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Abstract: We design and fabricate ultra-broadband achro-
matic metalenses operating from the visible into the short-
wave infrared, 450–1700 nm, with diffraction-limited per-
formance. A hybrid 3D architecture, which combines nano-
holes with a phase plate, allows realization in low refractive
index materials. As a result, two-photon lithography can be
used for prototyping while molding can be used for mass
production. Experimentally, a 0.27 numerical aperture (NA)
metalens exhibits 60% average focusing efficiency and 6%
maximum focal length error over the entire bandwidth. In
addition, a 200 μm diameter, 0.04 NA metalens was used to
demonstrate achromatic imaging over the same broad
spectral range. These results show that 3D metalens archi-
tectures yield excellent performance even using low-
refractive index materials, and that two-photon lithog-
raphy can produce metalenses operating at visible
wavelengths.

Keywords: achromat; metalens; nanohole; two-photon
lithography.

1 Introduction

Metalenses, lenses composed of quasi-periodic sub-
wavelength structures, have received a great deal of atten-
tion due to their compact size, light weight, efficient
wavefront shaping, and polarization conversion properties
[1–6].On theotherhand, correction of chromatic andoff-axis
aberrations remains challenging [7–13]. Most achromatic
metalenses have been limited to either visible or near-

infrared (NIR) operation [14–23]. Recent attempts to extend
the corrected wavelength range have yielded broadband
metalenses with diffraction-limited performance from 640
to 1200 nm [24]. However, such designs lack achromatic
behavior over a significant portion of the visible spectrum
and do not extend to the short-wave infrared (SWIR) limits
of emerging broadband image sensors. Additionally, the
aperture size of the aforementioned metasurface design is
around 20 μm. The metalens dimensions may be expanded
by extending the geometrical design space at the expense
of fabrication difficulties and long computational time.
These limitations restrict their usage in day-night vision
systems, hyperspectral imaging, and other ultra-broadband
applications.

In this paper, we present an achromatic metalens
operating with diffraction-limited performance over
almost two octaves from 450 to 1700 nm. This spectral
range is well matched to visible-to-shortwave infrared
image sensors that are becoming available. Achromati-
zation is provided by phase plate and nanohole struc-
tures that are merged to a single layer lens as shown in
Figure 1(a–c). Most metalenses use planar geometries
and high refractive index materials. In contrast, our ar-
chitecture yields high performance with low-refractive
index materials by exploiting three-dimensional geome-
tries. Our design does not require intensive computa-
tional search, and the size is not limited by the extent of
the phase shift library. Unlike other techniques, achro-
matization is achieved with a phase shift library extend-
ing from 0 to 2π. Such a library can be easily obtained by
sweeping a few geometrical parameters, which greatly
reduces fabrication complexity. In our previous works,
we used a variable height nanopillar metasurfaces
created with two-photon lithography [25, 26]. However,
these nanopillar arrays lose structural integrity when the
feature size is reduced for operation at visible wave-
lengths. In this paper, we propose a novel nanohole
structure with varying depth. Our method enables
smaller feature sizes from two-photon lithography and,
as a result, much broader achromatic correction.

For two-photon lithography, we use a commercial
system (Nanoscribe Photonic Professional GT) operating at
a wavelength of 780 nm. The metalenses were patterned in
Nanoscribe’s IP-DIP photoresist (n = 1.566 at 450 nm). It is
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not obvious that such a system has sufficient resolution to
produce metalenses operating at visible wavelengths.
However, we show that judicious choice of the phase-plate
and nanohole geometry leads to an experimentally acces-
sible structure. A 0.27 numerical aperture (NA) metalens
designed and fabricatedwith this approach exhibits a focal
length shift of <6% across the entire spectral region of in-
terest. The metalens designs also lack re-entrant features;
thus, they could be molded for high volume production.

2 Theory and structure

Diffractive achromatic doublet design by recursive ray-
tracing has been proposed and experimentally verified by
Farn et al. [27, 28]. We recently adapted this design
approach to achromatic metalenses in the near infrared
region (1000–1800 nn) [25]. In this paper, we extend this
approach to create a visible to short-wave infrared achro-
matic metalens and identify a geometry that is amenable to
3D printing via two-photon lithography.

Recursive ray-tracing uses two thin optical elements
(TE) to produce a doublet corrected at two wavelengths
(λmin and λmax). Both elements mustmeet target phase shift

requirements so that achromatization is achieved. As an
approximation, the phase derivative and target phase shift
values as the function of radial coordinate, r, and entrance
pupil diameter (EPD) are given as

ϕ′
±( r) = ±ϕ′

o
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respectively. Figure 1(e–f) shows the phase derivative and
target phase shift values for the NA = 0.27 and EPD = 20 μm
metalens. We choose the operating wavelength range as
λmin = 450 nm and λmax = 1700 nm. We introduce an
effective thickness between TEs although two TEs are
merged together and there is no physical separation be-
tween them. The maximum NA value for a given EPD is
limited by the effective thickness between the TEs [25]. We
choose the minimum focal length value so that ray-tracing
algorithm converges. The maximum error between the ray-
tracing solution and approximate formula above is
0.04 rad/μm.
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Figure 1: A 3D achromatic metalenses.
(a) The unit structure of the metalens merges a nanohole and a phase plate. The dimensions d, h, p and t represent diameter, height, and
period of the nanoholes and thickness of the phase plate, respectively. We set d=0.2 μmand p=0.4 μm. (b) Scanning electronmicrograph of
20 μmdiametermetalens. The structure is fabricatedwith two-photon lithography on a fused silica substrate. Scale bar is 3 μm. (c) Zoomed-in
image of 20 μm diameter metalens. The holes are clearly visible on the surface. (d) Quarter-section of 20 μm diameter metalens showing the
varying hole depth. Scale bar is 2 μm. (e) Phase shift and transmission of nanoholes as the functionof depth at 450nmwavelength. (f, g) Phase
derivative and the phase shift distribution as the function of radial coordinates for EPD = 20 μm and NA = 0.27 achromatic metalens.
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The two TEs, the phase plate (bottom) and nanoholes
(top), are merged into a single structure which forms the
unit cell of the hybridmetalens as shown in Figure 1(a). The
nanohole structure is chosen due to its higher transmission
than the nanopillar [29] and advantages for fabrication.
Specifically, the nanohole architecture prevents pattern
distortion and collapse that can accompany high aspect
ratio pillars. Figure 1(d) shows the phase shift library as the
function of depth of the nanoholes under the assumption of
locally periodic structure [30]. We limit the depth of the
nanoholes to 0.8 μm because of fabrication constraints.
The remaining phase shift is achieved by the phase plate
structure.

The phase shift through a phase plate is expressed

by the well-known formula ϕ(r) = 2π(n−1)t
λmin

where t, n are

thickness and refractive index at λ = λmin, respectively.
The period, p, is chosen to be 0.4 μm so that only zeroth-
order diffraction is present and the Nyquist criteria(p < λ

2NA) is satisfied. In addition to the nanohole and

phase plate structures, we also add extra thickness in the

hyperbolic form of t = 1
n−1⎛⎝ ̅̅̅̅̅̅̅

f 2 + EPD2

4

√
− ̅̅̅̅̅̅

f 2 + r2
√ ⎞⎠. For

the 20-μm diameter metalens, the powers of the hyper-
bolic layer andmetastructure are 0.0222 and 0.0048 μm−1,
respectively. Despite increasing the total thickness, this
extra layer has two distinct advantages. First, we can
obtain higher NA values for which recursive ray-tracing
would not normally converge. Second, chromatic aber-
ration through the hyperbolic layer is proportional to the
wavelength. This differs from the residual chromatic ab-
erration of the ray-tracing solution where the chromatic
aberration is inversely proportional to the wavelength.
Addition of the extra layer allows us to fully cancel
chromatic aberration at two different wavelength so that
achromatization is achieved.

3 Experimental results

To test our designs, we fabricated two different lenses
having EPD = 20, 200 µm and NA = 0.27, 0.04, respec-
tively. The lenses were fabricated on 0.7 mm thick fused-
silica substrates using “dip-in”multi-photon lithography.
Multi-photon lithography exploits two-photon cross-
linking in the focal volume of an ultrafast laser pulse to
create true 3D structures in a single process step [31, 32].
Fabricated metalenses are shown Figure 1b, c. Lenses
were characterized using a collimated beam from a
supercontinuum source.

Figure 2a illustrates measured power intensity distri-
butions in y–z plane and intensity distribution at the focal
plane. Figure 2b compares normalized power intensity
profiles at the focal plane and the diffraction-limited Airy
disk pattern. We define the focal plane as the z-coordinate
of the maximum measured power intensity on top of the
metalens. The measured focusing efficiency as a function
of wavelength is shown in Figure 2c. Focusing efficiency
is defined as the ratio of integrated power within the circle
having radius 1.5 × FWHM to the incident power on
the metalens. The average efficiency values are 60 and
42% for 20 and 100 μm lenses, respectively. Compari-
son of measured and diffraction-limited full-width at
half-maximum (FWHM) at the focal plane is also provided
in Figure 2d. Diffraction limited performance is clear from
the plot. The focusing error versus wavelength is shown in
Figure 2e. We define the focusing error as the normalized
difference between the nominal and the measured focal
length. The maximum deviation from the mean focal
length is measured as 6% showing that the metalens has
effectively corrected chromatic aberration over the entire
visible to short-wave IR bandwidth.

We tested the imaging performance of EPD = 200 μm
and NA = 0.04 metalens using the standard 1951 United
States Air Force (USAF) target. Details of the experiment are
explained in the supplementary information. Figure 3a
shows the imaging results for group 5 (where 5–4 represents
45.3 line pairs/mm). Achromatic performance can be seen
from the images taken under broadband (450–1700 nm) and
SWIR (1000–1700nm) illumination.Weuse a long-passfilter
for the second image where wavelengths shorter than
1000nmarefilteredout. Practical usage of themetalens over
the entire bandwidth is revealed by the Lego image in
Figure 3(b). The SWIR and visible wavelength regimes were
also separately tested as shown in Figure 3c–f.

4 Discussion and conclusion

Despite this excellent overall performance, we observe
a reduction in focusing efficiency as the wavelength
moves from the SWIR to the visible regime. The metalens’
period plays a major role in maximizing the efficiency
and transmission; as a result, higher efficiency may be
obtained from similar designs employing finer periods.
Shorter wavelengths are also more sensitive to fabrication
imperfections, which may account for some addi-
tional reduction in performance. Further advances in
two-photon lithography or a transition to gray-scale
e-beam lithography may alleviate this while preserving
the metalens’ 3D geometry.
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Figure 2: Experimentally measured performance of the metalens.
(a) Power intensity distribution in the x–y focal plane (upper) and x–z (lower) planes. Maximum power intensity appears around the focal plane at
z≈ 36μm. (b) Comparison of diffraction-limited Airy function (dashed red lines) and themeasured power intensity across the focal plane (solid blue
curve).Wenormalize theAiryfit so that themaximum intensity is unity. (c)Measured focusingefficiencyasa functionofwavelength. (d) Comparison
of measured full-width at half-maximum (FWHM) with the diffraction limit. Dashed lines represent diffraction-limited performance. (e) Focal length
error versus wavelength. Corresponding focal plane distances are 36 and 2600 μm for the 20 and 200 μm aperture size lenses, respectively.

Figure 3: Imaging with EPD = 200 μm, NA = 0.04 metalens under halogen lamp illumination.
(a) Standard USAF target images for several wavelengths. (b, c) Images taken under illumination with wavelength ranges 450–1700 nm and
1000–1700, respectively. (d–f) Images taken by a color camera sensitive to visible spectrum.
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Regardless, nanohole structures proved to have distinct
advantages compared to nanopillars. First, nanoholes offer
higher transmission as expected [29]. Equally important,
nanoholes reduced fabrication difficulties making sub-
wavelength structures with higher aspect ratios accessible
for operation with visible light. Finally, the nanohole-phase
plate geometry should be replicable by molding for mass
production. Thus, 3D metalenses based on nanoholes are
excellent candidates when achromatic diffraction-limited
focusing and imaging is required over the entire visible to
short-wave IR spectrum.
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