinha, B. P. Venkatesh, and P. Meystre, “Collective effects in
Casimir-Polder forces,” Phys. Rev. Lett., vol. 121, no. 18, 2018,
Art no. 183605.

H. Varguet, S. Guérin, H.R. Jauslin, and G. Colas des Francs,
“Cooperative emission in quantum plasmonic superradiance,”
Phys. Rev. B, vol. 100, 2019, Art no. 041115.

C.T.Tai, Dyadic Green Functions in Electromagnetic Theory, New
York, Institute of Electrical & Electronics Engineers, 1994.

Supplementary material: The online version of this article offers
supplementary material https://doi.org/10.1515/nanoph-2020-0061.


https://doi.org/10.1515/nanoph-2020-0061

	Critical review of quantum plasmonic models for finite-size media
	1 Introduction
	2 Summary of the previous approaches in the literature
	3 The problem of the no-coupling limit
	3.1 Limit for the bosonic operators
	3.2 Limit for the Hamiltonian
	3.3 Limit for the electric field operator
	3.4 Remarks on an infinite bulk medium

	4 Justifications and proposed corrections in the literature
	5 Spontaneous emission and Green identity
	6 Conclusion
	Supplementary material
	Acknowledgments
	References

