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Abstract: Topological photonics has emerged as a novel
paradigm for the design of electromagnetic systems from
microwaves to nanophotonics. Studies to date have largely
focused on the demonstration of fundamental concepts,
such as nonreciprocity and waveguiding protected against
fabrication disorder. Moving forward, there is a pressing
need to identify applications where topological designs
can lead to useful improvements in device performance.
Here, we review applications of topological photonics to
ring resonator-based systems, including one- and two-
dimensional resonator arrays, and dynamically modulated
resonators. We evaluate potential applications such as
quantum light generation, disorder-robust delay lines, and
optical isolation, as well as future research directions and
open problems that need to be addressed.

Keywords: coupled resonator optical waveguide; optical
isolator; ring resonator; silicon photonics; topological
photonics.

1 Introduction

Demand for miniaturized optical components such as
waveguides and lenses that can be incorporated into
compact photonic devices is pushing fabrication

Present address: Daniel Leykam, Centre for Quantum Technologies,
National University of Singapore, 3 Science Drive 2, Singapore 117543,
Singapore.

*Corresponding authors: Daniel Leykam, Center for Theoretical
Physics of Complex Systems, Institute for Basic Science, Daejeon,
34126, Korea; and Basic Science Program, Korea University of Science
and Technology, Daejeon, 34113, Korea,

E-mail: daniel.leykam@gmail.com. https://orcid.org/0000-0002-
8588-9886; and Lugi Yuan, State Key Laboratory of Advanced Optical
Communication Systems and Networks, School of Physics and
Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China,
E-mail: yuanlugi@sjtu.edu.cn. https://orcid.org/0000-0001-9481-
0247

techniques to their limits. Continued progress will require
new approaches to minimize the detrimental influence of
fabrication imperfections and disorder. Topological pho-
tonics is a young subfield of photonics that seeks to
address this challenge using novel design approaches
inspired by exotic electronic condensed matter materials
such as topological insulators [1, 2]. Loosely speaking, to-
pological systems provide a systematic way to create
disorder-robust modes or observables using a collection of
imperfect components or modes. For example, certain
classes of “topologically nontrivial” systems exhibit spe-
cial edge modes that can propagate reliably without
backscattering even in the presence of strongly scattering
defects, forming the basis for superior optical waveguides.

One natural setting where this robustness can poten-
tially be useful is in the design of integrated photonic cir-
cuits [3], where strong light confinement brings sensitivity to
nanometre-scale fabrication imperfections. However, there
is not yet any disruptive killer application where topological
photonic devices have achieved superior performance
compared to mature design paradigms, despite growing
interest in topological photonics since seminal works pub-
lished in 2008 [4, 5]. To help bridge this gap, several reviews
have been published recently, some providing compre-
hensive surveys of topological photonic systems [1, 2, 6, 7],
and others focussing on specific applications such as
incorporating topological concepts into active devices such
as lasers [8], nanophotonics [9], nonreciprocal devices [10],
and nonlinear optical processes [11].

The aim of this brief review is to complement these
recent surveys with a concise introduction to applications
of ideas from topological photonics to optical ring reso-
nator-based systems. Ring resonators are a versatile and
important ingredient of integrated photonic circuits as
they can be used as compact filters, sensors, and delay
lines and as a means of enhancing nonlinear optical ef-
fects [12]. However, active tuning is typically required to
compensate for resonance shifts induced by various per-
turbations, increasing device complexity and energy
consumption [13, 14]. We will discuss some of the ways in
which topological designs may lead to superior devices
with improved reliability. We will focus on topological
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systems formed by coupling together multiple resonators
to form a lattice or by considering coupling between
multiple resonances of a single ring using external mod-
ulation or nonlinearity. In both cases, the lattice formed by
the coupled modes can be designed to have topological
band structures and achieve protection against certain
kinds of disorder.

The outline of this article is as follows: Section 2 starts
with a brief overview of the basic concepts underlying to-
pological photonics and ring resonators. Next, we review
the implementation of topological photonics using arrays
of coupled ring resonators in Section 3. Section 4 discusses
how we can use dynamic modulation as a novel degree of
freedom for the engineering of topological effects in ring
resonators. We discuss future research directions and
promising potential applications of topological ring reso-
nators in Section 5, before concluding with Section 6.

2 Background
2.1 Topological photonics

The key idea underlying topological photonics is the bulk-
boundary correspondence, which states that the topolog-
ical properties of the photonic band structure of a bulk
periodic medium can be related to the appearance of robust
modes localized to edges or domain walls of the system
[1, 2]. These “topologically protected” edge modes have
very different properties compared to conventional defect
modes. For example, as they arise owing to the topological
properties of the bulk photonic band structure, they are
robust against certain classes of local perturbations at the
edge or domain wall and can only be removed by large
perturbations capable of closing the bulk band gap. Thus,
topology allows us to create special robust boundary
modes protected by a higher dimensional bulk.

For the purposes of this review, two classes of topo-
logical modes are of interest. One-dimensional media can
exhibit topologically protected modes localized to the ends
of the system. These modes have their frequencies pinned
to the middle of the band gap, even in the presence of
disorder, as long as certain symmetries are preserved. In
this case, topology provides a systematic way to create
localized defect modes at a specific frequency.

The second important class of topological modes is
edge states of two-dimensional topological systems. These
exhibit either unidirectional or spin-controlled propaga-
tion along the edge. The former appear in topological
systems with broken time-reversal symmetry (known as
quantum Hall topological phases [15]), while in photonics,
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the latter require a combination of time-reversal symmetry
and some other internal symmetry protecting a spin-like
degree of freedom (known as quantum spin-Hall topolog-
ical phases [16]). In both cases, the resulting topological
edge states are of interest as a means of creating disorder-
robust optical waveguides.

The generic approach to create a topological system is
to start with a simple periodic medium exhibiting some
degeneracy in its photonic band structure and then break
one of the symmetries protecting the degeneracy to open a
band gap. Breaking the symmetry in the right way will
create a topologically nontrivial band gap hosting pro-
tected edge modes.

Figure 1 shows a simple one-dimensional example of
this idea, where one can reduce the translation symmetry
of a periodic lattice by staggering its site positions to create
a lattice of dimers. Reducing the translation symmetry
opens a minigap the lattice’s band structure, analogous to
the Su-Schrieffer—Heeger tight binding Hamiltonian for
electron transport in polymers [17, 18],

Hss = %(]121;"_153: +]2a;na2n+l) +c.C, )]
where a, is the annihilation operator for the nth siteand J; ,
are coupling strengths. Note that while Hsgy is written us-
ing second quantization notation, it is equally applicable
to classical states of light, where the eigenvalues of Hssy
give the frequency detunings of the collective array modes,
as shown in Figure 1.

There are two different ways to dimerize a finite lattice;
we can have either J; > J, or J; < J5, corresponding to two
inequivalent topological phases distinguished by a quan-
tized winding number. The trivial phase J; > J, forms a set of
dimers and does not exhibit any end modes. On the other
hand, in the nontrivial phase J; < J,, the dimers are broken
at the ends of the system, resulting in a pair of localized end
modes with frequencies lying in the middle of the band
gap. The end modes are topologically protected in the
sense that introducing disorder to the intersite couplings
does not shift their frequencies; they remain “pinned” to
the middle of the band gap and localized to the ends as
long as the disorder is sufficiently weak that the bulk band
gap remains open.

Thanks to its simplicity and relative ease of imple-
mentation, photonic analogues of the Su-Schrieffer—
Heeger model have been realized in a variety of platforms
[1], including waveguide lattices [19-21], plasmonic and
dielectric nanoparticle arrays [22, 23], photonic crystals
[24, 25], and microring resonators [26, 27].

To create two-dimensional topological phases, there are
two common approaches: using synthetic gauge fields
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Figure 1: Schematic of the general procedure for creating a
topological medium. (A) A regular periodic lattice can be modelled
as a collection of resonant elements (shaded circles) with individual
resonant frequencies w, coupled together to form a band of
delocalized bulk modes. The coupling strength / is determined by
the overlap between the modes of the individual lattice sites,
sketched in red. (B and C) Reducing the translation symmetry of the
lattice by introducing staggered couplings J; # /, opens a minigap in
the bulk spectrum of size 26/, where 8/ = |J; — J>| and ] =1 (J1 + /).
(B) The trivial dimerized lattice /; > /, hosts two bands corresponding
to symmetric and antisymmetric dimer modes, separated by a
minigap. (C) In the nontrivial dimerized lattice /; < J,, the dimers at
the ends are broken, producing mid-gap modes localized to the ends
of the lattice.

or by perturbing honeycomb lattices. The synthetic gauge
field refers to complex (direction-dependent) coupling
between different sites of the photonic lattice, arising in
systems with nonreciprocity or broken time-reversal sym-
metry, corresponding to tight binding coupling terms of the
form Je®a’ ,ay, + Je @’ @n,1, where 0 s the coupling phase.
Complex coupling is formally equivalent to the effect of an
electromagnetic vector potential on electron transport.
Using a suitable position-dependent synthetic gauge field
6= 0(x,y) allows one to create an effective magnetic field for
light [28], resulting in analogues of the quantum Hall to-
pological phase [15].
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The second approach to creating two-dimensional to-
pological phases is based on the honeycomb lattice, which
exhibits Dirac point degeneracies at the corners of its
Brillouin zone. Weak symmetry-breaking perturbations are
capable of lifting the degeneracy to open a topological
band gap. One can break either time-reversal symmetry to
create the quantum Hall phase [29] or other internal sym-
metries (e.g., related to sublattice or polarization degrees of
freedom) to create quantum spin Hall phases [16].

Other classes of topological models beyond the above
gapped topological insulating phases are attracting
increasing attention. For example, higher order topological
phases can give rise to modes localized to the corners of
two-dimensional systems [30]. Three-dimensional Weyl
topological phases exhibit protected degeneracies in their
bulk band structure [31, 32]. Non-Hermitian topological
phases can emerge in systems with structured gain or loss
[33-36]. For further discussion on photonic topological
phases, we direct the reader to the studies by Ozawa et al.
[1], Khanikaev and Shvets [2], Yuan et al. [6], and Ozawa
and Price [7].

It is important to stress that these topological photonic
systems are only analogous to the topological tight binding
models used to describe electronic condensed matter sys-
tems. Thus, while the electronic quantum Hall phase ex-
hibits a Hall conductivity precisely quantized to 1 part in
10°, in photonics, various effects such as material ab-
sorption, out-of-plane scattering, and imperfect symme-
tries mean that the topological protection is only
approximate, so the edge modes are only protected against
certain classes of perturbations. Thus, it is crucial to
identify systems where topology provides protection
against the most significant sources of disorder; most
studies to date rely on deliberately introduced defects to
demonstrate topological protection. For example, the end
states of the Su-Schrieffer—-Heeger model are only pro-
tected against the “off-diagonal” disorder in the intersite
coupling coefficients and are not protected against the
“diagonal” disorder in the individual sites’ resonant fre-
quencies, which leads to random variations to the end
modes’ resonant frequencies.

2.2 Ring resonators

The ring resonator generally refers to any optical waveguide
forming a closed loop, regardless of its size or shape [12].
Figure 2 presents some examples of ring resonators,
including micrometre-scale integrated optical resonators,
millimetre-scale spoof plasmon resonators, and kilometre-
scale fibre loops. Microwaves and fibre loops provide a
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convenient setting for studying novel design approaches as
they are easier to fabricate and in some cases can be
assembled using off-the-shelf optical components, while
integrated photonic circuits are of more interest for potential
applications owing to their compactness and scalability.

Resonances occur whenever the propagation phase
accumulated over a round trip forms a multiple of 271. Key
characteristics of ring resonators are their resonance
width, free spectral range (FSR; the spacing between
neighbouring resonances), quality factor (resonance fre-
quency divided by width), and finesse (FSR divided by
resonance width). The resonance width is dictated both by
the intrinsic losses due to waveguide bending, scattering
losses due to surface roughness, absorption, and extrinsic
losses introduced by coupling the resonator to external
waveguides. We emphasize that in passive systems, topo-
logical designs generally do not provide protection against
these sources of loss.

The FSR is inversely proportional to the round trip path
length. In systems with a small FSR, such as long fibre
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Figure 2: Examples of ring resonators in different platforms. (A)
Silica microtoroid resonator, adapted from the study by Armani et al.
[42]. (B) Coupled spoof plasmon ring resonators formed by
subwavelength metal pillars, adapted from the study by Gao et al.
[43]. (C) Fourteen-ring coupled resonator optical waveguide on sili-
con integrated with thermal tuners, adapted from the study by
Jayatilleka et al. [44]. (D) Coupled fibre loops, where photodiodes
are used to monitor the propagation dynamics by tracking the in-
tensity within each loop, adapted from the study by Bisianov et al.
[45]. Experiments in panels (A, C, and D) were conducted at telecom
wavelengths (A =~ 1550 nm), while (B) is a microwave frequency

(w = 11.3 GHz) device.
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loops, one typically studies the propagation dynamics in
the time domain. For on-chip signal processing applica-
tions, it is desirable to have a large FSR, exceeding the
signal bandwidth, demanding a high refractive index
contrast to minimize waveguide bending losses. The
resulting strong light confinement in turn makes the ring’s
resonances highly sensitive to local perturbations to the
refractive index, which can be both a strength and a
weakness. For example, the sensitivity to perturbations
allows ring resonators to be employed as highly compact
and efficient sensors and optical switches [37-40]. On the
other hand, for spectral filtering applications, active tuning
is typically required to keep the resonance fixed at the
desired frequency [41].

A high quality factor is desirable for nonlinear optics
applications. For example, an intensity-dependent refrac-
tive index enables bistability as the input frequency is
tuned, which is useful for all-optical switching [46]. An
intensity-dependent refractive index can arise not only
owing to the optical Kerr effect but also from thermal
nonlinearities and free carrier dispersion [12]. The differing
characteristic time scales of these nonlinear effects can
lead to complex pulsating dynamics [47]. Ultrafast Kerr
nonlinearities are also employed for frequency mixing
applications, where the relatively uniform spacing of the
ring resonances is ideal for frequency comb generation
[48-52].

The strong dispersion close to resonance allows ring
resonators to be used to delay and store optical signals. For
single rings, there is a trade-off between the delay time and
the operating bandwidth (their product is a fixed constant).
Larger delays for a fixed bandwidth can be achieved using
arrays of coupled rings, known as coupled resonator op-
tical waveguides (CROWs) [53-56]. In integrated pho-
tonics, however, disorder in the form of nanometre-scale
variations to the rings’ height and thickness leads to sig-
nificant misalignment of the individual rings’ resonance
frequencies, severely degrading the CROW performance
[57]. Therefore, one requires either clever designs that are
robust against these fabrication variations [58] or active
tuning to compensate for the disorder [44, 59].

The thermo-optic effect is the most common way to
tune integrated photonic ring resonators, using micro-
heaters placed on top of the individual rings. While thermal
tuners offer a large tuning range, they are slow (operating
on the microsecond scale), have poor energy efficiency [13],
require careful design to minimize crosstalk between
different tuners [60], and inevitably introduce sensitivity to
environmental temperature fluctuations [61]. Electro-optic
tuning can operate much faster (subnanosecond) and with
greater energy efficiency; however, the tuning range is
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smaller, and additional absorption losses are introduced
[12, 62].

There is growing interest in methods to improve the
reliability of ring resonator-based devices, such as
creating temperature-insensitive resonators by combining
materials with opposite thermo-optic coefficients [63] and
introducing tunable backscattering to cancel out back-
scattering caused by fabrication imperfections via
destructive interference [64]. Topological designs are a
promising alternative exhibiting passive robustness
against disorder. For example, the topological edge modes
of two-dimensional lattices are robust against the “diago-
nal” disorder formed by misalignment in the rings’ reso-
nance frequencies, provided the disorder strength does not
exceed the size of the topological band gap.

For further in-depth discussion of the physics and
applications of photonic ring resonators, we recommend
the articles by Bogaerts et al. [12], Morichetti et al. [55], and
Li and Bogaerts [65].

3 Topological coupled resonator
lattices

Arrays of coupled ring resonators provide a flexible plat-
form for implementing topological lattice models. In
weakly coupled arrays, light propagation is governed by
effective tight binding Hamiltonians, which describe the
evanescent coupling of light between neighbouring reso-
nators. The magnitude of the coupling coefficients can be
controlled simply by varying the separation between the
resonators. Furthermore, coupling resonant rings via
antiresonant links allow one to tune the phase of the
coupling. One can effectively break time-reversal symme-
try by considering modes with a fixed “spin” (clockwise or
anticlockwise circulation direction) and neglecting back-
scattering within the rings. On the other hand, taking this
backscattering into account introduces an in-plane effec-
tive magnetic field [66]. Together, these ingredients enable
the realization of a wide variety of topological tight binding
models in one and two dimensions.

Studies of topological ring resonator lattices began
with the seminal theoretical work of Hafezi et al. [66],
which showed that one can effectively break time-reversal
symmetry by exciting modes with a particular circulation
direction and then use asymmetric link rings to implement
an analogue of the quantum Hall lattice model. The
asymmetric link rings result in a phase difference between
the two coupling directions, equivalent to a vector poten-
tial in the tight binding Hamiltonian. By making this
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hopping phase inhomogeneous (e.g., proportional to the
y coordinate), one can create a vector potential formally
equivalent to an out-of-plane effective magnetic field,
which implements a lattice model of the quantum Hall
effect, as shown in Figure 3(A and B) and described by the
tight binding Hamiltonian [66].
Hon =TY (@, @0 ye™ + @, 8y,
&)
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where a is the effective magnetic flux threading each pla-
quette of the square lattice.

The topology of the quantum Hall lattice is character-
ized by the quantized Chern number, which determines the
number of chiral backscattering-protected states at the
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Figure 3: Synthetic magnetic field in a ring resonator lattice. (A)
Schematic of lattice, consisting of resonant “site” rings (blue)
coupled via antiresonant “link” rings (red). Light is injected at the
input into anticlockwise-circulating site modes, effectively breaking
time-reversal symmetry. (B) Schematic of coupling terms in the tight
binding Hamiltonian. Coupling in the vertical direction is symmetric,
while coupling in the horizontal direction is accompanied by a
hopping phase e*° due to the asymmetry of the link ring. An inho-
mogeneous hopping phase 6 = ay induces a synthetic magnetic flux
a. (C) Image of the first photonic topological resonator lattice and
propagation of its edge states, adapted from the study by Hafezi
et al. [67].
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edge of the lattice. Specifically, for a given band gap, one
sums the Chern numbers of all the bulk bands below the
gap to obtain the gap Chern number [1]. The number of
chiral edge states at an interface between two media is then
given by the difference between the gap Chern numbers of
the two media. Note that as this resonator lattice obeys
time-reversal symmetry, the opposite spin hosts counter-
propagating edge states (forming a quantum spin Hall
phase), and hence, the protection against backscattering
only holds as long as the two spins remain decoupled.

Following this proposal, the first experiment was re-
ported in 2013 [67]. The experiment was performed in the
telecom band (A = 1550 nm) and used a lattice with the FSR
of ~ 10’ GHz and intersite coupling strength of J ~ 16 GHz,
deep in the tight binding regime. The diagonal disorder in
the rings’ resonant frequencies estimated to be = 0.8 J,
smaller than the size of the topological band gap. Other
forms of disorder were found to be negligible for the system
parameters considered: the strength of the intersite
coupling disorder and intrasite coupling between the two
spins were both estimated to be 0.04 J.

In contrast to the ideal lossless case, in practice, the
individual rings exhibited intrinsic losses k;, ~ 1 GHz owing
to roughness of the waveguide walls and absorption. This
sets an upper limit on the propagation length of the topo-
logical edge states despite their protection against back-
scattering induced by disorder in the rings’ resonant
frequencies and inter-ring couplings. These losses were
harnessed in the experiment to directly image the propa-
gation of the topological edge states by measuring the light
scattered out of the device plane.

Figure 3(C) shows the device and an image of the to-
pological edge states, which reliably travel from the input
port to an output port. In contrast, the bulk states
exhibited Anderson localization owing to the strong
intrinsic disorder present in the system. Subsequent ex-
periments measured the delay times through several de-
vices, showing indeed that the topological edge states
preserve ballistic light transport with low device-to-device
fluctuations in the photon delay times, whereas regular
CROWSs exhibit strong fluctuations due to the disorder-
induced scattering [68]. The quantum Hall lattice model
was also implemented using silicon nitride ring resona-
tors; however, the propagation distance of the topological
edge states was limited by stronger intrinsic losses
Kin = J = 60 GHz [69].

Other topological tight binding models have also been
studied using ring resonator lattices. A higher order topo-
logical phase exhibiting protected corner states was
demonstrated in 2019 [70]. Next-nearest neighbour coupling
was used to implement an analogue of the Haldane model
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[29], which exhibits quantum Hall edge states even in the
absence of a net effective magnetic flux [71, 72]. Zhu et al. [73]
have proposed a honeycomb lattice design hosting topo-
logical edge states which coexist with a nearly flat bulk
band. It is also possible to shrink these two-dimensional
lattices down to quasi-one-dimensional delay lines, which
maintain some resistance against disorder [74].

In 2018, the ring resonator platform was used to
implement one- and two-dimensional topological laser
models by embedding a quantum well gain medium into
the resonators [26, 27, 75, 76]. One-dimensional experi-
ments were carried out using the Su-Schrieffer-Heeger
lattice, created by staggering the separation between
neighbouring rings. Pumping one of the two sublattices
comprising the array induced lasing of its mid-gap topo-
logical edge states [26, 27]. Two-dimensional lasing ex-
periments utilized the quantum Hall lattice, where a pump
localized to the lattice edges induced lasing in its chiral
edge states [75, 76]. In both cases, the potential advantage
of the topological approach is the ability to induce lasing in
collective array modes that are localized by the topological
band gap. For further information on topological lasing, we
recommend the recent reviews by Ota et al. [8] and Smir-
nova et al. [11].

One advantage of the silicon photonics platform is the
ability to implement actively tunable devices, for example,
by incorporating thermo-optic phase shifters to tune the
resonant frequencies of the individual rings. Mittal et al.
[77] employed tunable phase shifters at the edge of the
quantum Hall lattice to directly measure the topological
winding number of the edge states. Similar tuning of the
effective magnetic flux in ring-shaped lattices enables the
observation of the Hofstadter butterfly via the lattice’s
scattering resonances [78, 79]. There are recent proposals
to implement phase shifters throughout the entire lattice in
order to tune its topological properties, thereby enabling
one to switch the topological edge states on or off or reroute
them between different output ports [71, 80, 81]. Zhao et al.
[82] demonstrated controllable rerouting of topological
states in the quantum Hall resonator lattice using struc-
tured bulk gain.

The above studies of topological resonator lattices
focused on the weak coupling limit described by tight
binding models. However, topological phases can also
arise in the strongly coupled lattices, without requiring
external modulation or antiresonant link rings [84-87].
These “anomalous Floquet” phases are not predicted by
the tight binding approximation and only emerge when
considering the full transfer matrix description of the light
coupling between neighbouring rings. A ring resonator
lattice implementing an anomalous Floquet topological
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phase was first demonstrated in 2016 using spoof plasmons
at microwave frequencies [43]. Similar anomalous edge
states can emerge in weakly coupled arrays with gain and
loss, where the transfer matrix description is essential to
account for the growth or decay of the optical field as it
circulates through each ring [88].

The anomalous Floquet topological phase was scaled
up to telecom wavelengths by Afzal et al. [83] using the
silicon photonic resonator lattice shown in Figure 4. The
main distinguishing feature compared to previous obser-
vations of quantum Hall edge states is the presence of edge
states in all of the array’s band gaps. One advantage of the
strongly coupled anomalous Floquet phases is that their
bulk bands and edge states can have bandwidths compa-
rable to the rings’ FSR, in contrast to tight binding lattices,
which are typically restricted to small bandwidths. How-
ever, the stronger coupling implies a reduction in the rings’
quality factors and hence suppression of nonlinear effects.
Thus, whether it is better to employ anomalous Floquet-
type lattices or topological tight binding lattices will
depend on the particular application.

4 Topology of dynamically
modulated resonators

Resonators undergoing the dynamic modulation of the
refractive index provide a flexible way to construct effec-
tive lattice models described by time-dependent tight
binding Hamiltonians. Such systems break time-reversal
symmetry and provide an important platform for imple-
menting various topological phenomena. This specific
subject was started with the pioneering paper by Fang et al.
[89], who showed that in photonic systems where the
refractive index is harmonically modulated, the modula-
tion phase actually gives rise to an effective gauge
potential for photons. Based on this idea, a photonic
Aharonov-Bohm interferometer was proposed as a design
for an optical isolator.

A subsequent work by Fang et al. [28] proposed a
scheme for generating an effective magnetic field for pho-
tons, based on spatially inhomogeneous modulation pha-
ses. The effective magnetic field for photons breaks time-
reversal symmetry and can be used to induce nontrivial
quantum Hall phases in two-dimensional resonator lat-
tices. Topologically protected one-way edge modes can be
excited in this dynamically modulated resonator lattice,
which are robust against defects, as shown in Figure 5. In
contrast to the lattices discussed in the previous section,
these topological modes are also robust against spin-
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Figure 4: Anomalous Floquet topological resonator lattice, adapted
from the study by Afzal et al. [83]. (A) Microscope image of the silicon
resonator lattice. (B) Image of scattered light when the chiral edge
state is excited (left), compared with the simulated edge state
intensity distribution (right). (C) Measured transmission spectrum of
the lattice, with high transmission in all three band gaps (shaded
grey regions |, Il, [Il) mediated by the anomalous Floquet topological
edge states.

flipping disorders because time-reversal symmetry is
broken. However, they remain susceptible to intrinsic los-
ses such as absorption.

Experiments based on these ideas were implemented
in a variety of platforms. The first proof-of-principle
demonstration of a photonic Aharonov-Bohm interfer-
ometer used an electrical network at radio frequencies [91].
In 2014, the photonic Aharonov-Bohm effect has been
demonstrated at visible wavelengths by utilizing an effec-
tive gauge potential induced by photon-phonon in-
teractions [92]. Later, in the same year, the presence of an
effective gauge field has been constructed using the on-
chip silicon photonics technology, where the refractive
index of the silicon coupled waveguides was modulated by
an applied voltage [93]. These works are important proofs
of concepts for photonic gauge potentials induced by dy-
namic modulation.
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Figure 5: Dynamically modulated resonators generating effective
magnetic fluxes. (A) Two resonators are connected through the
dynamic modulation. (B) Topologically protected one-way edge
mode propagates around the defect in a two-dimensional resonator
lattice, where the spatial distribution of modulation phases gives an
effective magnetic field. (C) An array of rings undergoing dynamical
modulation, which creates a synthetic space (D) with one dimension
being the frequency dimension, where a topological one-way edge
mode can be excited. (A) and (B) are adapted from the study by Fang
et al. [28]. (C) and (D) are adapted from the study by Yuan et al. [90].

These proposals for creating effective gauge potentials
in dynamically modulated resonators have triggered many
follow-up studies on the manipulation of light via modu-
lation phases. For example, spatially inhomogeneous dis-
tribution of modulation phases in two-dimensional
resonator lattices can be used to control the flow of light
[94-97]. A spatially homogeneous but time-dependent
distribution of modulation phases in three dimensions has
also been considered, which results in propagation anal-
ogous to the dynamics of electrons in the presence of a
time-dependent electric field [98]. By temporally modu-
lating the effective electric field, one can time-reverse the
propagation of one-way quantum Hall edge states [99].

In the above studies, the modulations under consid-
erations were treated weakly, so that the dynamics satisfy
the rotating wave approximation. Topological phase tran-
sitions have also been studied in the ultrastrong coupling
regime, where the rotating wave approximation fails. In the
ultrastrong coupling regime, the topological edge modes
have been shown to exhibit larger bandwidth and less
susceptibility to losses [100]. On the other hand, experi-
mental efforts are still ongoing to achieve ultrastrong
coupling using ring resonators. As an experimental proof
of concept, light guiding by an effective gauge potential
[96] has been demonstrated in tilted waveguide arrays
[101]. Moreover, lithium niobate microring resonators have
been coupled and modulated by external microwave
excitation, which leads to an effective photonic molecule
[102]. Various platforms have therefore been shown as
potential candidates for exploring resonators under strong
dynamic modulation.

Besides studying topological physics in real space,
dynamically modulated resonators also provide a unique
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platform to explore higher dimensional topological phys-
ics in lower dimensional physical systems, by incorpo-
rating synthetic dimensions in photonics [6, 7]. Inspired by
earlier works of synthetic dimensions in lattice systems
[103-105], resonators supporting multiple degenerate
modes with different orbital angular momentum (OAM)
have been used to simulate the topological physics, where
the synthetic dimension is constructed by coupling modes
with different OAM using a pair of spatial light modulators
[106-109].

On the other hand, dynamically modulated ring reso-
nators with the modulation frequency close to the reso-
nators’ FSR naturally give rise to a synthetic dimension
along the frequency axis of light [90, 110]. Using this idea,
two-dimensional topologically protected one-way edge
states have been proposed using one-dimensional reso-
nator lattices [see Figure 5(C)]. Such edge modes convert
the frequency of light unidirectionally towards higher (or
lower) frequency components as shown in Figure 5(D),
which could form the basis for a topological frequency
converter [90]. The four-dimensional quantum Hall effect
can also be studied using this approach, by combining a
three-dimensional resonator lattice with a fourth synthetic
frequency dimension [110].

Synthetic dimensions in dynamically modulated res-
onators also provide a platform for exploring novel topo-
logical phases that are difficult to implement using pure
spatial lattices. For example, using synthetic dimensions,
it is possible to implement three-dimensional Weyl [111,
112] and topological insulating phases [113] using two-
dimensional arrays of rings. In two-layer two-dimensional
ring lattices, higher order topological phases exhibiting
corner states have also been designed [114]. Based on the
scheme of creating a topological system in a one-
dimensional array of ring resonators, a mode-locked to-
pological insulator laser in synthetic dimensions has been
suggested, which triggers potential applications for
developing active photonic devices [115].

One significant advantage of synthetic dimensions
implemented using dynamically modulated resonators is
the ability to flexibly control the connectivity of the cou-
plings in the synthetic space, which is difficult to achieve in
real-space lattices [116-118]. For example, one can introduce
long-range couplings along the synthetic frequency
dimension by using modulation frequencies that are multi-
ples of the FSR, enabling emulation of the two-dimensional
Haldane model using three rings [119]. Moreover, in a single
resonator, one can combine two internal degrees of freedom
of light such as frequency and OAM to construct a two-
dimensional synthetic lattice [120]. In such synthetic lat-
tices, the effective magnetic field can be naturally
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introduced through the additional coupling waveguides,
thereby creating topologically protected one-way edge
states. This may enable the robust manipulation of entan-
glement between multiple degrees of freedom of light.

Besides topological physics, many other interesting
analogies with quantum and condensed matter physics can
be demonstrated using dynamically modulated resonators,
including Bloch oscillations [121, 122], parity-time symmet-
ric systems [123, 124], and flat band lattices [125, 126].
Furthermore, the creation of local nonlinearity in the syn-
thetic frequency dimension is under study, which could
significantly broaden the range of Hamiltonians involving
local interactions that can be considered in the photonic
synthetic space in dynamically modulated resonators [127].

We conclude this section by discussing some recent
experimental demonstrations of synthetic dimensions in
photonics. The first photonic topological insulator in a
synthetic dimension was demonstrated using an array of
multimode waveguides, where modulation of the refractive
index along the waveguide axis played the role of the dy-
namic modulation [129]. The dynamically modulated
resonator has also been implemented in the fibre-based
ring experiments incorporating commercial electro-optic
modulators [130, 131], where band structures associated
with one-dimensional synthetic lattices along the fre-
quency axis of light have been measured [132]. Based on
this experimental set-up, one can use the clockwise/
counterclockwise modes of a single ring as another degree
of freedom to construct a synthetic Hall ladder with two
independent physical synthetic dimensions, as shown in
Figure 6 [128]. An effective magnetic flux was generated in
the experiment. and signatures of topological chiral one-
way edge modes were observed. Recently, integrated
lithium niobate resonators under dynamic modulation
provide another potential experimental platform to
construct synthetic dimensions and explore topological
photonics in a synthetic space, which is potentially sig-
nificant for on-chip device applications [133].

5 Future directions

Having reviewed some of the seminal works on imple-
menting topological effects using ring resonators, we now
discuss some promising directions for future research,
including fundamental studies of topological phenomena
and practical problems, which must be solved to make
topological ring resonators viable for device applications.

Most studies of topological ring resonators to date have
focused on Hermitian topological lattice models, in which
strictly speaking, the topological protection only holds in
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Figure 6: Topology in synthetic space, adapted from the study by
Dutt et al. [128]. (A) Schematic of a single ring formed by a fibre loop
under the dynamic modulation. The CW and CCW modes form a spin
degree of freedom and are coupled via connecting waveguides of
differing lengths. (B) The corresponding lattice gives a synthetic Hall
ladder threaded by an effective magnetic flux ¢ with two
independent synthetic dimensions. (C) Measuring the transmission
of an input CW excitation as a function of the detuning Aw reveals
two bands with opposite chirality. (D) The chiral current j, a
measure of the spin-sensitive direction of frequency conversion, is
opposite for the two bands. (E) Steady-state normalized photon
number P(m) of the CW mode at the mth resonance, where m, is the
resonant mode closet to the input laser, indicating preferential
conversion to higher frequencies.

the absence of any gain or loss. The study of non-Hermitian
topological phases induced by appropriately structured
gain or loss is a topic attracting enormous interest nowa-
days [33-36]. Non-Hermitian coupling, which can induce
novel non-Hermitian topological phases, can be imple-
mented in coupled resonator lattices either by introducing
asymmetric backscattering to the site rings [134, 135] or
adding gain or loss into the links to induce a hopping
direction-dependent amplification or attenuation [136,
137]. The latter has been implemented using variable-gain
amplifiers in a microwave network [138] and coupled fibre
loops [139]. Experiments with microring resonators remain
limited to topological laser experiments based on adding
gain to existing Hermitian topological phases [26, 27, 75,
76], making this an interesting direction for further studies.
Can we use ideas from non-Hermitian topological phases to
exploit or minimize the scattering losses present in inte-
grated photonic ring resonators?

Ring resonators also provide an ideal platform for
studying nonlinear topological systems [11] owing to the
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enhancement of nonlinear effects provided by high quality
factor microresonators. Recent experiments have har-
nessed nonlinearities to generate frequency combs from
single resonators [48-52]. It will be interesting to consider
topological band structure effects in this context. The high
flexibility in controlling the inter-ring coupling in reso-
nator lattices also provides an opportunity to implement
exotic forms of nonlinearity, such as models with nonlinear
coupling [140]. Systems with nonlinear coupling can
exhibit nonlinearity-induced topological transitions [141],
which were so far limited to electronic circuit experiments
[142]. Fibre loops are another promising platform for
exploring nonlinear effects owing to their long accessible
propagation lengths and ability to compensate for losses
using fibre amplifiers [45].

Recently, several studies have proposed the use of
topological modes supported by domain walls of topolog-
ical photonic crystals as a means of constructing novel
classes of ring resonators [143-146]. Light confinement is
typically weaker than the standard approach based on
integrated photonic ridge waveguides, meaning larger
resonator sizes are required. A potential benefit of topo-
logical photonic crystal-based ring resonators is their
ability to support sharp corners without bending losses.
However, it remains to be seen whether they will be
competitive with existing ring resonators. For example,
topological photonic crystals have been shown to exhibit
large losses (>100 dB/cm) compared to conventional pho-
tonic crystal waveguides (5 dB/cm) owing to out-of-plane
scattering losses [147].

Research on topological photonics has so far largely
focused on the fundamental science and demonstration of
novel topological effects. There remains a large gap be-
tween these studies and potential applications, which
must be bridged. While new kinds of topological phe-
nomena such as higher order topological phases [30, 70]
continue to attract fundamental interest, the need for more
challenging ingredients such as high-dimensional lattices
or protecting symmetries makes any useful applications a
far-off prospect at this stage. Moving forward, we will
require better optimization of existing topological designs
to make them more competitive with standard compo-
nents, moving from a paradigm of demonstrating topo-
logical robustness by deliberately introducing defects (as is
the case in most experiments utilizing photonic crystals,
waveguide arrays, and metamaterials) to one where there
is topological protection against the actual imperfections
which limit the performance of real devices. Topological
ring resonator lattices using silicon photonics are note-
worthy as they are perhaps the only platform to date in
which the topology imbues protection against the
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dominant form of intrinsic disorder, i.e., the misalignment
in the rings’ resonant frequencies.

Many applications of ring resonators employ small
systems consisting of up to a few coupled rings. Generally,
for topological protection to hold, we need to have a bulk,
requiring a large system size. Intuitively, it is the presence
of a bulk that allows signals to route around imperfections
on the edge. So, another important direction is to deter-
mine how to use topological ideas to improve the perfor-
mance of small systems of a few coupled resonators. This is
a direction where concepts such as synthetic dimensions
will likely play a key role.

Finally, one of the most exciting potential near-term
applications of topological resonator lattices is as reliable
delay lines or light sources in large-scale quantum pho-
tonic circuits. For example, topological edge states may be
useful as disorder-robust delay lines for entangled states of
light [148-150]. In 2018, Mittal et al. [151] demonstrated
experimentally the generation of correlated photon pairs
via spontaneous four-wave mixing in a topological edge
mode. They observed better reproducibility of the photon
spectral statistics over several devices than regular CROWs,
which is promising for the scaling up and mass production
of quantum photonic circuits. Very recently, this idea was
generalized to dual-pump spontaneous four-wave mixing,
which allows one to tune the resulting two-photon corre-
lations by changing the pump frequencies [152].

6 Conclusion

We have presented an overview of how ring resonators
provide a highly flexible platform for studying topological
band structure effects in photonics. Ring resonators not
only have enabled the implementation of seminal topo-
logical lattice models from condensed matter physics but
also have been used for some of the first observations of
novel topological phases in any platform, such as higher
order topological corner states. There is now strong theo-
retical and experimental evidence that topological ideas
may be useful for designing superior delay lines or fre-
quency converters in integrated photonic circuits. As the
basic concepts are now well established, future research
will need to shift focus towards optimization of existing
topological ring resonator systems to improve their per-
formance and make their figures of merit more competitive
with conventional ring resonator—based components.
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