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Abstract: Estimation of the causal dose-response curve is an old problem in statistics. In a non-parametric
model, if the treatment is continuous, the dose-response curve is not a pathwise differentiable parameter,
and no /n-consistent estimator is available. However, the risk of a candidate algorithm for estimation of the
dose-response curve is a pathwise differentiable parameter, whose consistent and efficient estimation is
possible. In this work, we review the cross-validated augmented inverse probability of treatment weighted
estimator (CV A-IPTW) of the risk and present a cross-validated targeted minimum loss—based estimator
(CV-TMLE) counterpart. These estimators are proven consistent and efficient under certain consistency and
regularity conditions on the initial estimators of the outcome and treatment mechanism. We also present a
methodology that uses these estimated risks to select among a library of candidate algorithms. These
selectors are proven optimal in the sense that they are asymptotically equivalent to the oracle selector
under certain consistency conditions on the estimators of the treatment and outcome mechanisms. Because
the CV-TMLE is a substitution estimator, it is more robust than the CV-AIPTW against empirical violations of
the positivity assumption. This and other small sample size differences between the CV-TMLE and the CV-A-
IPTW are explored in a simulation study.

Keywords: causal inference, dose-response curve, TMLE, asymptotic linearity, oracle inequality

*Corresponding author: Ivan Diaz, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, E-mail: idiaz@jhu.edu
Mark J. van der Laan, University of California — Berkeley, Berkeley, CA 94709, USA, E-mail: laan@berkeley.edu

1 Introduction

Estimating the causal effect of an exposure A on an outcome Y when the relation between them is
confounded by a set of covariates is a very common problem in causal inference, of high relevance for
applications in epidemiology, medical, and social research, among other fields.

In general, causal effects are defined as parameters of the distribution of the counterfactual outcome
process [1, 2] {Y, : a} that contains the variables that would have been observed if, possibly contrary to the
fact, the subject would have received level a of the exposure. Computation of causal parameters involves
expectations with respect to the distribution of the stochastic process that one would have observed if, for
each subject, all the counterfactual outcomes were observed. Since the observed data for subject i contain
only one of the counterfactuals, namely Y; = Yy, (this is often called the consistency assumption), additional
untestable assumptions are needed in order to identify parameters of the counterfactual process distribution
as parameters of the observed data distribution. These assumptions are usually described in terms of the so-
called no unmeasured confounders assumption, a particular case of the coarsening at random assumption,
which roughly states that the censoring or exposure processes cannot depend on unobserved covariates that
are also related to the outcome.

In spite of the large number of causal inference problems that are inherently defined in terms of
exposures of continuous nature, most of the attention in the field of causal inference has focused in the
definition and estimation of parameters for binary treatments, in which it is natural to compare the
counterfactual outcome under two possible exposure levels. Estimation of causal parameters for binary
exposures has been widely studied [3-9]. The main reason why consistent and efficient estimators of the
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causal dose-response curve (CDRC) for continuous treatments in the nonparametric model have not yet
been developed is that it is not a pathwise differentiable parameter [10, chapter 3 and 5] and therefore
cannot be estimated at a consistency rate of n~'/2, Examples of pathwise differentiable parameters that
measure the causal effect of a continuous exposure on an outcome of interest are given by the parameters
defined in Diaz and van der Laan [11, 12]. These approaches make use of stochastic interventions [13-15] as a
means to define a counterfactual outcome in a post-intervened world, which compared to the expectation of
the actual outcome defines the causal effect of an intervention.

The most widely known method for estimation of the CDRC for continuous exposures is the so-called
marginal structural model (MSM) framework, which was first proposed by Robins et al. [16]. In addition to
the structural causal assumptions required for identifiability, the veracity of the statistical claims of MSM
analyses relies on the correct specification of a parametric model for the CDRC, that is, the model needs to
contain the true dose-response curve. Neugebauer and van der Laan [17] generalize the MSM methodology
to avoid dependence on the correct specification of a parametric model by defining the parameter of interest
as the projection of the true CDRC on the space of functions defined by the parameterization implied by the
MSM, providing robustness against misspecification of the parametric MSM. Their work also includes
identification results for this projection parameter, as well as inverse probability weighted estimators
(IPTW), G-computation (G-comp) and augmented IPTW (A-IPTW) double robust estimators. Marginal
structural models represent only a provisional solution to the problem, because in many instances the
interest relies on estimating the actual CDRC and not its projection on some parametric space of functions.

An alternative and widely used method for estimating non—pathwise differentiable parameters is the
selection of the best performing candidate among a list of algorithm estimators, where performance is
defined in terms of the cross-validated risk. Formal analytical asymptotic arguments backing the use of
cross-validation as an estimator selection tool were first given by van der Laan and Dudoit [18], van der
Vaart [19], van der Laan et al. [20], among others. The main result of these works is a finite sample size
inequality that bounds the risk of the cross-validation selector by the risk of the oracle selector (the selector
based on the true distribution), which in turn used to establish, under certain conditions, the asymptotic
equivalence between the cross-validation and the oracle selectors. These results are later explored in
specific contexts by Dudoit and van der Laan [21], van der Laan et al. [22], among others. Of special interest
is the work of van der Vaart et al. [23], in which the cross-validation oracle inequalities are extended to
candidate libraries with a continuous index set and unbounded loss functions. van der Laan et al. [22]
demonstrates that this oracle property for cross-validation combined with the right library of estimators
results in a minimal adaptive optimal estimator. van der Laan et al. [24] use these optimality results in order
to define the super learner prediction algorithm, implemented in the SuperLearner R library. van der Laan
and Petersen [25] propose a general methodology for estimating the risk of a loss function indexed by
nuisance parameters using cross-validated targeted minimum loss—based estimators (CV-TMLE, [26]).

For the particular case of the CDRC, van der Laan and Dudoit [18, p. 52] prove that under convergence of
the initial estimators, the candidate selector based on the cross-validated A-IPTW risk is asymptotically
equivalent to the oracle selector. An important assumption for identification and estimation of causal effects
is the positivity assumption, which loosely ensures that there is “enough experimentation” in the data so
that all the subjects have a positive probability of receiving every level of the exposure. Since the general A-
IPTW methodology does not provide bounded estimators, the estimates can fall outside the parameter space
and be overly sensitive to violations of the positivity assumption, which are very likely to occur when
working with continuous exposures.

The main contribution of this article is to present a CV-TMLE of the risk of a CDRC candidate estimator
that is endowed with an oracle inequality analogue to that of the A-IPTW. The CV-TMLE we propose is more
robust to empirical violations of the positivity assumption than the CV-A-IPTW of Dudoit and van der Laan
[21]. The CV-TMLE is also a substitution estimator, which guarantees estimates that are within the bounds of
the parameter space. These two estimators have also been proven to be asymptotically linear with influence
function equal to the efficient influence function, under certain conditions, which implies that they are
consistent and efficient estimators of the risk.
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The article is organized as follows. In Section 2, we formally describe the inference problem, define the
loss and risk functions, and present the efficient influence function of the parameter of interest. In order to
first introduce relevant concepts, in Section 2.1 we present four estimators (G-comp, IPTW, A-IPTW, and
TMLE) of the risk when the candidate estimators of the CDRC are assumed fixed functions. In Section 2.2, we
generalize these estimators to the case when the candidates are estimated from the sample and present the
corresponding cross-validated versions of the A-IPTW and TMLE. In Section 3, we present a theorem
describing the conditions under which the CV-TML estimator of the risk is an asymptotically linear
estimator, the conditions under which it is consistent and efficient, as well as a discussion on the estimation
of its variance. Section 4 presents the main contribution of this article; an oracle inequality for the
selector based on the CV-TML estimator of the risk, and the conditions under which it is asymptotically
equivalent to the oracle selector. In Section 5, we use Monte Carlo simulation to compare the performance of
CV-TMLE and CV-A-IPTW selectors and estimators of the risk in finite sample sizes. We conclude in Section
6 with a summary of the work and a discussion of the limitations of our proposal and directions of future
research.

2 Definition and estimation of the risk of an estimator
of the CDRC

Consider an experiment in which an exposure variable A, a continuous or binary outcome Y and a set of
covariates W are measured for n randomly sampled subjects. Let O = (W, A, Y) represent a random variable
with distribution Py, and Oy, ..., O, represent n i.i.d. observations of O. The range of W, A and Y will be
denoted by 7%, .«7 and %, respectively. Assume that the following non-parametric structural equation model
(NPSEM) holds:

W = fw(Uw); A= fa(W,Uys); Y =fy(A, W, Uy), (1)

where Uy, Uy and Uy are exogenous random variables such that Uy 1 | Uy|W (randomization assumption).
The true distribution Py of O can be factorized as

Po(0) = Po(Y|A, W)Po(A|W)Po(W),

where we denote go(A|W) = Po(A|W), Qi0(A, W) =Eo(Y|A, W), Qu0(A, W) =Eo(Y?|A, W), Qwo(W) =Py (W),
and Pf = [fdP for a given function f. For a given value a € ./, the counterfactual of Y is defined as the
value Y, = fy(a, W, Uy), the counterfactual process of Y is given by (Y, : a € .27) and the full data is denoted
by X = {W, (Y, :a € )} ~ Fo.

In this article, we will discuss the estimation of the causal dose-response curve within strata of the
covariates Z C W, given by the expression

¥/ (Fo)(a,Z) = Er,(YalZ) = arg min R (y,Fo), ©)

where Ff (y,Fo) = Fol/ (), I (y)(X) = |, {Ya — w(a,Z)}’h(a,Z)du(a), the superscript f stands for full
data, and h is a non-negative function such that [ hdu = 1. The second equality in eq. (2) is true because
Er,(Y,|Z) is the projection of Y, into the space of functions of Z, and FoL/ (i) is the integral over </ of the
squared norm of Y, —w(a,Z). The randomization assumption implies that Y, L A|W, which allows
identification of the full data parameter (2) in terms of a function of the observed data distribution as the
mapping

¥(P)(a,Z) = Ep{Q(a, W)|Z}, (3)

where we denote y, = W(Py). If A is continuous, ¥(P) is not a pathwise differentiable parameter in the non-
parametric model, and \/n— consistent estimation is not possible [10, chapter 3, 5]. However, the risk of a
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given candidate value y,, is a pathwise differentiable parameter for which it is possible to find regular

asymptotically linear estimators.

Following the ideas of Wang et al. [27], consider a list of candidates values y; : k =1,... K, for q/g.
Throughout the article, we will make a distinction between candidate values (denoted y,;) and candidate
estimators (denoted \i’k), where the difference is that the former are given functions, whereas the latter are
functions of (a,Z) estimated from the sample.

If the full data X were observed, a general selection procedure would involve computing
R (yy,Fo) : k=1,...,K,, and estimating u/fo based on y,_, where ko = argming R/ (y,, Fo). Of course, this
optimization procedure cannot be carried out as described because: (1) only a coarsened version of X
denoted by O is observed, (2) the distribution Py of O is unknown and (3) in most cases we have a list of
candidate estimators W, as opposed to a list of candidate values y,, which raises the issue of over-fitting.

In order to overcome these obstacles one needs to:

1. Find a mapping R(y,-) : .# — R that identifies R/, i.e., a mapping such that R(y, Py) equals R/ (v, Fy),
under certain assumptions. It is common that R(y, P) = PLyp)(-, y) for a loss function Lyp that is now
indexed by a nuisance parameter I' : ./ — Z,.

2. If Py is known, the value R(y, Py) suffices to find a selector among the K, candidate values. However,
since Py is unknown, we now need to estimate R(y,Py). At this point, it is worth to note that even
though W(P) is not a pathwise differentiable parameter, the mapping R(y, -) is pathwise differentiable
and can therefore be \/n-consistently estimated under regularity conditions.

3. If candidate values are not available, it is necessary to estimate the risk of candidate estimators ¥y that
are trained in the sample, which makes necessary the use of cross-validated versions of these
estimators.

In the remaining of this section, we will discuss the identification of R'. The risk of a candidate y is given by
R (y,F) = FI/ (y) and is identified as a function of the observed data distribution by

R(W7P) = EPLQ(P)(O7 l//)7 (4)

where

L(0.0) = | Ee{(Y = p(0.2))"14 = 0. W}h(a. Z)dn(a).

(5)

- | {etaw) - 2000 w2 + wia 2 ha.2)duta)

o
given the randomization assumption and the positivity assumption
h(a,Z)

sup————~<o00, Qwo —a.e. 6
D go(a,w) 0 o )

Note that the loss function that defines the risk is not unique, since the loss functions

(Y —y(4,2))
Le(0,y) =~—""""""h(A,Z), 7
s(0.9) = g hA.2) 7)
h(A,Z _ _
LogO.p) = ML) 11y 0,4, )} - 20(4,2) (Y - (A, W))]

+ L{Qz(a, W) — 2p(a,2) Qula, W) + y*(a,2)} h(a,Z)du(a)

lead to the same definition of the risk. Loss functions (5) and (7) come from more intuitive definitions of the
risk, whereas the loss function (8) comes from efficient estimation theory and is closely related to the
efficient influence function of R(y, P). This fact is exploited by Wang et al. [27] in order to define estimators
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of the risk as a cross-validated average of estimators of these loss functions. We will work toward the
definition of a CV-TMLE analogue of those estimators and present similar results to those obtained by van
der Laan and Dudoit [18] in terms of an oracle inequality, as well as the conditions under which the
estimator of the risk is asymptotically linear.

The loss function (8), referred to as the double robust loss function, defines the efficient influence
function of parameter R(y) and plays a very important role in double robust and efficient estimation of
R(y), as explained in the next section.

Parameter (4) is a pathwise differentiable parameter, for which consistent asymptotically linear esti-
mators can be found. Note that R(y, P), as defined in eq. (4), depends on P only through Q = (Q, Qw), where
Q = (Q1, Q). In an abuse of notation, we will use R(y,P) and R(y, Q) interchangeably, and the true value
R(w, Qo) will be denoted by Ry (). We will also use the notations R(y, Q) and R(y)(Q) interchangeably. In
Section 2.1, we will focus on the estimation of the risk when the candidates are given values. Given
candidate values constitute a situation that is not very common in research problems, but provides an
easy way to introduce the estimators that are going to be developed in Section 2.2, in which we will
generalize these estimators to the case of a candidate estimated from the sample. Cross-validation will be
used as a tool to avoid over-fitting and will lead to an oracle inequality presented in Section 4.

The efficient influence function of the risk R(y, Q) is given by the expression

D(Q,8,y)(0) = Log(0, ) = R(y, Q) )

with L, defined in eq. (8).

2.1 Estimators of the risk of a candidate parameter value

In this section, we exploit the definitions of the risk in terms of loss functions given in the previous section
in order to define various estimators of the risk. As we will see, the definitions of the risk through the
different loss functions previously described lead to the definition of G-comp, IPTW and A-IPTW estimators.
We will also use the efficient influence function of R(y, P) in order to define a targeted maximum likelihood
estimator of Ry(y). The A-IPTW loss function is closely related to the efficient influence curve of R(y, P),
which results in the consistency and efficiency of the A-IPTW and TMLE. Analytical properties of these
estimators have been discussed elsewhere [8, 9, 28].

We will assume that y is a given function of a and Z in the sense that it is not estimated from the
sample. Such scenario is attainable, for example, in situations in which a pilot study is conducted in order
to postulate candidate estimators with the objective of assessing their performance with data from a
posterior study.

Let Q = (Q;,Q,) and § be initial estimators of Qo = (Q1.0, Q20) and go, respectively. These estimators will
be denoted Q or Q(P), depending on whether it is necessary to emphasize their dependence on the empirical
distribution

1 n
]P :Higljaoi

with 6, denoting a Dirac delta with a point mass at x. Estimation of Q, is only necessary when the risk is a
parameter of interest in itself, and as we will see in Section 4 it is unnecessary for candidate selection.

2.1.1 G-comp, IPTW and A-IPTW estimators

The equivalent definitions of the risk through G-comp, IPTW and A-IPTW loss functions allow the straight-
forward definition of three estimators of the risk of a candidate value, given by:
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which can be seen as solutions in R of the corresponding estimating equations PD'(-|g,w,R) = 0,
PDS(-|Q, w,R) = 0, and PDPR(-|Q, 8, v, R) = 0, where

D1(0|g7 V/7R) = Lg(O» l//) - R
DG(Oléa l//aR) = LQ(O7 W) —R

DDR(O|Qg7 w,R) = LQg(O7 w)—R.

According to theorem 5.11 of van der Vaart [29], if L, falls in a Glivenko-Cantelli class {Lg : g € ¢} with
probability tending to one, and Py (L — Lgo)2 — 0, then the IPTW estimator is consistent for Ry (). Under an
appropriate Donsker condition and consistency of g, the IPTW estimator is also asymptotically linear with
influence function D'(0|go, v, Ry), as explained in theorem 6.18 of van der Vaart [29] and the theorems of
Chapter 2 of van der Laan and Robins [8]. As a consequence, it is an inefficient estimator of the risk Ro(y),
and its variance can be estimated with the empirical variance of D'(0|g, w,Ry). The G-comp estimator is
asymptotically linear and efficient in a parametric model that is correctly specified, but it is inefficient
otherwise.

Following similar arguments, the A-IPTW estimator is double robust in the sense that it is consistent if
either of Q or gis consistent. It is also efficient if both Q and g are consistent. Even though the A-IPTW
represents an important improvement with respect to the G-comp or the IPTW, it suffers from some of the
drawbacks inherited from the estimating equation methodology. One of the most important problems of
such methodology is the possibility of solutions out of the parameter space, or very unstable estimators if
the positivity assumption is practically violated. For this reason, we prefer estimators that are substitution
estimators, i.e. estimators that are the result of applying the map R(y) to a certain estimated distribution
P* ¢ /. As we will see, the TMLE is such a substitution estimator.

2.1.2 Targeted minimum loss—based estimator

For a review on TMLE and its properties, we refer the interested reader to van der Laan and Rose [9]. TML
estimation requires the specification of three components: a valid loss function for the relevant part of the
likelihood, a parametric submodel whose generalized score equals the efficient influence function and
initial estimators of the relevant parts of the likelihood.

We will assume that Y is binary or that P(Y € [a, b]) = 1 for known values a and b, in which case we can
work with Y*=(Y—a)/(b—a) and interpret the results accordingly. Consider the loss
functions —L;{(Q;) (0)} = Y'1og Q;(A, W) + {1 — Y/}log{1 — Q;(A, W)}; j =1, 2, for Q;, and the parametric
fluctuations given by logit Qj(;) = logitQ; + &H;(y, g), where

Hily.8) (4, W) = ~20(4, 2) G0
~ h(a,2)
Huly.8) (4.W) = 2200

Note that these loss functions are not related to those in eqs (5), (7) or (8). The generalized scores are
equal to

w(A,Z)h(A,Z)

g(A,W) {Y_Ql(Avw)}

d _
d_glLl{Ql(El)v O}|g1:0 =2
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Q2. 0o = gy (V7 — Qa4 W)

corresponding with the first two parts of the efficient influence curve presented in eq. (9). The marginal
distribution of W is estimated with the empirical distribution Qw (P) of Wy,..., W,. It can be shown that
Qw (PP) solves Ly(y) — Eq, Ly(y) (the third part of the efficient influence curve equation) at any Q.

For initial estimators Q and g, the first step TMLE of Qo is given by Q; = Q;(&;), where

§j=arg mEin P L,-{éj(s)}. (10)

The TMLE of Ry () is now defined as the plug-in estimator R(¥}) = R()(Q"), where Q* = (Q,,Q;, Qw(P)).

Under certain conditions explained in detail in van der Laan and Rose [9, appendix A.18], if Q and g
are consistently estimated, this TMLE of Ro(y) is asymptotically linear with influence curve
D(0|Qo, g0, Ro()), which means that it is consistent and efficient. If g is consistent but Q" is not, the
TMLE is consistent but inefficient, and its variance can be conservatively estimated by

P %an [ (010" 8. Re#)) }2.
i=1

If one uses data-adaptive estimators in O and g, it is often appropriate to replace the estimate of the variance
by a cross-validated estimator.

The conditions needed for asymptotic linearity of the TMLE [9, appendix 18] include a Donsker
condition on the class of functions that contains the estimated efficient influence function D. Such
Donsker conditions impose certain restrictions on the type of algorithms that can be used for estimation
of Qo and gy, forcing the user to find a trade off between obtaining the best possible prediction algorithms
and not using algorithms that are too data-adaptive, because data-adaptive algorithms might lead to
estimators that do not belong to a Donsker class (e.g. random forest).

The cross-validated TMLE, whose theoretical properties are discussed in Zheng and van der Laan [26],
provides a template for the joint use of cross-validation and TMLE methodology that avoids Donsker
conditions and therefore allows the use of very data-adaptive techniques in order to find consistent
estimators of Qo and go. An additional advantage of CV-TMLE in this setting is that it allows us to have a
valid estimator of the risk of an estimated CDRC, solving the issue of over-fitting through the use of cross-
validation.

2.2 Estimators of the risk of a candidate estimator

The previous section provided an algorithm to estimate the risk of a candidate value for the causal dose—
response curve, when the value is given and not estimated from the sample. That scenario is very rare in
real data applications, and it is very common that the CDRC candidates have to be estimated from the
sample as well. In such situations, if the algorithms ¥, are trained in the whole sample, the use of the
estimators of the risk presented in the previous sections would lead to the selection of the candidates that
overfit the data.

van der Laan and Dudoit [18], van der Vaart [19], van der Laan et al. [20], among others, show that
cross-validation is a powerful tool for estimating the risk of a candidate estimator of a non—pathwise
differentiable parameter and shows that such cross-validation—based selection endows the selector with an
oracle inequality that translates into asymptotic optimality.

Assume now that ¥ is a mapping that maps elements in a non-parametric statistical model into a space
of functions of a and Z (¥ : .# — #°). An estimate of y, = ¥(Py) is now seen as such map evaluated in the
empirical distribution of Oy, ..., Oy, i.e., ‘i’k(]P).

Consider the following cross-validation scheme. Let a random variable S taking values in {0, 1}" index a
random sample split into a validation sample Vs={ic {1,...,n}:S5 =1} and a training sample
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Ts = {Vs}¢, where S has a uniform distribution over a given set {s;,...,Sp,} such that ny= >jSij — oo as
n— oo foralli=1,...,m. Note that this restriction excludes certain widely used types of cross-validation
(e.g. leave-one-out cross-validation). This restriction is necessary because the asymptotic results of Section 3
and 4 rely on empirical process theory applied to the validation sample and therefore assume that its size
converges to infinity. We also note that the union of the validation samples equals the total sample:
UsVs = {1,...,n}, and the validation samples are disjoint: V5,"V,, = 0 for s;#s,. Denote Pz, and Py, the
empirical distributions of a training and validation sample, respectively. For a function g{Ts, Vs}, we denote
Esg(Tv V) - # jril g{T5j7 VSj} .

Since Wi (IP) is now a value that depends on the sample, it does not make sense to talk about a
parameter R{‘i’k(]P), Qo}, because it does not agree with the formal definition of a parameter. Nonetheless,
in an abuse of language, we will talk about “estimation” of the “parameter” EsR{¥)(Pr), Qo }, which we call
the conditional (on the sample) risk of .

2.3 Cross-validated augmented IPTW

This estimator is also discussed by Wang et al. [27] and is given by the solution of the cross-validated
version of the A-IPTW estimating equation, given by

EsPvLye,) gt ¥i(Pr)}-

This estimator is asymptotically linear under the conditions presented in van der Laan and Dudoit [18]. An
oracle inequality for the selector based on the A-IPTW risk estimator is also proved in the original paper.

2.4 Cross-validated TMLE

The cross-validated targeted maximum likelihood estimator was introduced by Zheng and van der Laan [30]
as an alternative to the TMLE that avoids the Donsker conditions on the efficient influence curve (discussed
in Section 2.1.2). Donsker conditions on the class of functions generated by the estimated efficient function
D represent an important limitation to the kind of algorithms that can be used in the initial estimators of Q,
and gy: very data-adaptive techniques will give as a result functions that do not belong to a Donsker class.
As discussed in Section 2.1.2, the consistency and efficiency of the risk estimator depend on the consistency
of the initial estimator of Qy and go. It is common practice in statistics to assume parametric models in order
to estimate these quantities. Such parametric models are often chosen ad-hoc, based on arbitrary prefer-
ences of the researcher, and do not encode legitimate knowledge about the data generating process. Thus,
we avoid such parametric assumptions and prefer to use data-adaptive techniques to find the algorithm that
best approximates Qy and go.

As we will see in the next section, the use of cross-validation also equips the CV-TML selector with an
oracle inequality, meaning that such selector performs asymptotically as well as a selector in which the risk
is computed based on the true (unknown) probability distribution.

Zheng and van der Laan [30] present two types of CV-TML estimators: one for a general parameter, and
a specific CV-TMLE for the case in which Q can be partitioned as (Qi, Q;) and the mapping that defines the
parameter is linear in Q;. As discussed in Section 2, the risk R(y, P) of a given candidate depends on P only
through Q(P) = {Q(P), Qw(P)}, and it can be easily verified that R(y, Q) is linear in Qy.

The construction of a CV-TML estimator requires the specification of the same three components
discussed in Section 2.1.2: a logistic loss function, a logistic parametric fluctuation and an initial estimator
of Q. For each S, let

logit Q;(Pry) (gjx) = logit Q;(Pr,) + 5j,kHi{\i]k(PTs)a§ (PTS)},
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where H;j; j = 1,2 were defined in Section 2.1.2. This is the same fluctuation considered before, but defined
only based on the training sample. With this modification, the CV-TMLE is defined analogous to the regular
TMLE. Let

¢k = argmin EPyLi{Qu(Pr) ()} = 1,2, (1)

and for each S define the updates

Q(Pry) = Q(Pr)(E0)s j = 1,2 (12)

which results in the plug-in estimator of the oracle risk

R(%) = EsR{Wi(Pr), Q4(Pr), Qu(Pv) |

- > lzjd{é;k@n)(“’m—251}(19’@)(a,Vl’f)‘i'k(ll’n)(a,zi)+[\ifk(1@n)(a,zl-)f}h(a,zi)dﬂ(a),

mse{s1 ..... Sm } ns icVs

(13)

where Q}(Pr,) = {éik(PTs), @, (Pr,)}, Quw(Py,) denotes the empirical distribution of W in the validation
sample S, and ng denotes the size of Vs.

For a definition of the CV-TMLE for general parameters, the interested reader is referred to the original
article. In the next sections, we will present the asymptotic linearity of the previous estimator, as well as an
oracle inequality for the selector based on it.

3 Asymptotic linearity of CV-TML estimator of the risk

In this section, we present a theorem establishing asymptotic linearity of the CV-TML estimator of the risk.
This theorem is analogue to the theorems presented in Zheng and van der Laan [30], and its proof uses the
same ideas presented in that article.

An analogue version of this theorem for the CV-A-IPTW is presented in van der Laan and Dudoit [18].
The CV-TMLE is expected to perform better than the CV-A-IPTW in finite sample sizes, in which practical
positivity violations are often present and lead to CV-A-IPTW estimators that are either very unstable or
provide solutions out of the range of the parameter of interest.

Theorem 1 (Asymptotic linearity). Define
Ro(¥y) = ESR{\Pk(PT), QO} and R(¥y) = ESR{\i/k(]I”T), Q. (Pr), QW(IP’V)}
with R{y, Q} = QwLg(w). For a function f(Pr) of O, define the norm ||f (Pr)||,s = EsPof (Pr)’h. Assume:

1. There exist constants 6; > 0 and &, > O such that P(g(P)(A|W) > 6;) =1 and go(a|lw) > 5, V a,w.
2. ||g(Pr) — gollos = op(1/v/n)

3. Q,(Pr,),Q,(Pr,) and ¥, (Py,) converge to some fixed Q;(Po), Q5 (Po) and Wi(Po) in the sense that
18(Pr) = gollos11Q> (Pr) = Q5 (Po)llo s = 0r(1/v/)
18(Pr) — 8ollos!1Q (Pr) — Q; (Po)llos = 0p(1/vn)
18(P1) — gollo sk (Pr) — ¥i(Po)llos = 0r(1/vn)

4. For some mean zero function IC4(Py) € £4(Py), we have

8o —8(P)

Py
g

h[{Q20 ~ Q(Po) | — 2o {Qro — Q}(Po) || = (B — Po)ICs(Po) +0p(1/ V).
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Then we have that
R(¥)) — Ro(¥y) = (P — Po)[D{Qi(Po). Qw0 0. o} + ICe(Po)] + 0p(1/v/),

for D{Q, Qw,g, v} = Lo¢(w) — QwLq the efficient influence function of R{y, Q(P)}.
The proof of this theorem is presented in Appendix A. Next we will discuss the plausibility and
implications of the assumptions of Theorem 1.

3.1 Discussion on the assumptions of result 1

1. This assumption is a natural assumption, equivalent to the positivity assumption for binary treat-
ments, and needed to identify and also needed to estimate the risk using IPTW or A-IPTW
estimators.

2. This is a very important assumption stating that g is a consistent estimator of g. It is required that
the rate of convergence is n~V* or faster. This condition is automatically true in randomized
control trials (RCT), in which the treatment mechanism is known. It is also true if g is known to
belong to a parametric model, and in semi-parametric models that assume enough smoothness of
8o. If go is completely unknown, it is important to use aggressive data-adaptive estimation techni-
ques such as the super learner [24] to find an estimator g that is more likely to satisfy this
assumption. X

3. This assumption states that the updated estimator Of converges to some unspecified limit at a certain
rate. It is worth to note that such limit is not assumed to be (21,0, the only requirement is convergence to
some value at a certain rate that depends on the rate of convergence of g to go. The desired rate of
convergence can be achieved if, for example, g is \/n -consistent (i.e. \/n||g(Pr) — gollo s = Op(1)) and
Q, (Pr,) converges to Q;(Po) at any rate (i.e. ||Q;(Pr) — Q;(Po)llos = 0p(1)). The same is true for Q,
and ‘i’k.

4. Inan RCT, in which g, is known, one could set g(IP) = g and this condition would be trivially satisfied.
On the other hand, since cross-validation allows for the use of very aggressive techniques for estimation
of Qo, we could have that Q" (Py) = Qo, and the condition would also be satisfied.

In other cases, this assumption seems to be conflicting with assumption 2. If the treatment
mechanism is completely unknown, it is necessary to use very aggressive data-adaptive techniques to
find estimators that satisfy assumption 2. The use of such estimators will usually lead to estimates of gy
that do not provide the asymptotic linearity needed in 4. Likewise, the use of an inconsistent estimator
that satisfies this condition (e.g. a pa{ametric model) will viplate assumption 2. In that case, it is
necessary to rely on the consistency of Q" (P) in the sense that Q" (Py) = Qo, in which case assumption 4
will be trivially satisfied. This condition seems to suggest that the initial estimator g must also be
fluctuated to target a smooth functional of gy. This is a direction of future research beyond the scope of
this article.

As opposed to the regular TMLE or A-IPTW, in which the Donsker conditions on D limit the use of
very aggressive techniques for estimation of Qo, the use of cross-validation allows us to implement any
type of algorithm, which in turn makes consistency of Q"(PP) a very sensible assumption. We encourage
the use of super learning for estimation of both Q, and g,. Super learner is a methodology that uses
cross-validated risks to find an optimal estimator among a library defined by the convex hull of a user-
supplied list of candidate estimators. One of its most important theoretical properties is that its solution
converges to the oracle estimator (i.e. the candidate in the library that minimizes the loss function with
respect to the true probability distribution). Proofs and simulations regarding these and other asympto-
tic properties of the super learner can be found in van der Laan et al. [20] and van der Laan and
Dudoit [18].



DE GRUYTER I. Diaz and M. ). van der Laan: Estimation of the Causal Dose-Response Curve == 181

4 Asymptotic optimality of the CDRC estimate selector based on
CV-TMLE risk

If the objective is to choose the best candidate among a list of candidate estimators Wy : k = 1,..., Ky, it
suffices to construct a ranking based on the pseudo-risk

R'(v)(Qi, Qw) = Eq, L/ v(a,Z){y(a,Z) — 2Qi(a, W)}h(a, Z)du(a).

which has the advantage that Ozﬁo does not need to be estimated, providing additional robustness of the
candidate selector. In an abuse of notation R° and Q; will also be denoted by R and Q whenever the
difference is clear from the context. Estimation of this pseudo-risk can be carried out in a similar fashion to
estimation of the full risk presented in the previous section, with efficient influence function given by

hAZWAZ)
AW (- aAw)

+ J wla.2){w(a.2) - 20s(a. W)} h(a. Z)du(@) = R(1) (4. Q).

D'(Q.8.w)(0) = ~2
(14)

which results in a CV-TMLE defined as
R(%) = ER{¥(P1), Q (Pr), Qu(Pv) }

with Q" (Pr,) exactly as in eq. (12). We will discuss now asymptotic optimality of the selector based on the
CV-TMLE. Assume that we have a list of candidate estimators for the CDRC given by ¥ k=1,...K,. Each
of these algorithms is viewed as a map ¥ : .# — %, where Z is the space of functions of a and Z. Define
the CV-TMLE selector as

k= in R(W¥
argkg}?l(n (%),

and the oracle selector as

k = arg . :r}unKn Ro(W¥y),

with RO(‘i’k) = ESR{‘i’k(]P’T), Qo}. The following theorem proves that these two selectors are asymptotically
equivalent under certain consistency conditions of the initial estimator of g.

Theorem 2 (Oracle inequality). For each k, define
ér = arg gIEI}giCnRESIP’VL{ék(]P’T)(s)}
where |B| = n® for finite c,
—L(Q) (0) = Y 1og{Q(4, W)} + (1-Y)log{1 - Q(A, W)},
and

h¥, (Pr,)
g(PTs) .

Let é,t(]P’Ts) = é(]P’Ts)(ék) be the CV-TMLE targeted toward estimation of the true conditional risk

logit Qx(Pr,)(¢) = logit Q(Pr,) — 2=

Ro(Wi) = EsR{¥x(Pr), Qo}.

Assume that h/g, h/go, wo, Qo, and O have supremum norm smaller than a constant C<oo with probability
1. Let M, be the total number of possible points for (k,ex) across k =1,...,K,, so that M,, < n°K,. Define
R(Wk, o) =R(¥x) — R(yo) and Ro(¥x, ) = Ro(¥x) — Ro(y,), where
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R(%) = EsR{¥y(Pr), Q(Pr), Qu(Py)}
is the TMLE of Ro (‘i’k). The expression a, <b, means that a, < cby for a constant c. For a function f(Pr,) of O,
define the norm ||f (Pr)||, s = \/EsPof (P1)’h. We have for each & > 0, there exists a c(M, )< oo so that

S P 1+ logM,
VERo (¥ wo) — \/(1+ 20)ERo (¥, o) S /(M 0)—— B2
1+ log M,

n \/(1 +O)EN§(Pr) = Sollos— 72—

+ (1+ O)E|Ig(Pr) — gollos ElQx(Pr) — Qollo:s
+ (1+ 0)E|(&(Pr) — 80)(Qy(Pr) — Qo)llos:

where ég is the CV-TMLE of Qo obtained when the target parameter is R(y,), and k is either k or I~<, whichever
gives the worst bound.

A proof of this theorem is provided in Appendix B. The use of a grid of size n° for constant ¢ when
estimating ¢, does not represent a limitation of the result of the theorem, since the result without the grid
will be similar up to a term Op(1/+/n) that does not affect the asymptotic behavior of the CV-TMLE selector.
However, a grid of size n® allows the proof presented in Appendix B.

The following corollary provides the conditions under which the CV-TMLE selector is asymptotically
equivalent to the oracle selector.

Corollary 1 (Asymptotic optimality). In addition to the conditions of Theorem 2, assume that
1+ log M, 1
n ERO (\ifl}v WO)
1+ log M, ElIg(P1) — ollos
vn ERo (Wi, wo)
E|§(Pr) — SollosE%|Qi(Pr) — Qollos

—0 as n—

0 as n— o

0 as n— o

Ej%o(\i’i@‘//o)
E/|(8(Pr) — g0)(Qi(Pr) — O
||(&(Pr) :%’O)EQo( T) QO)HO'SHO 45 s oo,
ERO(\IJ]"@WO)
then A
IMHI as n— oo.
ERo(¥;, vo)
Since

ERy (¥}, o) = E”(‘i’,;(ﬂ"r) — o) dudQu o = E||(¥(Br) — o)/ VBB

the convergences assumed in Corollary 1 are expected to hold, for example, if g converges to g, at a rate
faster than ¥ converges to y,,.

In the following section, we will show the results of a simulation study in which the finite sample size
properties of the CV-TMLE based selector of their risk are explored for a specific data generation process.

5 Simulation

In order to explore some of the finite sample size properties of the risk estimators and the selectors based on
them, we performed a Monte Carlo simulation. We generated 500 samples of sizes 100, 500 and 1,000 from
the following data generating process:
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w; ~ U{o, 1}

W, ~ Ber{0.7}

W3 ~N{W;,0.25 x exp(2W)}

A~ Beta{v(W)u(W), v(W)[1 - u(W)]}
Y ~Ber{Qo (4, W)},

where

v(W) = exp{1 + 2W;expit(Ws)}
u(W) = expit{.03 — .8log(1 + W>) + .9 exp(W;) W, — .4 arctan(W5 + 2)W,W; }
Qo(A, W) = expit{fZ + 1.5A + 5A3 — 2.5W; + 5AW, — lOg(A)W1W2 + .5A3/4W1W3}.

Under this parameterization E(A|W) = u(W). We considered four candidates algorithms given by
marginal structural models (MSM) of the form logit ¥,(a) = my(a, 8), where m, is a polynomial of degree
p = 1,...,4 on a with coefficients #; : j = 0,...,p. The coefficients §; were estimated with IPTW estimators
as presented in Robins et al. [16] and Neugebauer and van der Laan [17]. The true value of
wo(a) = E{Qo(a,W)} was computed from this data generating distribution by drawing a sample of size
100.000 and, for each a, computing the empirical mean of Qo(a, W). All the simulations were performed
assuming the true parametric model for the outcome and treatment mechanism was known. Figure 1
presents the true dose-response curve, as well as the expectation of the candidate estimators across the
500 samples. From this graph, we can see that among the candidates chosen, a polynomial of degree 2
seems to provide the closest approximation to the true dose-response curve with fewer parameters, there-
fore providing the best bias-variance trade-off. Table 1 shows the expectation of the random variable
1?(‘1’,,) —f?o(\l’p), which from Theorem 1 should approach zero as the sample size increases. As we can
see, that is not the case for the CV-A-IPTW estimator with sample size 100 due to the presence of empirical
violations of the positivity assumption that cause very small treatment weights and therefore very unstable,
non-regular estimates. However, that problem seems to be fixed asymptotically, since for large sample sizes
empirical violations of the positivity assumption are less likely to occur.

Table 2 shows the proportion of estimates that fell outside the interval (-10, 10) or fell out of the
parameter space. The interval (-10, 10) was chosen arbitrarily and represents an extreme of inadmissible
bounds for an estimator of a parameter that ranges in the interval (0, 1). Since the TMLE is a substitution
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Figure 1 True y,(a) and expectations of the four candidate estimators of degree p
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Table 1 Expectation of R(¥,) — Ro(¥,) across 500 simulated samples

Risk estimator Candidate degree p n
100 500 1,000

CV-A-IPTW 1 -1.1436 0.0067 0.0048
2 -1.1716 -0.0061 0.0042

3 -1.0788 -0.0054 0.0043

4 -1.0194 -0.0053 0.0032

CV-TMLE 1 0.0063 0.0054 0.0046
2 0.0085 0.0054 0.0041

3 0.0091 0.0059 0.0043

4 0.0094 0.0058 0.0042

Table 2 Proportion of estimates outliers (< — 10 or > 10) and proportion of estimates out of bounds (<0 or > 1)

Risk estimator Candidate degree p n
Outliers Out of bounds

100 500 1,000 100 500 1,000

CV-A-IPTW 1 0.0098 0.0000 0.0000 0.0547 0.0020 0.0020
2 0.0078 0.0000 0.0000 0.0527 0.0020 0.0020

3 0.0098 0.0000 0.0000 0.0488 0.0020 0.0020

4 0.0098 0.0000 0.0000 0.0508 0.0020 0.0020

Table 3 Expectation of f?(‘l’,,) - ﬁo(Wp)across 500 simulated samples after removing estimates out of bounds

Risk estimator Candidate degree p n
100 500 1,000

CV-A-IPTW 1 0.0034 0.0064 0.0048
2 -0.0076 -0.0062 0.0042

3 -0.0083 -0.0054 0.0043

4 -0.0083 -0.0055 0.0032

CV-TMLE 1 0.0059 0.0055 0.0045
2 0.0082 0.0054 0.0039

3 0.0089 0.0059 0.0041

4 0.0093 0.0058 0.0042

estimator, all the estimates fell within the parameter space and are thus not presented. Due to practical
violations of the positivity assumption previously mentioned, an important proportion (around 5%) of the A-
IPTW estimates fell outside the parameter space for sample size 100.

Table 3 contains the expected values of R(¥,) — Ro(¥,) across 500 simulated samples once the
estimates that fell outside the interval (0, 1) were removed. In this case, the expectation of the A-IPTW-
based estimator of the risk is much closer to what is expected theoretically and had already been achieved
by the TML estimator.

Finally, Table 4 shows the proportion of times that a given candidate is chosen according to the A-
IPTW, TMLE and the oracle selector. As we can see, both the A-IPTW- and the TMLE-based selectors perform
similar to the oracle selector, particularly as the sample size increases, thus showing no apparent advantage
(at least for this particular data generating mechanism) of either method when evaluated as a candidate
selector procedure.



DE GRUYTER I. Diaz and M. J. van der Laan: Estimation of the Causal Dose—Response Curve == 185

Table 4 Proportion of times that a given candidate is chosen according to each risk estimator

p n
100 500 1,000

TMLE A-IPTW Oracle TMLE A-IPTW Oracle TMLE A-IPTW Oracle

1 0.37 0.24 0.39 0.11 0.08 0.05 0.03 0.05 0.00
2 0.44 0.48 0.54 0.63 0.60 0.74 0.59 0.59 0.74
3 0.11 0.17 0.06 0.14 0.20 0.17 0.24 0.21 0.20
4 0.07 0.11 0.01 0.12 0.12 0.04 0.14 0.15 0.06

6 Discussion

In this article, we discuss estimation of the causal dose-response curve for cross-sectional studies and
propose a procedure for selecting an estimator among a list of candidate algorithms. In particular, we
introduced a cross-validated targeted minimum loss—based estimator of the risk of an estimator and its
associated candidate selector. The approach we propose differs from commonly used approaches in that we
aim to choose an algorithm among a list of candidates to fit the true dose—response curve in situations in
which its functional form is unknown.

The use of augmented inverse probablity of treatment weigthed estimators of the risk has alread been
discussed in van der Laan and Dudoit [18], in this article we provide a targeted minimum loss—based
analogous estimator that has improved performance, as demonstrated by the simulations and analytical
properties of the estimators. We provide a theorem establishing asymptotic linearity of the risk estimator,
which together with its variance estimator can be used to construct hypothesis tests and confidence
intervals. We also provide a theorem proving an oracle inequality bounding the expectation of the CV-
TMLE risk estimator. The main corollary of this theorem is a result that establishes asymptotic equivalence
of the CV-TMLE selector and the oracle selector.

The asymptotic optimality of cross-validation procedures such as the super learner [24] and our
proposal is best exploited with very rich libraries of candidate estimators that contain algorithms that
can provide an accurate description of the true underlying statistical (or causal) parameter. The aspects
that must be taken into account when postulating candidate estimators for the dose-response curve are
analogous to those in estimation of the regression function. For example, one can decide to add a
candidate to the library because it represents prior knowledge about the nature of the phenomena
under study, or because it is data-adaptive enough to accomodate various data generating processes.
Since the extent to which the postulated algorithms approximate the true curve will often be unknown
to the user, cross-validation selection will be optimal with libraries that contain a rich class of
algorithms, some of which should be data-adaptive or non-parametric. Unfortunately, estimation of
the causal dose-response curve has received very little attention from the machine learning research
community and few data-adaptive estimators are available.

However, in a situation in which the library consists of a few parametric models (e.g. the MSMs in the
simulations), our proposal provides an optimal model selection tool. Asymptotic equivalence to the oracle
selector guarantees that our selector will asymptotically pick the parametric model that is closest to the true
dose-response curve, among those in the library.

Appendix A

In this appendix, we will proof Theorem 1. This proof follows closely the proofs presented in Zheng and van
der Laan [30] for a general CV-TMLE. Those proofs rely heavily on empirical process theory, of which van
der Vaart and Wellner [31] provide a complete study.
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Proof of Theorem 1. First of all note that
R(‘//’ Q) - R(W7 QO) - _POD{Oa QW7g0a l//}7

which implies that
R(¥y) — Ro(¥) = ~EsPoD{Q" (Pr), Qw(Py). go. ¥ (Pr)}.
Note that
EsPyD{Q (Pr), Qw(Py),&(Pr), ¥i(Pr)} = 0,
so that we can write

R(¥x) — Ro(¥y) = Es(Py — PO)D{é*(IP’T), Qw(Pv),&(Pr), ¥i(Pr)}
+ EsPo[D{Q (Pr), Qu (Pv). &(Pr), ¥i(Pr)} — D{Q (Pr),Qu(Pv). %0, ¥i(Pp)}]  (19)
= Eg(Py — PO)D{é*(IP’T), Qw(Pv),&(Pr), ¥i(Pr)}

i Espog‘)g;TiSf;)h[{Oz,o — Q(Pr)} — 29 (Pr) (D10 — Q) (Pr))]. (16)

We will first handle the term (16). By Cauchy-Schwarz, eq. (16) can be bounded by

8o —8(Pr) & 0
h T Py) — ]P)
e M@ g g 1% F0) ~ BFDos
_&(Pr) . - 2,
+ EgPowh{Qz,o — Q,(Po)}
8o8(Pr) (17)
~ — g P 2 % Z %

— 28};5) |h(a,v)¥(Pry) (QWHV% ll0.s11Q; (Po) — Q1 (P1)]lo s

- zEspogOgo‘gTﬁg)”h@k@T){@w — Ql(Po)}.

Using a similar argument, the last term can be bounded (using assumption 1 and up to universal
constants) by

~ = —-g(P = Z ~
1E(Pr) = golloslIPk(Br) — wollos + EsPo&g—gz(”h%{ol,o (P} + 112(Pr) — g0l
0

whereas the second term in eq. (17) is bounded by

Eopy £ =B Qa0 — 0300} + 1Pr) — s
Therefore B
R(¥k) — Ro(¥k) = Es(Pv — Po)D{Q (Pr),Qw(Pv),8(Pr), ¥i(Pr)}
+ ESPOgO*TQ%)UPﬂh[{Qz,O ~ Q5(Po)} — 200 (D10 — O} (Po)}] (18)
-+ Rem,,
where

Rem, < [1g0 — &(P1)llo.s{allQ3(Po) — Q3(Pr)llos — BIIQ; (Po) — @} (Pr)llps
+ cl[¥(Pr) — Yollos + dllgo — 8(Pr)llos}

for constants a, b, c, d.
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On the other hand, since EsPyf = Pf when f does not depend on S, we may rewrite (15) as
Es(Py — Po)D{Q (Pr), Qu(Py),g(Pr), ¥(Pr)}

= Es(Py — Po)[D{Q (Pr), Qu(Py),&(Pr). ¥(Pr)} — D{Q (Po). Qw.o. 8. ¥ )] 1)
+ (P — Po)D{Q" (Po), Qw.0,80, ¥o }

Following similar arguments to those presented by Zheng and van der Laan [30], and using the assumptions
of the theorem, it can be proven that (19) is op(1/+/n), which implies

Es(Pv — Po)D{Q(P1) (), Quw (Pv),8(Pr), Wi(Pr)}
= (P — Po)D{Q(Po)(0),8(Po), o} + 0p(1/vn).
This result, together with eq. (15) and assumptions 2, 3 and 4, yields

R(¥y) — Ro(¥y) = (P — Py) [D{Q(Po), Qw.0. 8o, ¥o + 1Cg(Po)]| + 0p(1/v/n). O

Appendix B
Before proceeding to prove Theorem 2, we will first present and prove the following useful theorem.
Theorem 3. Define R(¥y, o) = R(Wx) — R(wo) and Ro(¥x, wo) = Ro(Wx) — Ro (o), where

R(¥y) = EsR{¥x(Pr), Qy(Pr), Pv}
is the TMLE of the true conditional risk
Ro(¥x) = EsR{¥x(Pr), Qo}.
Assume
(R = Ro) (¥, o) = Es(Pv — Po)Di(Pr, Po, &) + Remy
for some function Dy that depends on (Pr, Py, éy) such that
EsPoDy(Pr, Po. k) = Ro (Wi, wo),

[|Dk(Pr, Po, k) || o <Mi<oo, and Po{Dy(Pr, Py, ék)}z < MyPoDy(PPr, Py, é). Assume also that éy falls in a finite
set with maximally n® points for some finite ¢ and denote M, = n°K,,. Then,

1+ log M,

ERo (¥}, yo) S(1+ 20)ERo (¥, wo) + c(Mi, M>, 9) + (1+ 6){ERem;, — ERem },

where c(My, My, 6) = (1 + 6)*(My/3 + M,/6)

Proof of Theorem 3.
S IA% (Al}al/lo)
= Ro(W}, vo) — (14 6)R(¥y, o) + (1+ RV}, wo)
SR ( kv‘//O) 1+5) Ak7l//0) (1+5)i€(\i”f<7‘/’0)

= Ro(¥i wo) + (1+ 0){R(¥y, wo) — Ro(W}, w0)}
— (14 O){R(¥;, o) — Ro(¥}, w0)}
+ (1+ 0)Ro (¥, wo)
-1+ 5)1?0(‘?,}, ¥o)

= (14 20)Ro(¥y, wo) + Hy + Ty,
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where
Hy = —(1+ 0)(R — Ro) (¥x, wo) — ORo (k. wo)

T = (146)(R — Ro)(¥k, wo) — Ro(¥i, o).

By using the assumptions of the theorem we get

Hk = — (1 + (S)Es(PV — 1:’())D]<(]P>T,1')07 ék) — 5E5P()Dk(IP)T,P()7 ék) — (1 + J)Remk
= Hy — (14 0)Rem,.

Following arguments similar to those presented by Dudoit and van der Laan [21] and van der Vaart et al. [23]

we have that

1+ logM
EH: <c(My, My, 8) — 82,

The same bound applies to ET;. As a consequence we obtain the desired result. O

Proof of Theorem 2. Recall from Theorem 1 that

R(¥y) — Ro(¥x) = Es(Py — Po)D{Q;(Pr), Qw(Py),8(Pr), ¥ (Pr)}

+ mm%hﬂ(%ﬂéﬁm Qo

where D is the efficient influence function

h(A, Z)y(A, Z)
g(A, W)

+] vla 2)(vla. 2) - 20(a, W)ihia, 2)duta) - R)(Q. Q).

D(Q,Qw.g.y)(0) = —2 {Y —QA, W)}

Applying this same equality to the constant algorithm v, and subtracting it from eq. (20) yields

(R = Ro) (i, o) = Es(Pv — Po) [D{Qi(Pr), Qw(Pv), §(Pr), e(Pr)} — D{ Q5 (Pr), Qu(Pv).§(Pr), vo} |

8o — §(Pr)

+ Espomh{‘i'k(lpﬂ - l/’o}{ég(PT) — Qo}
1 2E:Po 82— 8 g ) 1y Br) — B (Pr))
20&(Pr) « 0

= Es(Py — Po) [D{Q(Pr), Qu (Pv). go, Wi(Pr)} — D{Q5(Pr), Qw (v). 8o, v}
+Es(Pv — Po) ([D{Qi(Pr), Qu(Pv).8(Pr), ¥i(P1)} — D{Q,(Pr), Qu(Pv), g0, ¥(P1)}
~ [D{Q5(P1). Qu(Pv). &(P1), wo} — D{Q5(Pr), Qw(Pv). 8o, wo}])

-+ Remy; + Remy,
EEs(]P)V — Po)Dk(P,P()) + Remknl + Remk_yz + Remk_yg

(25)

(26)

where Dy(IP, Py) denotes the function inside square brackets in eq. (24), and Remy;, Rem;, and Remy;
denote egs (22), (23) and (25), respectively. From the definition of the efficient influence function D, note that

D{Q,Qw,8, v} = Log(w) — R(y, Q, Qw), which implies
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Es(Py — Po)Dy (P, Py) = Es(Py — Po) [Lé;(PT)~ (¥(Pr)) — ]}»T)go(l//O)} )
— Es(Py — Po) [R{‘P(PT% Qs (Pr), Qw(Pv)} — R{wo, Qy(Pr), QW(PV)}} ;

where the term inside square brackets in eq. (27) is a constant, and (27) equals zero. Note that
Qk(PT) = Q(Pr)(éx) depends on Py only through &, thus allowing us to rewrite

(R — Ro)(¥x, wo) = Es(Py — Po)Dy(Pr, Po, &) + Remy ; + Remy, + Remy 3,
for

Dy(Pr,Po,éx) =L (¥e(Pr)) —

0;(Pr) .20 Ly by (W0)-

From the identity PoLg e, () = PoLg,(y)(Lg denotes the g-comp loss function) we have that
EsPoDi(Pr, Po, &) = Ro(Wi, o).

This fact together with eq. (26) prove that D; satisfies the conditions of Theorem 3, with
Rem; = Rem,;; + Rem,; + Rems,. By application of Theorem 3 we obtain

Eﬁo (\Ijka ‘//O) (1 =+ 25)ER0 (\I]}b ‘/IO)

1+ log M,
n

+ c(My, My, 5) + (14 0){ERem; — ERem, }.

It remains to study ERemy. Let us first consider ERem, ;. Note that

(% (Pr) — wo)/v/Zollo.s = Ro(Pk. wo)

Since go and g(Pr) are assumed bounded away from zero (positivity assumption), we can apply the
Cauchy-Schwarz inequality to obtain

ERemy x SE|(§(Pr) — 80)(Qo(Pr) — Qo)llos\/Ro(¥k. wo).
We now consider ERem, . By applying the Cauchy-Schwarz inequality we obtain

Remy < [18(P1) — 8ollosl| 0 (Pr) — @y (Pr)|loss- (28)

From the definition of &, in the CV-TMLE of R(‘i’k), note that é;: satisfies the equation

EsPy i Vi (Pr){Y - él*((]PT)} =0.

&(Pr)

Applying the same equation for y, and é};, and subtracting it from the previous one yields

Es]PV = h

sy (BB = QP —yolY - Gy(Br)}) =0,

which can be written as

BoPy 2 (WulPr) — woHY = Gi(Pr)} = EsPy o (G (Pr) — 03P},
which implies
EsPo s ol GPr) ~ Gi(Pr)} = Es(By — Po) s (A(Pr) — po) (¥ — O3(Pr)
- Ex(Py ~ Po) 27 vo{Gi(Pr) — 0y (Pr)
~ EsPy - h (W)~ yoHOL(BT) - Qo).

g()
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By empirical process theory [31, theorem 2.14.1], noting that the first two terms are empirical processes
applied to functions in a class of functions # = {f(k, ek, 0) : k, ek, €0}, the expectations of the first two

terms are bounded by (1 + log M,,)/+/n. The third term is bounded by 1/Ro (¥, z//0)||é,’:(]P’T) — Oo||015. These
facts together with eq. (28) yield

1+ log M,
vn

+ E||¢(Pr) — 80) 1o/l (Q(Pr) = Qo)llos/ Ro (i wo),

Finally, consider the term Rems ;. We can bound this term by maxy., ., Es(Py — Po)D(Pr, k, &, €0), for

ERemy SE[|8(Pr) — 8ollos

D(Pr. k. ek, <0) = D{Qu(Pr). Qu (Bv). &(Pr). ¥i(Pr)} — D{Q;(Pr), Qw(Pv). o, ¥ul(Pr)}
— D{Q,(Pr), Qw(Pv), &(Pr), wo} + D{Q5(Pr), Qw(Pv). 8o, w0}
- h%{‘{’ (Pr)(Y = Qu(Pr)) — oY — Qg (Pr))}

Let F(IPr)be the envelope of the class of functions % (Pr) = {D(Pr, k,ex,c0) : k, ek, €0}, over which we take
the maximum. We have PoF(Pr)* < llg(Pr) — gon)’S. We will apply the following inequality for empirical
processes indexed by a finite class of functions 7 :

Emax|IP’ Po)f| < WHFHp

where F is an envelope of . Thus, given Pr, we can bound the conditional expectation of Rem;; by
(1+log My)||g(P1) — 8ollys/+/n, which results in the following bound for the marginal expectation:

1+ log M,
vn

Accumulation of these bounds for the different components of Rem; and Rem;, yields the following inequality:

ERems < El|g(Pr) — gollos-

ERo(¥;, vo) < (1+ 20)ERo (¥, yo)
1+ log(Ky)

+c(M,0) .

+ (1+ 0)E|| §(Pr) — 80)(Qo(Pr) — Qo)llo s/ ERo (¥ wo)

+ (1+ O)E|Z(Pr) — gollosElIQ(Pr) — Qollo.s\/ ERo (¥} vo)

+ (1+ O)E|I§(Pr) — gollo sEIQ(Pr) — Qollosy/ ERo (¥, wo)

1+logM, _ .
+ 4= R EIBED) ~ ol

< (14 20)ERo (¥, wo)

+c(M,5)l+l(:lg( Kx)

+ (14 O)E||(8(Pr) — £0)(Q5(Pr) — Qo)llos\/ERo (¥} wo)
+ (14 9)E|IZ(Pr) — gollosElQk(Pr) — Qollos\/ERo(¥. wo)

. 1+1logM(n
+ U+ EP) ~ ollps o,
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where k is either k or I~<, whichever gives the worst bound. This inequality can be written as x?> — bx <c, for

b= (1+0)E||2(Pr) — gollosl|Q4(Pr) — Qollos
+ (14 6)E||(8(Pr) — £0)(Q)(Pr) — Qo)llos

1+ log M,

n

1+ log M,

¢ =c(M,9) T

+ (1+ 9)E[1g(Pr) — gollos

and can be solved using the quadratic formula as x < (b + v/b? + 4c)/2, which in turn implies x < b + +/c,
proving Theorem 2. O]
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