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Abstract: We study the interaction of a single photon in a
surface plasmon polariton mode with multiple atoms. We
propose a system of two atoms to achieve a tunable scat-
tering from subscattering to superscattering regimes by
changing the angle of the incident photon. We also
demonstrate a perfect electromagnetically-induced trans-
parency using two atoms with two-level structures. The
proposed framework is efficiently scalable to a systemwith
a large number of atoms and opens up the possibility of
designing novel atom-based optical devices. We design an
atomically thin parabolic mirror to focus single photons
and form a quantum mirage in a cavity built from atoms.

Keywords: electromagnetically induced transparency;
nanophotonics; plasmonics; quantum electrodynamics;
scattering; waveguide QED.

1 Introduction

Photon–atom interaction is an important subject with
considerable theoretical and practical interests [1–3]. With
the development of nanotechnology it has now become
possible to tailor this interaction by designing nano-
photonic structures with unique optical properties as well
as artificial atoms like a superconducting qubit, quantum
dot or a Rydberg atom in a highly excited state [4–6]. In
recent years there have been numerous studies investi-
gating the coherent scattering of a few photon Fock states
by an atom [7–16]. Most of these studies, however, are
concerned with a single or a few atoms coupled to one

dimensional (1D) continuum of photonic modes of the
waveguide [7–14, 17]. It has been shown that a two-level
atom coupled to awaveguide acts as a perfect reflector near
the resonant frequency, despite its subwavelength size.
Similarly, it has been shown that an atom exhibits a cross
sectionmuch larger than its physical dimensions for single
photon scattering in free space near the resonant frequency
[16]. Unlike a 1D waveguide, higher dimensionality pro-
vides much richer opportunities of manipulating photons
through careful geometric arrangement of atoms [18]. Still,
very few works have been done regarding scattering of
single photons in two (2D) or three dimensions (3D) by
multiple atoms.

In a recent work, we presented a general model for
the scattering of surface plasmon polariton (SPP) mode
by a single atom (in general any two-level quantum sys-
tem) without making the usual dipole approximation
[15]. Since the coupling of the atom to the slow surface
modes is much stronger than its coupling to the free
space modes, the system essentially represents an atom
interacting with a 2D photonic environment. In the cur-
rent work, we further develop the formalism to compute
the scattering properties for a more complicated scenario
of multiple atoms coupled to a single photon in the SPP
mode. The proposedmodel is general and includes all the
multiple scattering events. The 2D setting with multiple
atoms allows us to implement complex photon based
quantum circuitry, and here we exemplify it by a few
basic examples. We show that a system of two atoms can
be tuned to exhibit either subscattering or super-
scattering by simply changing the photon angle of inci-
dence. We also achieve a perfect atom cloaking with zero
scattering at a certain frequency between the resonant
frequency of the two atoms. This is different from the
usual electromagnetically-induced transparency (EIT)
which is based on interference between the transition
paths in an atom with at least a three-level structure [1,
19–21]. We further explore the possibilities of designing
novel atom-based optical devices to manipulate single
photons and demonstrate multiple atoms based single
photon focusing and the formation of quantummirage in
a 2D cavity like system.
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2 Mathematical formulation

Here, we develop the formalism for a system of N two-level
atoms coupled to a single photon in 2D SPP mode. An
atom–SPP system is shown schematically in Figure 1 for
two atoms. The infinite 2D surface that supports the SPP
mode (shown in green) is taken to be the z � 0 plane and
the nth atom (represented by red cylinder), is placed at the
coordinates (rn ≡ (xn, yn), hn). We assume that the atom is
separated from the surface by vacuum, and the SPPmode is
ideal without any propagation losses. In the Coulomb
gauge, the SPP vector potential operator A(r, z) in the up-
per half space (z > 0) is given by:

A(r, z) � 1
2π

∬ dkx  dky
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where, ak , ak
† are the Bosonic annihilation and creation

operators for the SPP mode satisfying the commutation
[a(k), a†(k′)] � δ2(k − k′), ℏ is the reduced Planck’s con-
stant, ϵ0 is the vacuum permittivity, κ �
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spatial decay rate of the mode along z, Lk is the charac-
teristic modal length given by Lk � (κ2 + k2)/κ3 and is
derived through normalization consideration [22–25], H.c
stands for Hermitian conjugate. ωk is the SPP mode fre-
quency at in-plane wavevector k ≡ (kx, ky), and could be
well approximated by Eq. (2) for frequency close to the
surface plasmon frequency ωsp:
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where, ϵm is the real dielectric constant of the metal given
by the Drude model, ωp is its plasma frequency, kp is the
free space wave-vector magnitude at frequency ωp(� ckp),
c is the speed of light in vacuum [26–28].

We assume that the atoms couple only to the SPP mode
and ignore coupling to the free-space electromagneticmodes.

This assumption is well justified since the near field coupling
to the SPP modes is much stronger than coupling to the free-
spacemodes. It is also assumed that the atoms donot directly
interact with each other. Starting with the standard minimal
couplingHamiltonian, for resonant coupling near the surface
plasmon frequency, we can show that the light–matter
interaction in the atom–SPP system can be described by the
following spatial domain Hamiltonian [15]:
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where, En
g and En

e are the ground and excited state energies
for the electron in the nth atom, and bn

g ,b
n†
g ,b

n
e ,b

n†
e are the

respective Fermionic annihilation and creation operators.
c(r), c†(r) are the spatial Bosonic annihilation and creation
operators respectively as defined by Eq. (4), and satisfy the
commutation [c(r),c†(r′)] �δ2(r −r′). Vn(r) is the Fourier
transform of the atom–field coupling strength Vn

k given by
Eq. (5):
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where, e and m are respectively the charge and the rest
mass of the electron, pn � −iℏ∇→ n is the canonical mo-
mentum operator for the electron in the nth atom. In the
Hamiltonian of Eq. (3), we have ignored the terms related to
intrinsic spin angularmomentum and theA2 term.We have
also made the usual rotating wave approximation in the
interaction Hamiltonian [1, 2, 29]. These approximations
are justified in the weak coupling regime (small Vk), which
is the case here and are also validated from the results
shown later where the linewidths in scattering spectrum
are much smaller than the resonant frequency. The loga-
rithmic form in the second term of the Hamiltonian of Eq.
(3) arises from the SPP dispersion relation in the short
wavelength limit (Eq. (2)).

Consider an incident SPP photon with a wavevector q
interacting with the atoms, the resulting stationary state
can then be written as:∣∣∣∣ψq〉 �∬ dx dy ϕ(r)c†(r) ∣∣∣g, g,… g,0〉

+ ∑
N

n�1
enq  b

n†
e  b

n
g  
∣∣∣g, g,… g,0〉 (6)

Figure 1: Two atoms (shown in red) coupled to the surface plasmon
polariton (SPP) mode of an infinite two dimensional (2D) surface
(shown in green). The surface is the (z � 0) plane and each of the
atom-like system confines the electron wave functions in a cylinder
with radius an and height Ln, located at a distance hn above the
surface.
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where,
∣∣∣g, g,… g,0〉 is the state with all atoms in the ground

state and zero photons in the SPPmode,ϕ(r) is the photon
field amplitude, and enq is the excited state amplitude for
the nth atom. Eq. (6) represents a complete basis for the
system [7, 30]. Now, using Eq. (6) in the eigenvalue prob-
lem H

∣∣∣∣∣ψq〉 � Eq

∣∣∣∣∣ψq〉 gives the following equations:
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Taking 2D Laplacian (Δ̂ ≡ ∂
2/∂x2 + ∂

2/∂y2) of both
sides of integral equation (7) and substituting
Eq � ∑nE

n
g + ℏωsp − ℏβ/q2, we get the 2D Helmholtz equa-

tion with N distributed source terms
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Following the standard procedure of computing scat-
tering eigenstates, far away from the atoms where Vn(r)
approaches 0 fast enough as r increases, ϕ(r) could be
expressed as a sum of incident and scattered waves [31]:

ϕ(r) � ϕinc + ϕsca � eiq⋅r + ϕsca. (12)

In Eq. (12), the incident wave ϕinc can be any SPP wave in
the absence of coupling to the atoms (Vn(r) � 0) and is
taken here as a 2D SPP planewave. The scattered waveϕsca

of the ensemble of atoms can be computed from the
knowledge of the scattered fields for all the individual
(isolated) atoms ϕn

sca (1 ≤ n ≤ N) [32–34]. The isolated atom
scattering is computed by the procedure outlined in the
previous work [15]. We model the two-level atom as an
infinite cylindrical potential well as shown in Figure 1 with
the following wavefunctions for the ground (lg � 1) and
excited (le � 2) states [35]:
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√
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where, Jn is the nth order Bessel function, j0 is the first zero
of the 0th order Bessel function,Θn(r, z) is a scalar function
which is unity inside the cylinder (|r − rn| < an, hn < z < hn +
Ln) and zero outside. In this case, Vn(r) has azimuthal
symmetry (Eq. (5)) and the scattered field could be
expressed in terms of the 0th order Hankel function of the
first kind H(1)

0 (q|r − rn|).
ϕn(r) � eiq⋅r +ϕn

sca � eiq⋅rn(eiq⋅(r−rn) +b0nH
(1)
0 (q|r− rn|))

� eiq⋅rn⎛⎝ ∑
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m≠0

imJm(q|r− rn|)eimθ + J0(q|r− rn|)

+ b0nH
(1)
0 (q|r− rn|)) (14)

In the above expression for the total field ϕn(r), only the
m�0 angular momentum component of the incident wave
is scattered and the scattering coefficient for the nth isolated
atom b0n is computed using appropriate boundary condi-
tions as done in the previous work [15]. This procedure is
repeated for all the atoms to determine b0n,∀ n∈ {1,…,N}. It
follows from the linearity of Eq. (10) that the scattered wave
for the system of N atoms can be expressed as a super-
position of the scattered waves by individual atoms as:

ϕ(r) � ϕinc + ϕsca � eiq⋅r + ∑
N

n�1
bnH

(1)
0 (q|r − rn|), (15)

where,bn is now the scattering coefficient for thenthatom,and
is in general different from the isolated atom scattering coef-
ficient b0n due to multiple scattering between the different
atoms. It can be shown that the above expression for the
scatteredfield satisfiesEq. (10) in the farfieldwhereVn(r) goes
to 0. To compute the scattering coefficients bn, we use the
Graf’s addition theorem for the Hankel function (Eq. (16)) and
express all the scattered waves H(1)

0 (q|r − rn|) in Eq. (15) in
terms of Bessel functions centered at a particular jth atom.
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The above expression can be interpreted as follows. The jth
atom sees the combination of the incident plane wave and
the waves scattered by all the other atoms as its total
incident wave and only scatters the m � 0 angular mo-
mentum component. From linearity, the scattering coeffi-
cient bj is proportional to the net amplitude of the
J0(q

∣∣∣∣r − rj
∣∣∣∣) term in Eq. (17) and the proportionality con-

stant is the same as for that for the isolated atom in Eq. (14):

bj � b0j⎛⎝eiq⋅rj + ∑
N

n�1
n≠j

bnH(1)
m (q∣∣∣∣rn − rj

∣∣∣∣)⎞⎠. (18)

Repeating this for all the atoms (j ∈ {1,…,N}), we
obtain N linear equations which can be expressed as
Mb � in, where b�(b1,b2,…,bN)T , in�(eiq⋅r1 ,eiq⋅r2 ,…,eiq⋅rN )T
and M is a N ×N matrix with elements Mm,n�δm,n/b0m+
(δm,n−1)H(1)

0 (q|rm−rn|). δm,n is the Kronecker delta function.
Solving this system of linear equations then allows to treat
the scattering from N atoms.

3 Results

Having presented a general framework to compute the
scattering eigenstates of N atoms coupled to the 2D SPP
mode, in this section we study a few interesting applica-
tions involving light manipulation using atoms.

3.1 Subscattering and superscattering

As the first case, we examine the interaction of a single SPP
with two quantum dots with subwavelength horizontal
separation. We choose the following parameters for the
quantum dots: a � 10 nm, L � 3.35 nm, and they are sepa-
rated by a distance D � 260 nm and placed at a height h �
50 nm from the surface as shown in Figure 1. For these
values the atomic transition energy ℏΩn � (En

e − En
g) lies

close to the surface plasmon energy ℏωsp � 0.1 eV. We
choose for each atom a slightly different transition fre-
quency amounting to different detuning values (Δωn �
Ωn − ωsp, ℏΔω1 � −9.5 meV, ℏΔω2 � −10 meV) which could
be achieved either by choosing slightly different di-
mensions for the quantum dots or by applying static
external fields. As shown in Figure 1, the angle of incidence
is defined as the angle between the incident SPP wave
vector q and the line joining the center of the two atoms (x
axis). Figure 2 plots the total scattering cross section σT ,
given by Eq. (19), as a function of frequency for different
angles of incidence θ [34].

σT � λ
π2

∫
2π

0

dϕ
∣∣∣∣T(ϕ)∣∣∣∣2 � 2λ

π
(|b1|2 + |b2|2 + 2J0(qD)Re(b1b*

2))
(19)

The dotted blue curves in Figure 2a show the individual

atomic scattering cross sections (|b01|2, |b02|2), while the
red curves correspond to the total scattering cross section
for the system of two atoms. The two detuning values are
chosen such that their difference (Δω1 − Δω2) is smaller
than the individual atomic linewidths resulting in a sig-
nificant overlap between the two spectra (Figure 2a). As
expected, we observe a highly anisotropic scattering
behavior. For incidence angles close to the normal
(θ � π/2), the spectrum shows two peaks (Figure 2a and b).
In a small frequency range between the peaks, we observe
EIT-like behavior (subscattering) where the total scattering
cross section is smaller than the individual scattering cross
sections. At small angles of incidence, the spectrum shows
only a single prominent resonant peak (Figure 2c and d).
This is the typical signature of superscattering behavior
where the total scattering cross section is larger than the
individual ones. A classical analog of the current setupwas
considered in a previous work [36] where the authors used
coupled mode theory formalism to analyze the trans-
mission cross section of a metal film with two slits each
supporting a localized resonance. The spectral response is
characterized by two resonant modes: superradiant mode
(the broad resonance in Figure 2a) and the subradiant
mode (narrow resonance in Figure 2a). The two modes can
also be computed as eigenmodes of the Hamiltonian of the

0

1

2
a b

-10.05 -10 -9.95

10-3

0

1

2
c

-10.05 -10 -9.95

10-3

d

Figure 2: Scattering cross section of the system of two atoms
coupled to the surface plasmon polariton (SPP) mode as shown in
Figure 1, plotted as a function of frequency for different angles of
incidence (plotted in red). The dotted blue curves show the
scattering amplitudes (∣∣∣∣b0,1∣∣∣∣2, ∣∣∣∣b0,2∣∣∣∣2) for the two individual atoms.
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system of two atoms after integrating out the photonic
degree of freedom which introduces a coupling between
the atoms. The EIT-like dip(superscattering) arises because
of destructive(constructive) interference of radiation/scat-
tering from the two resonances depending on the angle of
incidence [16, 36–38]. The lateral inter-atom distance D is
crucial for the required characteristic of the 2D scattering,
since the radiation/scattering patterns from the two reso-
nant modes will be very distinct for a large separation.
Thus, EIT-like response is only observed for sub-
wavelength separation where the overlap between the
emission patterns can yield efficient destructive interfer-
ence. The vertical separation |h1 − h2| is less crucial, since it
does not affect the overlap between the emission patterns
and primarily controls the relative linewidth of the spec-
trum from the two atoms. Figure 3 shows the squared field

amplitude
∣∣∣∣ϕ(r)∣∣∣∣2 plot for two orthogonal directions of

incidence at a frequency corresponding to the wavevector
magnitude q � 5.004 ksp or, wavelength λ � 2.465 μm. We
observe subscattering behavior at normal incidence and a
superscattering behavior for grazing incidence. There is a
high field amplitude concentrated near the two quantum
dots which is more pronounced for the superscattering
case as compared to the subscattering case.

3.2 Perfect atom cloaking

In the previous section, even thoughwe observe anEIT-like
behavior, the scattering cross section does not go to zero.
One of the conditions required to obtain a perfect scattering
cancellation for a system of two resonators as pointed out
in Ref. [36] is to have identical radiation profile for the
subradiant and superradiant eigenmodes or equivalently
for the two resonators. It is possible to achieve this condi-
tion in our system, where the two atoms predominantly
couple to the same 2D surface mode, by aligning them

horizontally and displacing vertically as shown in
Figure 4a. The two quantum dots are identical to those of
the previous section (a � 10 nm, L � 3.35 nm) but with
different detuning values (ℏΔω1 � −0.15 meV, ℏΔω2 �
−0.16 meV) and (h1 � 200 nm, h2 � 250 nm). Similar to the
previous case, these parameters are chosen such that the
two individual atomic spectra have a significant overlap
with slightly different resonant frequencies and line-
widths. Here, since the system has azimuthal symmetry,
only m � 0 angular momentum mode is scattered and the
scattering is independent of angle of incidence. Figure 4b
plots the scattering cross section as a function of frequency.
The solid blue curve corresponds to the system of two
atoms, whereas the dotted black curves correspond to the
scattering spectrum of the individual atoms. We observe
two peaks in the total scattering plot close to the two in-
dividual atomic resonances. In between the two peaks, at a
certain frequency the scattering cross section goes to zero
showing a perfect cloaking of the atoms. Furthermore we
also see a broadening in the scattering linewidth evident
from the broader tail in the blue spectrum where the net
scattering cross section is larger than that of the individual
atoms. The EIT-like spectrum is qualitatively similar to the
one discussed in the previous subsection (Figure 2a) and
arises from Fano interference between the two resonant
pathways corresponding to the superradiant (broader peak
in Figure 4b) and subradiant (narrow peak in Figure 4b)
modes.

Figure 4c and d show the squared field amplitude

(∣∣∣∣ϕ(r)∣∣∣∣2) plot for two different frequencies corresponding

to perfect cloaking or EIT (σT � 0) and the higher fre-
quency resonance (σT � 2λ/π) respectively. In the EIT
case even though the scattered field is zero and field
amplitude is constant far away from the atom, the near
field amplitude is non-uniform. This is expected as the
excited state amplitudes enq for both the atoms is non-zero

resulting in a net non-zero distributed source term in Eq.
(10). At the EIT frequency, the emitted/scattered fields
from the two source terms (atoms) cancel each other in the
far field limit, and there is some energy stored in the near
field and the excited state population. For the resonant
scattering case shown in Figure 4d, we observe a large
shadow behind the atoms and a large near field ampli-
tude. This cloaking scheme is scalable and could be used
to generate omnidirectional cloak for any distribution of
atoms near a desired EIT frequency. It is also interesting to
note that one can tune froman EIT-like response to Autler-
Townes splitting (ATS) like behavior, which is charac-
terized by a well separated doublet peak in spectral
response, by introducing a direct (electronic) coupling
between the two atoms [39–42].

Figure 3: Total field intensity (∣∣∣∣ϕ(r)|2) for an incident wave with
frequency (ω − ωsp � −9.985 × 10−3ωsp) and angle of incidence θ.
(a) superscattering (θ � 0), (b) subscattering (θ � π/2). The green
arrow indicates the direction of the incident plane wave.
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3.3 Large structures

Having looked at the system of two atoms with sub-
wavelength separation to achieve control and tuning of the
scattering in the previous sections, now we design larger
atomic optical devices to manipulate single photons in
useful ways. In particular, we demonstrate an atomically
thin parabolic mirror which concentrates light at its focus
[43–46] and quantum mirage formation in an elliptical
cavity like structure [47]. For the following computation, all
the quantum dots are assumed to be identical with the
same parameter values used in Section 3.1 and detuning
ℏΔω � −9.5 meV.

Figure 5 shows the results for the parabolic mirror,
with N identical atoms uniformly spaced along the

parabola y � −x2/(4f ), with f � 50λ, λ � 2.46 μm. The inci-
dent plane wave is propagating along the axis of symmetry
of the parabola (y axis). Figure 5a and b show the results for
N � 100 atoms whereas Figure 5c and d correspond to N �
1200 atoms. Figure 5a and c show the total field amplitude

squared
∣∣∣∣ϕ(r)∣∣∣∣2 plot for the frequency corresponding to the

atomic resonant frequency. The white dots represent the
position of the atoms. We clearly see a high field amplitude
concentrated near the focus of the parabola f � (0, −f ).
Furthermore, we observe a higher field amplitude in front

of the mirror (y < −x2/(4f )) and a much lower field behind
it. The field amplitude at the focus and the contrast be-
tween the fields in front of and behind the mirror is greater
for larger N as seen from Figure 5c. Thus the system acts as
a parabolic mirror and the performance improves as the
number of atoms N is increased. Also, from the inset in
Figure 5c one can see that the focal spot size is smaller than
a wavelength and is diffraction-limited [46]. When the

atoms are more than a wavelength apart, the field ampli-
tude at the focus increases almost linearly withN (intensity
increases quadratically). Figure 5b and d show the band-
width of the mirror and plot the maximum scattered field
amplitude (normalized) near the focus of the parabola as a
function of frequency (solid red curve). The dotted black
curves correspond to the scattering coefficient for the in-
dividual atoms. For small N (Figure 5b), the separation
between the atoms is large and the net interaction resulting
from the multiple scattering between the atoms, is rela-
tively weak resulting in a Lorentzian spectrum for the
mirror which is quite similar to the scattering spectrum for
individual atoms. As the number of atoms is increased
(Figure 5d), the separation between the atoms decreases
resulting in a stronger interaction. This leads to a much
broader and frequency-shifted spectrum as observed in
Figure 5d.

Finally, we discuss an interesting case of quantum
mirage formation [47] for a system of 150 identical atoms
uniformly spaced along the circumference of an ellipse

(x2/a2 + y2/b2 � 1) with (a � 5λ, b � 4λ) and the wave-
length corresponding to the individual atomic resonance
(λ � 2.46 μm). The atom to be imaged is placed at the

positive focus of the ellipse (f+ � (
������
a2 − b2

√
,0)). Figure 6

shows the total field amplitude profile (∣∣∣∣ϕ(r)∣∣∣∣2) for an

incident cylindrical wave of angular momentum m � 0,

i.e., ϕinc � J0(q
∣∣∣∣r − f+

∣∣∣∣). The white dots show the position

of the atoms. Besides observing a high field amplitude near
the atom placed at the positive focus f+, we also observe a
high field concentrated near the negative focus −f+ of the
ellipse which is a mirage or optical image of the real atom.
This results from a coherent superposition of the waves
originally scattered by the atom at f+ and subsequently

Figure 4: (a) The system of two horizontally
aligned quantum dots coupled to the
surface plasmon polariton (SPP) mode.
(b) Scattering cross section (|b0|2) as a
function of frequency. The solid blue curve
corresponds to the systemof two atomsand
the dotted black curves are for the
individual atoms. Total field intensity
(∣∣∣∣ϕ(r)∣∣∣∣2) plot for (c) electromagnetically-
induced transparency (EIT)
(ω − ωsp � −1.5 × 10−3ωsp), and (d) reso-
nance (ω − ωsp � −1.4 × 10−3ωsp). The
green arrow indicates the direction of the
incident wave.
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reflected by the atoms on the ellipse. This is because of the
geometric property of the ellipse where the sum of distances
of the two foci fromanypoint on the ellipse is a constant (2a).
Note that we get a mirage only for a specific wavelength

where the path difference (δ � 2a − 2
∣∣∣∣f+∣∣∣∣) is an integral

multiple of wavelength i.e., qδ � 2nπ for some integer n.

4 Conclusion

We have demonstrated the possibility of realizing optical
devices using multiple atoms interacting with a surface

plasmon polariton. Such atomic structures are not only the
smallest possible realization of optical structures but also
offer unprecedented control over the optical response as
compared to the conventional dielectric structures. Among
various examples that we have shown, we have realized,
for the first time, a perfect EIT for 2D SPP mode using only
two-level atomsunlike the usual EITwhich requires at least
three-level quantum system. The proposed EIT scheme is
general and could also be applied to cloak a large number
of atoms.

Acknowledgment: This work is supported by a Vannevar
Bush Faculty Fellowship from the U. S. Department of
Defense (Grant No. N00014-17-1-3030). Rituraj acknowl-
edges the support from a Stanford Graduate Fellowship.
Author contribution: All the authors have accepted
responsibility for the entire content of this submitted
manuscript and approved submission.
Research funding: This work is supported by a Vannevar
Bush Faculty Fellowship from the U. S. Department of
Defense (Grant No. N00014-17-1-3030).
Conflict of interest statement: The authors declare no
conflicts of interest regarding this article.

References

[1] M. O. Scully and M. S. Zubairy, Quantum Optics, 1999.
[2] D. F. Walls and G. J. Milburn, Quantum Optics, Springer Science &

Business Media, 2007.

-10.04 -10 -9.96

10-3

0

0.5

1
b Single atom

Mirror

-10.04 -10 -9.96

10-3

0

0.5

1
d Figure 5: Total field intensity (∣∣∣∣ϕ(r)∣∣∣∣2) plots

for a system with (a) 100 atoms (marked by
white dots), and (c) 1200 atoms, placed
along a parabola. The green arrow indicates
the direction of the incident wave.
Maximum scattered field amplitude
normalized and plotted in solid red as a
function of frequency for (b) 100 atoms, and
(d) 1200 atoms. The dotted black curve
corresponds to the scattered field
amplitude for a single atom.

Figure 6: Total field intensity (∣∣∣∣ϕ(r)∣∣∣∣2) plot for a system with 150
atoms (marked by white dots) placed along the circumference of an
ellipse, and one atom at the positive focus of the ellipse. The
incident wave is taken to be ϕinc � J0(q

∣∣∣∣r − f+
∣∣∣∣).

Rituraj et al.: Scattering of a plasmon polariton by multiple atoms 585



[3] J. L. O’brien, A. Furusawa, and J. Vučković, “Photonic
quantum technologies,” Nat. Photonics, vol. 3, no. 12, p. 687,
2009.

[4] A. Goban, C. L. Hung, S. P. Yu, et al., “Atom–light interactions in
photonic crystals,” Nat. Commun., vol. 5, p. 3808, 2014.

[5] A. F. Van Loo, A. Fedorov, K. Lalumiere, B. C. Sanders, A. Blais,
and A. Wallraff, “Photon-mediated interactions between distant
artificial atoms,” Science, vol. 342, no. 6165, pp. 1494–1496,
2013.

[6] A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and
M. D. Lukin, “Photon-photon interactions via Rydberg
blockade,” Phys. Rev. Lett., vol. 107, no. 13, p. 133602, 2011.

[7] J. T. Shen and S. Fan, “Coherent photon transport from
spontaneous emission in one-dimensional waveguides,” Opt.
Lett., vol. 30, no. 15, pp. 2001–2003, 2005.

[8] J. T. Shen and S. Fan, “Coherent single photon transport in a one-
dimensional waveguide coupled with superconducting quantum
bits,” Phys. Rev. Lett., vol. 95, no. 21, p. 213001, 2005.

[9] S. Fan, Ş. E. Kocabaş, and J. T. Shen, “Input-output formalism for
few-photon transport in one-dimensional nanophotonic
waveguides coupled to a qubit,” Phys. Rev., vol. 82, no. 6,
p. 063821, 2010,.

[10] P. Longo, P. Schmitteckert, and K. Busch, “Dynamics of photon
transport through quantum impurities in dispersion-engineered
one-dimensional systems,” J. Opt. Pure Appl. Opt., vol. 11, no. 11,
p. 114009, 2009.

[11] L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori,
“Controllable scattering of a single photon inside a one-
dimensional resonator waveguide,” Phys. Rev. Lett., vol. 101,
no. 10, p. 100501, 2008.

[12] J. Q. Liao, Z. R. Gong, L. Zhou, Y. X. Liu, C. P. Sun, and F. Nori,
“Controlling the transport of single photons by tuning the
frequency of either one or two cavities in an array of coupled
cavities,” Phys. Rev., vol. 81, no. 4, p. 042304, 2010.

[13] D. Witthaut and A. S. Sørensen, “Photon scattering by a three-
level emitter in a one-dimensional waveguide,”New J. Phys., vol.
12, no. 4, p. 043052, 2010.

[14] H. Zheng, D. J. Gauthier, and H. U. Baranger, “Waveguide-
QED-based photonic quantum computation,” Phys. Rev. Lett.,
vol. 111, no. 9, p. 090502, 2013.

[15] M. O. Rituraj and S. Fan, “Two-level quantum system as a
macroscopic scatterer for ultraconfined two-dimensional photonic
modes,” Phys. Rev., vol. 102, no. 1, p. 013717, 2020.

[16] J. Liu, M. Zhou, and Z. Yu, “Quantumscattering theory of a single-
photon Fock state in three-dimensional spaces,” Opt. Lett., vol.
41, no. 18, pp. 4166–4169, 2016.

[17] L. Zhou, H. Dong, Y. X. Liu, C. P. Sun, and F. Nori, “Quantum
supercavity with atomic mirrors,” Phys. Rev., vol. 78, no. 6,
p. 063827, 2008.

[18] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin,
“Cooperative resonances in light scattering from two-
dimensional atomic arrays,” Phys. Rev. Lett., vol. 118, no. 11,
p. 113601, 2017.

[19] S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical
processes using electromagnetically induced transparency,”
Phys. Rev. Lett., vol. 64, no. 10, p. 1107, 1990.

[20] K. J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of
electromagnetically induced transparency,” Phys. Rev. Lett., vol.
66, no. 20, p. 2593, 1991.

[21] M. Fleischhauer, A. Imamoğlu, and J. P. Marangos,
“Electromagnetically induced transparency: Optics in coherent
media,” Rev. Mod. Phys., vol. 77, no. 2, p. 633, 2005.

[22] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
“Continuum fields in quantum optics,” Phys. Rev., vol. 42, no. 7,
p. 4102, 1990.

[23] B. A. Ferreira, B. Amorim, A. J. Chaves, and N. M. R. Peres,
“Quantization of grapheneplasmons,”Phys. Rev., vol. 101, no. 3,
p. 033817, 2020.

[24] M. S. Tame, K. R. McEnery, Ş. K. Özdemir, J. Lee, S. A. Maier, and
M. S. Kim, “Quantum plasmonics,” Nat. Phys., vol. 9, no. 6,
pp. 329–340, 2013,.

[25] A. Archambault, F. Marquier, J. J. Greffet, and C. Arnold,
“Quantum theory of spontaneous and stimulated emission of
surface plasmons,” Phys. Rev. B, vol. 82, no. 3, p. 035411, 2010.

[26] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon
subwavelength optics,” Nature, vol. 424, no. 6950,
pp. 824–830, 2003.

[27] E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.,
vol. 182, no. 2, p. 539, 1969.

[28] M. Jablan, M. Soljačić, and H. Buljan, “Plasmons in graphene:
Fundamental properties and potential applications,” Proc. IEEE,
vol. 101, no. 7, pp. 1689–1704, 2013.

[29] E. A. Power and T. Thirunamachandran, “On the nature of the
Hamiltonian for the interaction of radiation with atoms and
molecules: (e/mc) p.a, - μ.e, and all that,” Am. J. Phys., vol. 46,
no. 4, pp. 370–378, 1978.

[30] V. I. Yudson and P. Reineker, “Multiphoton scattering in a one-
dimensional waveguide with resonant atoms,” Phys. Rev., vol.
78, no. 5, p. 052713, 2008.

[31] J. R. Taylor, Scattering Theory: The Quantum Theory of
Nonrelativistic Collisions, Courier Corporation, 2006.

[32] G. O. Olaofe, “Scattering by an arbitrary configuration of parallel
circular cylinders,” JOSA, vol. 60, no. 9, pp. 1233–1236, 1970.

[33] D. Felbacq, G. Tayeb, andD.Maystre, “Scattering by a randomset of
parallel cylinders,” JOSA A, vol. 11, no. 9, pp. 2526–2538, 1994.

[34] G. O. Olaofe, “Scattering by two cylinders,” Radio Sci., vol. 5, no.
11, pp. 1351–1360, 1970.

[35] A. S. Baltenkov and A. Z. Msezane, “Electronic quantum
confinement in cylindrical potential well,” Eur. Phys. J. D, vol. 70,
no. 4, p. 81, 2016.

[36] L. Verslegers, Z. Yu, Z. Ruan, P. B. Catrysse, and S. Fan, “From
electromagnetically induced transparency to superscatteringwith
a single structure: A coupled-mode theory for doubly resonant
structures,” Phys. Rev. Lett., vol. 108, no. 8, p. 083902, 2012.

[37] R. G. DeVoe and R. G. Brewer, “Observation of superradiant and
subradiant spontaneous emission of two trapped ions,” Phys.
Rev. Lett., vol. 76, no. 12, p. 2049, 1996.

[38] R. H. Dicke, “Coherence in spontaneous radiation processes,”
Phys. Rev., vol. 93, no. 1, p. 99, 1954.

[39] S. H. Autler and C. H. Townes, “Stark effect in rapidly varying
fields,” Phys. Rev., vol. 100, no. 2, p. 703, 1955.

[40] D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and
R. W. Boyd, “Coupled-resonator-induced transparency,” Phys.
Rev., vol. 69, no. 6, p. 063804, 2004.

[41] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is
and what is not electromagnetically induced transparency in
whispering-gallery microcavities,” Nat. Commun., vol. 5, no. 1,
pp. 1–9, 2014,.

586 Rituraj et al.: Scattering of a plasmon polariton by multiple atoms



[42] P. Ginzburg and M. Orenstein, “Slow light and voltage control of
group velocity in resonantly coupled quantum wells,” Opt.
Express, vol. 14, no. 25, pp. 12467–12472, 2006.

[43] A. Vakil and N. Engheta, “One-atom-thick reflectors for surface
plasmon polariton surface waves on graphene,” Opt. Commun.,
vol. 285, no. 16, pp. 3428–3430, 2012.

[44] G. Alber, J. Z. Bernád, M. Stobińska, L. L. Sánchez-Soto, and
G. Leuchs, “QED with a parabolic mirror,” Phys. Rev., vol. 88,
no. 2, p. 023825, 2013.

[45] L. H. Ford and N. F. Svaiter, “Focusing vacuum fluctuations,”
Phys. Rev., vol. 62, no. 6, p. 062105, 2000.

[46] P. N. Melentiev, A. A. Kuzin, D. V. Negrov, and V. I. Balykin,
“Diffraction-limited focusing of plasmonic wave by a
parabolic mirror,” Plasmonics, vol. 13, no. 6, pp. 2361–2367,
2018.

[47] H. C. Manoharan, C. P. Lutz, and D. M. Eigler, “Quantummirages
formed by coherent projection of electronic structure,” Nature,
vol. 403, no. 6769, pp. 512–515, 2000.

Rituraj et al.: Scattering of a plasmon polariton by multiple atoms 587


	Scattering of a single plasmon polariton by multiple atoms for in-plane control of light
	1 Introduction
	2 Mathematical formulation
	3 Results
	3.1 Subscattering and superscattering
	3.2 Perfect atom cloaking
	3.3 Large structures

	4 Conclusion
	Acknowledgment
	References

