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Abstract: Suppose that we observe a population of causally connected units. On each unit at each time-
point on a grid we observe a set of other units the unit is potentially connected with, and a unit-specific
longitudinal data structure consisting of baseline and time-dependent covariates, a time-dependent treat-
ment, and a final outcome of interest. The target quantity of interest is defined as the mean outcome for this
group of units if the exposures of the units would be probabilistically assigned according to a known
specified mechanism, where the latter is called a stochastic intervention. Causal effects of interest are
defined as contrasts of the mean of the unit-specific outcomes under different stochastic interventions one
wishes to evaluate. This covers a large range of estimation problems from independent units, independent
clusters of units, and a single cluster of units in which each unit has a limited number of connections to
other units. The allowed dependence includes treatment allocation in response to data on multiple units
and so called causal interference as special cases. We present a few motivating classes of examples, propose
a structural causal model, define the desired causal quantities, address the identification of these quantities
from the observed data, and define maximum likelihood based estimators based on cross-validation. In
particular, we present maximum likelihood based super-learning for this network data. Nonetheless, such
smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly bias w.r.t.
the target parameter, and, as a consequence, generally not result in asymptotically normally distributed
estimators of the statistical target parameter.

To formally develop estimation theory, we focus on the simpler case in which the longitudinal data
structure is a point-treatment data structure. We formulate a novel targeted maximum likelihood estimator
of this estimand and show that the double robustness of the efficient influence curve implies that the bias of
the targeted minimum loss-based estimation (TMLE) will be a second-order term involving squared differ-
ences of two nuisance parameters. In particular, the TMLE will be consistent if either one of these nuisance
parameters is consistently estimated. Due to the causal dependencies between units, the data set may
correspond with the realization of a single experiment, so that establishing a (e.g. normal) limit distribution
for the targeted maximum likelihood estimators, and corresponding statistical inference, is a challenging
topic. We prove two formal theorems establishing the asymptotic normality using advances in weak-
convergence theory. We conclude with a discussion and refer to an accompanying technical report for
extensions to general longitudinal data structures.
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1 Introduction and motivation

Most of the literature on causal inference has focussed on assessing the causal effect of a single or multiple
time-point intervention on some outcome based on observing n longitudinal data structures on n

doi 10.1515/jci-2013-0002 J. Causal Infer. 2014; 2(1): 13–74



independent units that are not causally connected. For literature reviews, we refer to a number of books on
this topic: Rubin [1], Pearl [2], van der Laan and Robins [3], Tsiatis [4], Hernán and Robins [5], and van der
Laan and Rose [6].

Such a causal effect is defined as an expectation of the effect of the intervention assigned to the unit on
the unit’s outcome, and causal effects of the intervention on other units on the unit’s outcome are assumed
non-existent. As a consequence, causal models only have to be concerned about the modeling of causal
relations between the components of the unit-specific data structure. Statistical inference is based on the
assumption that the n data structures can be viewed as n independent realizations of a random variable, so
that central limit theorems (CLTs) for sums of independent random variables can be employed. The latter
requires that the sample size n is large enough so that statistical inference based on the normal limit
distributions is indeed appropriate.

In many applications, one may define the unit as a group of causally connected individuals, often
called a community or cluster. It is then assumed that the communities are not causally connected, and that
the community-specific data structures can be represented as n independent random variables. One can
then define a community-specific outcome and assess the causal effect of the community level intervention/
exposure on this community-specific outcome with methods from the causal inference literature. Such
causal effects incorporate the total effect of community level intervention, where the effect of the commu-
nity level exposure on an individual in a community also occurs through other individuals in that same
community.

We refer to Halloran and Struchiner [7], Hudgens and Halloran [8], VanderWeele et al. [9], and Tchetgen
Tchetgen and VanderWeele [10] for defining different types of causal effects in the presence of causal
interference between units. Lacking a general methodological framework, many practical studies assume
away interference for the sake of simplicity. The risk of this assumption is practically demonstrated in Sobel
[11], who shows that ignoring interference can lead to completely wrong conclusions about the effectiveness
of the program. We also refer to Donner and Klar [12], Hayes and Moulton [13], and Campbell et al. [14] for
reviews on cluster randomized trials and cluster level observational studies.

In many such community randomized trials or observational studies, the number of communities is very
small (e.g. around 10 or so), so that the number of independent units itself is not large enough for statistical
inference based on limit distributions. In the extreme, but not uncommon, case, one may observe a single
community of causally connected individuals. Can one now still statistically evaluate a causal effect of an
intervention assigned at the community level on a community level outcome, such as the average of
individual outcomes? This is the very question we aim to address in this article. Clearly, causal models
incorporating all units are needed in order to define the desired causal quantity, and identifiability of these
causal quantities under (minimal) assumptions need to be established without relying on asymptotics in a
number of independent units.

An important ingredient of our modeling approach carried out in this article is the incorporation of
network information that describes for each unit i (in a finite population of N units) at certain points in time
t a set of other units FiðtÞ � f1; . . . ;Ng this unit may receive input from. This allows us to pose a structural
equation model for this group of units in which the observed data node at time t of a unit i is only causally
affected by the observed data on the units in FiðtÞ, beyond exogenous errors. This group of friends needs to
include the actual immediate friends of unit i that directly affect the data at time t of unit i, and if one knows
the actual immediate friends, then FiðtÞ should not include anybody else. Such a structural equation model
could be visualized through a so-called causal graph involving all N units, which one might call a network.
Our assumptions on the exogenous errors in the structural equation model will correspond with assuming
sequential conditional independence of the unit-specific data nodes at time t, conditional on the past of all
units at time t. That is, conditional on the most recent past of all units, including the recent network
information, the data on the units at the next time-point are independent across units. The smaller these
sets FiðtÞ (i.e. friends of i at time t) can be selected, the fewer incoming edges for each node in the causal
graph, the larger the effective sample size will be for targeting the desired quantity. Even though these
causal graphs allows the units to depend on each other in complex ways, if the size of FiðtÞ is bounded
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universally in N and under our independence assumptions on the exogenous errors, it will follow that the
likelihood of the data on all N units allows statistical inference driven by the number of units N instead of
driven by the number of communities (e.g. 1). In future work, we will generalize our formal asymptotic
results in which FiðtÞ is universally bounded, to the case in which the size of FiðtÞ can grow with N.

To precisely define and solve the estimation problem, we will apply the roadmap for targeted learning
of a causal effect (e.g. Refs [2, 6, 15]). We start out with defining a structural causal model [2] that models
how each data node is a function of parent data nodes and exogenous variables, and defining the causal
quantity of interest in terms of stochastic interventions on the unit-specific treatment nodes. The structural
assumptions of the structural causal model could be visualized by a causal graph describing the causal
links between the N units and how these links evolve over time, and from that it is clear that this structural
causal model describes what one might call a dynamic causal network.

As mentioned above, our structural equation model also makes strong independence assumptions
on the exogenous errors, which imply that the unit-specific data nodes at time t are independent across
the N units, conditionally on the past of all N units. We refer to this assumption as a sequential
conditional independence assumption. Thus, it is assumed that any dependence of the unit-specific
data nodes at time t can be fully explained by the observed past on all N units. (In our technical report,
we weakened this assumption to allow for residual dependence after this adjustment, among units that
are causally connected.) As a next step in the roadmap, we then establish the identifiability of the
causal quantity from the data distribution under transparent additional (often non-testable) assump-
tions. This identifiability result allows us to define and commit to a statistical model that contains the
true probability distribution of the data, and an estimand (i.e. a target parameter mapping applied to
true data distribution) that reduces to this causal quantity if the required causal assumptions hold. The
statistical model needs to contain the true data distribution, so that the statistical estimand can be
interpreted as a pure statistical target parameter, while under the stated additional causal conditions
that were needed to identify the causal effect, it can be interpreted as the causal quantity of interest.
This statistical model, and the target parameter mapping that maps data distributions in this statistical
model into the parameter values, defines the pure statistical estimation problem. As a next step in the
roadmap, we develop targeted estimators of the statistical estimand and develop the theory for
statistical inference. To understand the deviation between the estimand and the causal quantity under
a variety of violations of these causal assumptions, one may carry out a sensitivity type analysis [16–18,
36], which represents the final step of the roadmap.

Since the statistical model does not assume that the data generating experiment involves the repetition
of independent experiments, the development of targeted estimators and inference represents novel and
new challenges in estimation and inference that, to the best of our knowledge, have not been addressed by
the current literature. TMLE was developed for estimation in semi-parametric models for i.i.d. data [6, 19, 20]
and extended to a particular form of dependent treatment/censoring allocation as present in group
sequential adaptive designs [19, 21, 22] and community randomized trials [23]. In this article, we need to
generalize TMLE to the complex semi-parametric statistical model presented in this article, and we also
need to develop corresponding statistical inference.

Our models generalize the models in the causal inference literature for independent units. Even though
in this article our causal model models a single group of units, it obviously includes the case that the units
can be partitioned in multiple causally independent groups of units. In addition, our models also incorpo-
rate group sequential adaptive designs in which treatment allocation to an individual can be based on what
has been observed on previously recruited individuals in the trial [19, 21, 22, 24]. Our models also allow that
the outcome of an individual is a function of the treatments other individuals received. The latter is referred
to as interference in the causal inference literature. Thus the causal models proposed in this article do not
only generalize the existing causal models for independent units, but they also generalize causal models
that incorporate previously studied causal dependencies between units. Finally, we note that our models
and corresponding methodology can also be used to establish a methodology for assessing causal effects of
interventions on the network on the average of the unit-specific outcomes. For example, one might want to
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know how the community level outcome changes if we change the network structure of the community
through some intervention, such as increasing the connectivity between certain units in the community. In
this case, our treatment nodes need to be defined as properties of the sets FiðtÞ so that a change in treatment
corresponds with a change in the network structure.

Nonetheless, our assumed universal bounds on the size of FiðtÞ in our formal results exclude many
realistic and important types of networks, demonstrating that our asymptotic theorems need to be further
generalized in order to capture many realistic networks, but that will be beyond the scope of this article.

1.1 A bibliographic remark and possible relation to network literature

We acknowledge that our contribution does not really fit well in the current literature on networks, which is
much more concerned with properties of the network structure and uses particular types of models and
estimands that are often not embedded within a causal model as we have done here (e.g. Ref. [25]). Our
contribution is aligned and builds on the current causal inference literature (Neyman–Rubin or Pearl’s
structural equation models) to define the causal quantity of interest and establish identifiability from
observed data. In addition, it builds on the modern literature of targeted learning in semi-parametric
models and weak-convergence theory in order to deal with the estimation problem based on dependent
data. Nonetheless, we think it is appropriate to define and model networks of units in terms of a structural
equation model, so that the impact of interventions on this network of units can be formally defined, and
methods for assessing such causal effects can be developed, as we do in this article. Therefore, we suggest
and hope that our contributions may become relevant to the literature on networks.

In this article, we focussed on the case that we observe all N units in the population, while we refer to
our technical report for generalizing this to sampling a random sample from this population of N units. We
also restricted our attention to particular types of causal quantities, namely the counterfactual mean under
a stochastic intervention on the unit-specific treatment nodes (and thereby also causal contrasts). The
network literature, on the other hand, has been much more focussed on particular types of direct/indirect
and peer effects among others (e.g. see Bakshy et al. [26] and Airoldi et al. [27] for estimation of causal peer
influence effects, and the above references). We hope to apply our framework and approach to tackle such
questions as well in future research.

We refer to Aronow and Samii [28] for an inverse probability of treatment weighted approach for
estimation of an average causal effect (ACE) under general interference, relying on the experimental design
to generate these required generalized propensity scores. In addition, these authors also provide finite
sample positively biased estimators of the true (non-identifiable) conditional variance of this IPTW-estima-
tor, conditioning on the underlying counterfactuals, again relying on knowing the generalized propensity
score. In addition, the authors consider asymptotics when one observes multiple independent samples from
subpopulations, the number of subpopulations converging to infinity, each sample allowing for their
general type of interference.

Their innovative approach relies on defining an exposure model that maps the treatment nodes of the N
units and specified characteristics of unit i into a generalized exposure of unit i. For example, you might
define this generalized exposure as the vector of exposures of the friends of unit i, beyond the exposure of
unit i itself. It defines for each unit i the counterfactual outcome corresponding with the static intervention
that sets this generalized exposure to a certain value, same for each unit i, and then defines the counter-
factual mean outcome as the expectation of the average of these unit-specific counterfactuals. It inverses
probability weights by the conditional probability of this generalized exposure to obtain an unbiased
estimator of this expectation of the average of these counterfactual outcomes.

Our model includes the case of observing many independent clusters of units as a special case, but by
assuming more general conditional independence assumptions we also allow for asymptotic statistical
inference when we only observe one population of interconnected units, we define causal quantities in
terms of stochastic interventions on the N unit-specific exposures, we allow for more general dependencies
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than interference, and we develop highly efficient estimators that are very different from the above-
mentioned IPTW-type estimator, overall making our approach distinct from Aronow and Samii [28].

1.2 Organization of article

The organization of this article is as follows.

Section 2: We formulate a counterfactual causal model that can be viewed as an analogue of the structural
causal model actually used in this article. This section provides a perspective of the contribution of this
article in the context of the causal inference literature that relies on the Neyman–Rubin model, demonstrat-
ing that in essence it corresponds with allowing for (statistical) dependence between the unit-specific
counterfactuals indexed by interventions on the total of N unit-specific exposures, allowing for the unit-
specific counterfactuals to be affected by the treatments of other units (i.e. causal interference between the
units), and that the treatment assigned to a unit are informed by other units in the population. This section
is succinct and is not necessary for understanding the remainder of the article.

Section 3: We present our structural causal model that models the data generating process for a population
of interconnected units, where changes of the connections over time (i.e. FiðtÞ) themselves are part of the
randomness. Specifically, it represents a model for the distribution of ðO;UÞ ¼ ðOi;Ui : i ¼ 1; . . . ;NÞ, where
Oi denotes the observed data on unit i, and Ui represents a vector of exogenous errors for the structural
equations for unit i. This structural causal model allows us to define stochastic interventions denoted with
g� on the collection of unit-specific treatment nodes (contained in Oi), and corresponding counterfactual
outcomes. The causal quantity, denoted with E 1=N

PN
i¼1 Yi;g�

� �
, is defined in terms of the (possibly condi-

tional) expectation of the intervention-specific counterfactual outcomes Yi;g� , and it represents a parameter
of the distribution of ðO;UÞ. Subsequently, we establish identifiability of the causal quantity from the data
distribution P0 of data O ¼ ðO1; . . . ;ONÞ on the N units, commit to a statistical model M for the probability
distribution P0 of O, define the statistical target parameter mapping Ψ : M ! IR that defines the estimand
ΨðP0Þ, where the latter reduces to the causal quantity under the additional assumptions that were needed to
establish the identifiability. The statistical estimation problem is now defined by the data O,P0 2 M, the
statistical model M and target parameter Ψ : M ! IR . The parameter ΨðPÞ only depends on P through a
parameter Q ¼ QðPÞ. Therefore, we also use the notation ΨðQÞ to denote this target parameter ΨðPÞ.
Section 4: We discuss maximum likelihood estimation (MLE), unified loss-based cross-validation [29–31],
and likelihood based super-learning [32, 33] of the relevant factor of P0 (which implies Q0). The resulting
smoothed/regularized maximum likelihood substitution estimators ΨðQNÞ are not targeted and will thereby
be overly biased w.r.t. the target parameter ΨðQ0Þ, and, as a consequence, generally not result in asympto-
tically normally distributed estimators of the statistical target parameter. Thus there is a need for targeted
learning (targeting the fit toward ψ0) instead of MLE.

Section 5: We present heuristic arguments demonstrating that the log-likelihood of O will satisfy a local
asymptotic normality condition [34, 35] so that efficiency theory can be applied to pathwise differentiable
target parameters of the data distribution. As demonstrated in van der Vaart [35], under local asymptotic
normality the normal limit distribution of the MLE (ignoring all regularity conditions that would be needed
to establish the asymptotic normality of the MLE) is optimal in the sense of the convolution theorem [34]. In
this section, we demonstrate that the variance of the efficient influence curve (i.e. the canonical gradient of
the pathwise derivative of the target parameter) corresponds with the asymptotic variance of a maximum
likelihood estimator of the target parameter. From this, we learn that our goal should be to construct
estimators that are asymptotically normally distributed with variance equal to the standardized variance of
the efficient influence curve (and thus asymptotically equivalent with a MLE), while appropriately dealing
with the curse of dimensionality through super-learning and TMLE [6, 20].
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In the remainder of the article, we focus on the simpler single time-point longitudinal data structure in
which Oi ¼ ðWi;Ai;YiÞ, where Wi are baseline covariates, Ai is the subsequent treatment assigned to unit i,
and Yi is the final outcome of interest measured on unit i. This simplification allows us to present a TMLE in
closed form and formally analyze this TMLE, while much of what we learn can be generalized to general
longitudinal data structures.

Section 6: We derive the efficient influence curve, also called the canonical gradient of the pathwise
derivative of the statistical target parameter [34, 35]. We also establish that the expectation of the efficient
influence curve D�ðQ; gÞ under misspecified parameters ðQ; gÞ of the data distribution can be represented as
ΨðQ0Þ �ΨðQÞ plus a product of differences of Q and Q0 and a specified hðQ; gÞ and hðQ0; g0Þ. This result
provides a fundamental ingredient in establishing a first-order expansion of the TMLE under conditions that
make these second-order terms negligible relative to the first-order term, while a separate analysis of the
first-order term (which is a sum of dependent random variables) establishes the asymptotic normality of the
TMLE.

Section 7: We present the TMLE for the causal effect of a single time-point intervention on an outcome,
controlling for the baseline covariates across the units. This TMLE generalizes the TMLE of the causal effect
of a single time-point intervention under causal and statistical independence of the units [6, 36–39]. It is
shown that the efficient influence curve satisfies a double robustness property, which implies the double
robustness of the TMLE. We also present an estimator defined as a solution of the efficient influence curve
based estimating equation: Robins and Rotnitzky [40] and van der Laan and Robins [3]. We propose
effective schemes for implementing the TMLE.

Section 8: We present a theorem establishing asymptotic normality of this TMLE for the causal effect of a
single time-point intervention and discuss statistical inference based on its normal limit distribution. The
theorem relies on modern advances in weak convergence of processes as presented in van der Vaart and
Wellner [41] and van der Vaart [35]. The proof of the theorem is deferred to the Appendix. The generalization
of the formal asymptotics results for this TMLE to the TMLE for general longitudinal data structures is also
discussed in the Appendix of our accompanying technical report.

Section 9: We present an analogue theorem for this TMLE as an estimator of the intervention-specific mean
outcome, conditional on all baseline covariates W ¼ ðW1; . . . ;WNÞ. This result avoids making any indepen-
dence assumptions on the distribution of W, and the asymptotic variance of the TMLE is reduced.

Section 10: We conclude with a summary and some remarks.

We will address the actual implementation of the proposed TMLE and simulation studies in an article in the
near future. We refer to our accompanying technical report for various additional results such as weakening
of the sequential conditional independence assumption (still heavily restricting the amount of dependence,
but allowing that, even conditional on the observed past, a subject can be dependent on maximally K other
subjects), and only observing a random sample of the complete population of causally connected units,
among others.

2 Formulation of estimation problem in terms of Neyman–Rubin
model for counterfactuals

The estimation problem defined in the next section in terms of a semi-parametric structural equation model
corresponds with the following counterfactual missing data problem formulation also called the Neyman–
Rubin causal model [1, 42–46].

Let XF
i ¼ ðLi;a : a 2 AÞ be the full-data structure consisting of all static regimen-specific counter-

factuals Li;a for unit i, where a ¼ ða1; . . . ; aNÞ represents the static regimens for all N units,
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Li;a ¼ ðLi;að0Þ; Li;að1Þ; . . . ; Li;aðτ þ 1ÞÞ is a time-dependent process up till time τ þ 1, and Li;aðtÞ only depends
on a through ð�ajðt � 1Þ ¼ ðajð0Þ; . . . ; ajðt � 1ÞÞ : j ¼ 1; . . . ;NÞ. Note that counterfactuals Li;a are indexed by a
and not just the treatment ai for unit i: we refer to Halloran and Struchiner [7], Hudgens and Halloran [8],
VanderWeele et al. [9], Tchetgen Tchetgen and VanderWeele [10], Aronow and Samii [28] for discussions of
counterfactuals under interference.

Let PF
0 be the probability distribution of XF ¼ ðXF

1 ; . . . ;X
F
NÞ and let MF be the full-data model, i.e. the

collection of possible distributions of XF . This full-data model will thus incorporate additional assumptions
such as that the counterfactuals of unit i only depend on the regimens of a subset of the N individuals and
conditional independence assumptions, as presented below. We observe the missing data
structure O ¼ ðOi : i ¼ 1; . . . ;NÞ, Oi ¼ ðA; Li ¼ Li;AÞ on the full-data XF ¼ ðXF

i : i ¼ 1; . . . ;NÞ. We view
O ¼ ðO1; . . . ;ONÞ as a missing data structure on the full-data XF ¼ ðXF

1 ; . . . ;X
F
NÞ with censoring variable A.

In other words, O ¼ ΦðA;XFÞ for a specified function Φ. We assume that the conditional density g0 of
A ¼ ðA1; . . . ;ANÞ, given XF , satisfies

g0ðAjXFÞ ¼
Yτ
t¼0

YN
i¼1

g0;t;iðAiðtÞjcAt;iÞ;

where cAt;i is a function of ð�Ajðt � 1Þ; �LjðtÞ : j ¼ 1; . . . ;NÞ. Note that this corresponds with assuming that at
each time t, AiðtÞ, i ¼ 1; . . . ;N, are independent, conditional on the past of the N subjects (i.e. a sequential
randomization assumption (SRA). We remind the reader that one definition of coarsening at random [47–49]
is that the conditional density g0ðAjXFÞ of censoring variable A, given full-data XF , w.r.t. an appropriate
dominating measure, only depends on A;XF through the censored data structure O ¼ ΦðA;XFÞ. Thus the
SRA implies that the missingness mechanism on the full-data XF satisfies coarsening at random: Note that
g0ðAjXFÞ ¼ h0ðOÞ is a measurable function h0 of O so that this assumption indeed implies the coarsening at
random assumption.

Due to this coarsening at random assumption, the likelihood of O factorizes in a full-data distribution
factor and the joint intervention mechanism g0:

P0ðA ¼ a; L ¼ lÞ ¼ PPF
0
ðLi;a ¼ li : i ¼ 1; . . . ;NÞ

���
a¼A

g0ðajXFÞ:

We use the notation L ¼ ðLi : i ¼ 1; . . . ;NÞ, La ¼ ðLi;a : i ¼ 1; . . . ;NÞ, and �LaðtÞ ¼ ð�Li;aðtÞ : i ¼ 1; . . . ;NÞ. Note
that the full-data distribution factor equals the likelihood of ðLi;a : i ¼ 1; . . . ;NÞ at set regimen
a ¼ ða1; . . . ; aNÞ at value A ¼ ðA1; . . . ;ANÞ and is thus identified by the full-data distribution PF

0. We could
model this full-data distribution factor of the likelihood as follows:

PPF
0
ðLi;a ¼ li : i ¼ 1; . . . ;NÞ

���
a¼A

¼Qτþ1
t¼0 PPF

0
ðLaðtÞ ¼ lðtÞj�Laðt � 1Þ ¼ �lðt � 1ÞÞ

¼Qτþ1
t¼0 P0ðLðtÞ ¼ lðtÞj�Lðt � 1Þ ¼ �lðt � 1Þ; �Aðt � 1Þ ¼ �aðt � 1ÞÞ

¼Qτþ1
t¼0

QN
i¼1 P0ðLiðtÞ ¼ liðtÞj�Lðt � 1Þ ¼ �lðt � 1Þ; �Aðt � 1Þ ¼ �aðt � 1ÞÞ

¼Qτþ1
t¼0

QN
i¼1 P0ðLiðtÞ ¼ liðtÞjcLt;ið�lðt � 1Þ; �aðt � 1ÞÞÞ

¼Qτþ1
t¼0

QN
i¼1

�Q0;tðliðtÞjcLt;ið�lðt � 1Þ; �aðt � 1ÞÞÞ;

where the second equality assumes coarsening at random, the third equality assumes that LiðtÞ; i ¼ 1 . . . ;N
are conditionally independent, given �Lðt � 1Þ; �Aðt � 1Þ, the fourth equality assumes that LiðtÞ only depends

on the past through an i-specific fixed (in N) dimensional summary measure cLt;i of ð�Lðt � 1Þ; �Aðt � 1ÞÞ, and
the final equality assumes that each LiðtÞ is drawn from �Q0;tð�jcLt;ið�Lðt � 1Þ; �Aðt � 1ÞÞÞ for a common �Q0;tð�j�Þ.
These assumptions define the full-data model MF . Because of these assumptions, the full-data distribution
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factor of the distribution of O only depends on PF
0 through Q ¼ ð�Q0;t : t ¼ 0; . . . ; τ þ 1Þ, so that the data

distribution if parameterized by Q; g and could thus denoted with PQ;g . The statistical model M is now
defined as fPQ;g : Q; gg, where Q; g are unspecified beyond the specifications presented above.

Our full-data target parameter is a parameter ΨF : MF ! IR d defined on the full-data model. The
factorization of the likelihood of O due to coarsening at random establishes the identifiability of
ψF
0 ¼ ΨFðPF

0Þ as a parameter of the distribution P0 of O, under the assumption that ΨFðPF
0Þ only depends

on the full-data distribution PF
0 through Q0. As a consequence, we can now define a statistical target

parameter Ψ : M ! IR d so that ψF
0 ¼ ψ0 ¼ ΨðP0Þ. We need to construct an estimator ψN of ψ0 based on

this single draw of O,P0 2 M, and we need to establish a limit distribution of the standardized estimator:ffiffiffiffi
N

p ðψN � ψ0Þ )d Z as N ! 1 for some limit distribution Z (e.g. Nð0;�Þ).
Let g� be a conditional distribution of a random variable A�, given X, satisfying coarsening at random so

that g�ðA�jXÞ ¼ h�ðA�; LA� Þ for some function h�. We refer to this choice g� as a stochastic intervention which
can be used to define a modified version of the data distribution P by replacing g by g� resulting in the
probability distribution

Pg� ðA�; L�Þ;
Yτþ1

t¼0

YN
i¼1

�Q0;tðLi�ðtÞjcLt;ið�L�ðt � 1Þ; �A�ðt � 1ÞÞÞh�ðA�; L�Þ

whose random variable is denoted with ðA�; Lg
� Þ, where we will also use the notation L� for Lg

�
. The latter

distribution Pg� is the so-called G-computation formula for the post-intervention distribution of L under the
stochastic intervention g� [45] and is a parameter of P. Under the causal model including the SRA and a
positivity assumption, Pg� would equal the post-intervention distribution Pg� of the (counterfactual) random
variable obtained by first drawing the counterfactuals XF ¼ ðLa : aÞ, then drawing an A�,g�ð�jXÞ, and

reporting ðA�; LA� Þ. A possible statistical target parameter is now given by ΨðP0Þ ¼ E0
1
N

PN
i¼1 Y

g�
i , as

addressed in this article, which equals the full-data parameter ΨFðPF
0Þ ¼ E0

1
N

PN
i¼1 Yi;g� under the causal

model.
The fact that the counterfactual outcome of subject i can be a function of the treatments of other

subjects is referred to as interference in the causal inference literature. In addition, the above formulation
allows that treatment allocation for unit i depends on data collected on other units. The above formulation
also allows dependence between the counterfactuals between different units. The above formulation can
thus be viewed as the causal inference estimation problem when interference, adaptive treatment alloca-
tion, and dependence of the counterfactuals of different units is allowed. Our structural equation model
defined in next section implies such restrictions on the distribution of the counterfactuals and defines this
same particular full-data model MF .

3 Formulation of estimation problem using a structural
causal model

For a unit i, let Oi ¼ ðLið0Þ;Aið0Þ; . . . ; LiðτÞ;AiðτÞ;Yi ¼ Liðτ þ 1ÞÞ be a time-ordered longitudinal observed
data structure, where Lið0Þ are baseline covariates, AiðtÞ denotes an action/treatment/exposure at time t,
which will play the role of intervention node in the structural equation model below, LiðtÞ denotes time-
dependent measurements on unit i, possibly including an outcome process YiðtÞ, and Yi denotes a final
outcome, realized after the final intervention node AiðτÞ. Let FiðtÞ be a component of LiðtÞ that denotes the
set of friends individual i may receive input from at time t, t ¼ 0; . . . ; τ þ 1. Thus, FiðtÞ � f1; . . . ;Ng.

If we define LðtÞ ¼ ðLiðtÞ : i ¼ 1; . . . ;NÞ, and similarly we define AðtÞ ¼ ðAiðtÞ : i ¼ 1; . . . ;NÞ, then the
observed data O ¼ ðO1; . . . ;OnÞ can be represented by a single time-ordered data structure

O ¼ ðLð0Þ;Að0Þ; . . . ; LðτÞ;AðτÞ;Y ¼ Lðτ þ 1ÞÞ:
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The latter ordering is the only causally relevant ordering, and the ordering of units within a time-point is

user supplied but inconsequential. We define PaðAðtÞÞ ¼ ð�LðtÞ; �Aðt � 1ÞÞ and PaðLðtÞÞ ¼ ð�Lðt � 1Þ; �Aðt � 1ÞÞ,
as the parents of AðtÞ and LðtÞ, respectively, w.r.t. this ordering. The parents of AiðtÞ, denoted with PaðAiðtÞÞ,
are defined to be equal to PaðAðtÞÞ, and the parents of LiðtÞ, denoted with PaðLiðtÞÞ, are also defined to be
equal to PaðLðtÞÞ, t ¼ 0; . . . ; τ þ 1, i ¼ 1; . . . ;N.

In order to define causal quantities, we assume that O is generated by a structural equation model of the
following type: first generate a collection of exogenous errors UN ¼ ðUi : i ¼ 1; . . . ;NÞ across the N units,
where the exogenous errors for unit i are given by

Ui ¼ ðULið0Þ;UAið0Þ; . . . ;ULiðτÞ;UAiðτÞ;UYiÞ; i ¼ 1; . . . ;N;

and then generate O deterministically by evaluating functions as follows:

LiðtÞ ¼ fLiðtÞðPaðLiðtÞÞ;ULiðtÞÞ
i ¼ 1; . . . ;N

AiðtÞ ¼ fAiðtÞðPaðAiðtÞÞ;UAiðtÞÞ
i ¼ 1; . . . ;N

t ¼ 0; . . . ; τ

Yi ¼ fYiðPaðYiðτ þ 1ÞÞ;UYiðτþ1ÞÞ
i ¼ 1; . . . ;N:

These functions ðfLiðtÞ : t ¼ 0; . . . ; τ þ 1Þ, ðfAiðtÞ : t ¼ 0; . . . ; τÞ are unspecified at this point, but will be sub-
jected to modeling below.

Since PaðLiðtÞÞ ¼ ð�Aðt � 1Þ; �Lðt � 1ÞÞ and PaðAiðtÞÞ ¼ ð�Aðt � 1Þ; �LðtÞÞ, an alternative succinct way to
represent this structural equation model is

LðtÞ ¼ fLðtÞðPaðLðtÞÞ;ULðtÞÞ
AðtÞ ¼ fAðtÞðPaðAðtÞÞ;UAðtÞÞ
t ¼ 0; . . . ; τ
Y ¼ Lðτ þ 1Þ ¼ fYðPaðYÞ;UYÞ:

Recall that set of friends, FiðtÞ, is a component of LiðtÞ and is thus also a random variable defined by this
structural equation model, t ¼ 1; . . . ; τ, although we decided to condition on Fið0Þ in our formal theorems

for the point-treatment data structure Oi ¼ ðLið0Þ;Aið0Þ;YiÞ in our later sections, representing the case τ ¼ 0.

Counterfactuals and stochastic interventions: This structural equation model for

ðLð0Þ;Að0Þ; . . . ; LðτÞ;AðτÞ;Y ¼ Lðτ þ 1ÞÞ;
allows us to define counterfactuals Ydðτ þ 1Þ corresponding with a dynamic intervention d on A [46,
50–53]. For example, one could define AiðtÞ at time t as a particular deterministic function di;t of the
parents PaðAiðtÞÞ of subject i ¼ 1; . . . ;N. Such an intervention corresponds with replacing the equations

for AðtÞ by this deterministic equation dtðPaðAðtÞÞ, t ¼ 0; . . . ; τ. More generally, we can replace the
equations for AðtÞ that describe a degenerate distribution for drawing AðtÞ, given U ¼ u, and PaðAðtÞÞ,
by a user-supplied conditional distribution of an A�ðtÞ, given PaðA�ðtÞÞ. Such a conditional distribution
defines a so-called stochastic intervention: Dawid and Didelez [54], Didelez et al. [55], and Diaz and van
der Laan [56].

Let g� ¼ ð�g�t : t ¼ 0; . . . ; τÞ denote our selection of a stochastic intervention identified by a set of
conditional distributions of A�ðtÞ, given PaðA�ðtÞÞ, t ¼ 0; . . . ; τ. For convenience, we represent the stochastic
intervention with equations A�ðtÞ ¼ fA�ðtÞðPaðA�ðtÞÞ;UA�ðtÞÞ in terms of random errors UA�ðtÞ. This implies the

following modified system of structural equations:
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L�ðtÞ ¼ fLðtÞðPaðL�ðtÞÞ;ULðtÞÞ
A�ðtÞ ¼ fA�ðtÞðPaðA�ðtÞÞ;UA�ðtÞÞ
t ¼ 0; . . . ; τ
Y� ¼ L�ðτ þ 1Þ ¼ fYðPaðYÞ;UYÞ;

where PaðL�ðtÞÞ is the same set of variables as PaðLðtÞÞ, but with A; L replaced by A�; L�. Let Yi;g� , or short-
hand Yi;�, denote the corresponding counterfactual outcome for unit i. A causal effect at the unit level could
now be defined as a contrast such as Yi;g�1 � Yi;g�2 for two interventions g�1 and g�2 . Note that, for a given g�,
Yi;g� ¼ Yi;g�ðU�Þ is a deterministic function of the error-term U�;ðU;UA� Þ that are inputted in the structural
equations.

Post-intervention distribution, and SRA: We assume the SRA on U,

AðtÞ?Lg� ; conditional on PaðAðtÞÞ ; ð1Þ
and UA�?U. Then, the probability distribution Pg� of ðA�; Lg� Þ is given by the so-called G-computation
formula [45, 52, 53, 55, 57]

Pg� ðA�; L�Þ ¼
Yτþ1

t¼0

YN
i¼1

PLiðtÞðLi;�ðtÞjPaðLi;�ðtÞÞÞ�g�t ðAi;�ðtÞjPaðAi;�ðtÞÞÞ;

where PLiðtÞ is the conditional distribution of LiðtÞ, given PaðLiðtÞÞ, and PaðLi;�ðtÞÞ ¼ ð�L�ðt � 1Þ; �A�ðt � 1ÞÞ. We
will denote the distribution of Lg� with PLg� . Thus, under this SRA, the post-intervention distribution Pg� is
identified from the observed data distribution of O generated by the structural equation model. The
distribution of Yi;g� corresponds now with a marginal distribution of PLg� .

ACE: One might now define an ACE as the following target parameter of this distribution of Pg� :

EPg�
1

1
N

XN
i¼1

Yi;g�1

( )
� EPg�

2

1
N

XN
i¼1

Yi;g�2

( )
:

Let �Y ¼ 1
N

PN
i¼1 Yi, so that we can also write this causal effect as Eð�Yg�1 � �Yg�2 Þ. Since the distribution Pg� is

indexed by N, the parameter depends on N. In particular, the effect of stochastic intervention on a
population of N interconnected units will naturally depend on the size N of that population, and the
network information F: i.e. adding a unit will change the dynamics. As we will do in our point-treatment
sections, one might decide to replace these marginal expectations by conditional expectations conditioning
on Fið0Þ, i ¼ 1; . . . ;N, or even conditioning on ðLið0Þ : i ¼ 1; . . . ;NÞ. We will focus on the causal quantity
ψF ¼ EPg�

�Yg� for a user-supplied stochastic intervention, and our results naturally generalize to causal
quantities that a Euclidean valued function of a collection of such intervention-specific means.

Iterative conditional expectation representation of ACE: The parameter E�Yg� can be represented as an
iterative conditional expectation w.r.t. the probability distribution Pg� of ðA�; Lg� Þ [58, 59]:

�Y ¼ 1
N

XN

i¼1
Yiðτ þ 1Þ

�Qg�
τþ1;1 ¼ Eð�Y j �LðτÞ; �AðτÞÞ

�Qg�
τþ1 ¼ Eg�τ ð�Qg�

τþ1;1j�LðτÞ; �Aðτ � 1ÞÞ
�Qg�
τ;1 ¼ Eð�Qg�

τþ1j�Lðτ � 1Þ; �Aðτ � 1ÞÞ
�Qg�
τ ¼ Eg�τ�1

ð�Qg�
τ;1j�Lðτ � 1Þ; �Aðτ � 2ÞÞ

Iterate
�Qg�
1;1 ¼ Eð�Qg�

2 j�Lð0Þ; �Að0ÞÞ
�Qg�
1 ¼ Eg�0ð�Q

g�
1;1j�Lð0ÞÞ

�Qg�
0 ¼ ELð0Þ�Q

g�
1 ðLð0ÞÞ;
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where EYg� ¼ �Qg�
0 . Thus, this mapping involves iteratively integrating w.r.t. the observed data distribution of

LðtÞ, given its parents, and the conditional intervention distribution �g�t of A�ðtÞ, given PaðA�ðtÞÞ, respec-
tively, starting at t ¼ τ þ 1, till t ¼ 0.

Dimension reduction and exchangeability assumptions: The above-stated identifiability of ψF is not of
interest since we cannot estimate the distribution of O based on a single observation. Therefore, we will
need to make much more stringent assumptions that will allow us to learn the distribution of O based on a
single draw. One could make such assumptions directly on the distribution of O, but below we present these
assumptions in terms of assumptions on the structural equations and exogenous errors.

Beyond the assumptions above, we will also assume that for each node AiðtÞ and LiðtÞ, we can define
known functions, PaðAiðtÞÞ ! cAt;iðPaðAiðtÞÞÞ and PaðLiðtÞÞ ! cLt;iðPaðLiðtÞÞÞ, that map into a Euclidean set
with a dimension that does not depend on N, and corresponding common (in i) functions fLðtÞ; fAðtÞ; fY , so
that

LiðtÞ ¼ fLðtÞðcLt;iðPaðLiðtÞÞÞ;ULiðtÞÞ ð2Þ

AiðtÞ ¼ fAðtÞðcAt;iðPaðAiðtÞÞÞ;UAiðtÞÞ

i ¼ 1; . . . ;N; t ¼ 0; . . . ; τ

Yi ¼ fYðcYτþ1;iðPaðYiÞÞ;UYiÞ

i ¼ 1; . . . ;N:

(As mentioned above, an interesting variation of this structural causal model treats Lð0Þ as given and thus
removes that data generating equation.) Examples of such dimension reductions are cLt;iðPaðLiðtÞÞÞ ¼
ðð�Liðt � 1Þ; �Aiðt � 1ÞÞ; ð�Ljðt � 1Þ; �Ajðt � 1Þ : j 2 Fiðt � 1ÞÞÞ, i.e. the observed past of unit i itself and the
observed past of its current friends, and, similarly, we can define cAt;iðPaðAiðtÞÞÞ ¼ ðð�LiðtÞ; �Aiðt � 1ÞÞ;
ð�LjðtÞ; �Ajðt � 1Þ : j 2 Fiðt � 1ÞÞÞ. By augmenting these reductions to data on maximally K friends, filling up
the empty cells for units with fewer than K friends with a missing value, these dimension reductions have a
fixed dimension and include the information on the number of friends. This structural equation model
assumes that, across all units i, the data on unit i at the next time-point t is a common function of its own
past and past of its friends. In our formal asymptotic results for the TMLE based on the point-treatment data
structure Oi ¼ ðLið0Þ;Aið0Þ;Yið0ÞÞ, we assume this particular type of summary measure of maximally K
friends in order to enforce enough independence to establish an asymptotic normal limit distribution, but
the sequel and the TMLE are defined for any summary measure, and in future work we hope to address the
analysis of the TMLE for more general summary measures.

Independence assumptions on exogenous errors: Beyond the SRA (1), we make the following (condi-
tional) independence assumptions on the exogenous errors. Firstly, we assume independence assumptions
on ULið0Þ (and thereby Lið0Þ, i ¼ 1; . . . ;N) such as that ULið0Þ, i ¼ 1; . . . ;N, are independent (so that Lið0Þ,
i ¼ 1; . . . ;N, are independent), or that ULið0Þ is independent of ULjð0Þ if Fið0Þ˙ Fjð0Þ ¼ 0=. We will estimate the
joint distribution of Lð0Þ with the empirical counterpart that puts mass 1 on the actual observed
Lð0Þ ¼ ðL1ð0Þ; . . . ; LNð0ÞÞ, and the resulting empirical expectation w.r.t. this empirical distribution in our
estimator, i.e. �Qg�

1 ðLð0ÞÞ in the iterative algorithm above, has to satisfy that
ffiffiffiffi
N

p ð�Qg�
1 ðLð0ÞÞ � E0

�Qg�
1 ðLð0ÞÞÞ

has to converge to a normal distribution. The key assumption for this convergence in distribution is that
Lið0Þ depends on at most K Ljð0Þ for a universal K. So we will assume a model on the distribution of Lð0Þ
that assumes the latter, at minimal.

In addition, for all t ¼ 0; . . . ; τ, conditional on ð�Aðt � 1Þ; �LðtÞÞ, UAiðtÞ, i ¼ 1; . . . ;N are independent and
identically distributed, and for all t ¼ 1; . . . ; τ þ 1, conditional on ð�Aðt � 1Þ; �Lðt � 1ÞÞ, ULiðtÞ, i ¼ 1; . . . ;N, are
independent and identically distributed. The important implication of the latter assumptions is that, given
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the observed past PaðLðtÞÞ, for any two units i and j that have the same value for their summaries cLt;i ¼ cLt;j
as functions of PaðLðtÞÞ, we have that LiðtÞ and LjðtÞ are independent and identically distributed, and
similarly, we have this statement for the treatment nodes. This allows us to factorize the likelihood of the
observed data as done below, parameterized by common conditional distributions �Q0;LðtÞ and �g0;t that can
actually be learned from a single (but growing) O when N ! 1.

Identifiability: G-computation formula for stochastic intervention. For notational convenience, let
CL
t;i ¼ cLt ðPaðLiðtÞÞÞ, and let CL;�

t;i be defined accordingly with A; L replaced by A�; L�. Due to the exchange-
ability and dimension reduction assumptions, the probability distribution Pg� of Lg� ¼ ðLi;g� : i ¼ 1; . . . ;NÞ
now simplifies:

Pg� ðL�;A�Þ ¼ PLð0ÞðLð0ÞÞ
YN
i¼ 1

Yτþ1

t¼0

�QLðtÞðLi;�ðtÞjCL;�
t;i ÞÞ�g�t ðAi;�ðtÞjPaðAi;�ðtÞÞÞ

;Pg� ðL�;A�Þ; ð3Þ
where �QLðtÞ are the above defined conditional distributions of LiðtÞ, given PaðLiðtÞÞ, where, by our assump-
tions, these i-specific conditional densities are constant in i ¼ 1; . . . ;N, as functions of CL

t;i, t ¼ 1; . . . ; τ þ 1.
We will also use the notation QLðtÞ for the conditional distribution of LðtÞ, given PaðLðtÞÞ, which is thus
parameterized in terms of �QLðtÞ. Similarly, we use the notation gAðtÞ or gt to denote the conditional
distribution of AðtÞ, given PaðAðtÞÞ, which is thus parameterized in terms of �gt. We introduced the notation
Pg� for the right-hand side in eq. (3) which thus represents an expression in terms of the distribution of the
data under the assumption that the conditional densities of LiðtÞ, given PaðLiðtÞÞ, are constant in i as
functions of CL

t;i, indexed by the choice of stochastic intervention g�, while one needs the causal model and
randomization assumption in order to have that the right-hand side actually models the counterfactual post-
intervention distribution Pg� . This shows that ψF

0 ¼ ΨðP0Þ for a mapping Ψ from the distribution P0 of O to
the real line. Strictly speaking this does not establish a desired identifiability result yet, since we cannot
learn P0 based on a single draw O. To start with, we need to realize that PN

0 , ψ
F;N
0 , and ψN

0 are indexed by N,
and we only observed one draw from PN

0 . Therefore, we still need to show that we can construct an estimator
based on a single draw ON that is consistent for ψN

0 as N ! 1. For that purpose, we note that the
distribution Pg� is identified by the common conditional distributions �QLðtÞ, t ¼ 1; . . . ; τ þ 1, and PLð0Þ with
Lð0Þ ¼ ðLið0Þ : i ¼ 1; . . . ;NÞ. We can construct consistent estimators of these common conditional distribu-
tions �Q0;LðtÞ based on MLE that are consistent as N ! 1, which follows from our presentation of estimators
and theory. This demonstrates the identifiability of �Q0;LðtÞ as N ! 1, t ¼ 1; . . . ; τ þ 1. In addition, our target
parameter involves an average ELð0Þ�Q

g�
1 ðLð0ÞÞ w.r.t. PLð0Þ which can be consistently estimated by its

empirical counterpart under our independence assumptions, as discussed above. This demonstrates the
desired identifiability of ψF;N

0 from the observed data as N ! 1.

Likelihood and statistical model: Let QLð0Þ denote the distribution of Lð0Þ. By our assumptions, the
likelihood of the data

O ¼ ðLð0Þ;Að0Þ; . . . ; LðτÞ;AðτÞ;Y ¼ Lðτ þ 1ÞÞ is given by:

PQ;gðOÞ ¼ QLð0ÞðLð0ÞÞ
YN
i¼ 1

Yτþ1

t¼ 1

�QLðtÞðLiðtÞjCL
t;iÞ�gtðAiðtÞjCA

t;iÞ: ð4Þ

We denoted the factors representing the conditional distributions of LiðtÞ with �QLðtÞ, where these conditional
densities at LiðtÞ, given PaðLiðtÞÞ, are constant in i, as functions of LiðtÞ and CL

t;i. Similarly, we modeled
the g-factor in terms of common conditional distributions ð�gt : t ¼ 0; . . . ; τÞ. Let Q ¼ ðQLð0Þ; �QLðtÞ :
t ¼ 1; . . . ; τ þ 1Þ represent the collection of all these factors, and g ¼ ð�gt : t ¼ 0; . . . ; τÞ, so that the distribu-
tion of O is parameterized by ðQ; gÞ. The conditional distributions �QLðtÞðLðtÞjCL

t Þ are unspecified functions of
LðtÞ and CL

t , beyond that for each value of CL
t it is a conditional density, and QLð0Þ satisfies a particular

independence model discussed above. Similarly, the conditional distributions �gt are unspecified conditional
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densities. This defines now a statistical parameterization of the distribution of O in terms of Q; g, and a
corresponding statistical model

M ¼ fPQ;g : Q 2 Q; g 2 Gg; ð5Þ
where Q and G denote the parameter spaces for Q and g, respectively. Note that we derived the same
likelihood and statistical model based on the Neyman–Rubin model in Section 2: instead of making
assumptions on the structural equation model, we assumed coarsening at random, and made assumptions
on the full-data distribution factor of the likelihood.

Statistical target parameter: Let Lg
�
denote a random variable with distribution Pg� (eq. 3), defined as a

function of the data distribution P of O. We define our statistical target parameter as E�Yg� which is a
function of the intervention-specific distribution Pg� , so that it equals the causal quantity E�Yg� under the
above-stated causal assumptions. Thus

EPQ;g
�Yg� ¼ ΨðPQ;gÞ ¼ ΨðQÞ ð6Þ

depends on the distribution P of the data O through Q ¼ ðQLð0Þ; �QLðtÞ : t ¼ 1; . . . ; τ þ 1Þ. Note that Q is
determined by the distribution of Lð0Þ, and the conditional distributions of LiðtÞ, given ð�Aðt � 1Þ; �Lðt � 1ÞÞ,
which, by assumption, equal a common function �QLðtÞðLiðtÞjCL

t;iÞ, t ¼ 1; . . . ; τ þ 1. As shown above, we can
represent this statistical target parameter also as an iterative conditional expectation involving the iterative
integration w.r.t. �QLðtÞ, g�Aðt�1Þ, starting at t ¼ τ þ 1 and moving backward till the expectation over Lð0Þ:

�Qτþ2;�Y
�Qτþ1;1 ¼ EQτþ1ð�Qτþ2j�AðτÞ; �LðτÞÞ
�Qτþ1 ¼ Eg�τ ð�Qτþ1;1j�Aðτ � 1Þ; �LðτÞÞ
Iterate; t ¼ τ; . . . ; 0
�Qtþ1;1 ¼ EQtþ1ð�Qtþ1j�AðtÞ; �LðtÞÞ
�Qtþ1 ¼ E�g�t ð�Qtþ1;1j�Aðt � 1Þ; �LðtÞÞ
�Qt¼0 ¼ ELð0Þ�Q1

¼ E�Y�

This representation allows the effective evaluation of ΨðQÞ by first evaluating a conditional expectation
w.r.t. conditional distribution of Lðτ þ 1Þ, and thus w.r.t.

QN
i¼ 1

�QLðτþ1ÞðLiðτ þ 1ÞjCL
τþ1;iÞ, then the conditional

mean of the previous conditional expectation w.r.t. conditional distribution of A�ðτÞ, and iterating this
process of taking a conditional expectation w.r.t. LðtÞ and A�ðt � 1Þ till we end up with a conditional
expectation over A�ð0Þ, given Lð0Þ, and finally we take the marginal expectation w.r.t. the distribution of
Lð0Þ. Note that each conditional expectation involves an expectation over vector ðLiðtÞ : i ¼ 1; . . . ;NÞ or
ðAi;�ðt � 1Þ : i ¼ 1; . . . ;NÞ w.r.t. product measure of common conditional distributions �QLðtÞðLiðtÞjcLt;iÞ or
g�t�1ðAi;�ðt � 1ÞjcA�

t�1;iÞ, t ¼ 1; . . . ; τ þ 1.
One can also define an Lð0Þ-conditional statistical target parameter as Eð�Yg� jLð0ÞÞ, which can still be

effectively evaluated by the iterative conditional expectations presented above, but one simply removes the
final integration over the distribution of Lð0Þ.
Statistical estimation problem: We have now defined a statistical model M (eq. 5) for the distribution
(eq. 4) of O, and a statistical target parameter mapping Ψ : M ! IR (eq. 6) for which ΨðPQ;gÞ only depends
on Q. We will also denote this target parameter with ΨðQÞ, with some abuse of notation by letting Ψ
represent these two mappings. Given a single draw O,PQ0;g0 , we want to estimate ΨðQ0Þ. In addition, we
want to construct an asymptotically valid confidence interval. Recall that our notation suppressed the
dependence on N and F of the data distribution PQ;g, statistical model M, and target parameter Ψ. In the
conditional model for the conditional distribution of O, given Lð0Þ, we will make the dependence on Lð0Þ of
the data distribution PLð0Þ

Q;g , MLð0Þ, and ΨLð0Þ explicit.
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Summary: So we defined a structural causal model (eq. 2), including the stated independence (and i.i.
d.) assumptions on the exogenous errors, the dimension reduction assumptions, and the SRA (eq. 1). This
resulted in the likelihood (eq. 4) and corresponding statistical model M (eq. 5) for the distribution P0 of O.
In addition, these assumptions allowed us to write the causal quantity ψF

0 as a statistical estimand ΨðQ0Þ
(eq. 6): ψF

0 ¼ ΨðQ0Þ, where Q0 can be learned from a single draw O as N ! 1. The pure statistical
estimation problem is now defined: O,P0 2 M, and we want to learn ψ0 ¼ ΨðP0Þ where Ψ : M ! IR .
Under the non-testable causal assumptions, beyond the statistical assumption P0 2 M, we can interpret ψ0

as ψF
0, but, even without these non-testable assumptions, one might interpret ψ0 (and its contrasts) pure

statistically as an effect measure of interest controlling for the observed confounders.

3.1 Example

In order to provide the reader with some sense of the type of applications that can be addressed with our
model approach, we present a few examples.

Consider a study in which we wish to evaluate the effect of starting HIV treatment early after HIV-
infection on the rate of HIV-infection for the population of interest. For that purpose, the study tracks the
cohort of individuals for 5 years, and for each individual one obtains baseline characteristics Lið0Þ, one
regularly tests for HIV-infection (YiðtÞ), one measures when the individual starts treatment and one
measures if the person was lost to follow up (AiðtÞ ¼ ðA1iðtÞ;A2iðtÞÞ), one regularly measures biomarkers
and other time-dependent characteristics of interest such as condom use (LiðtÞ), and one regularly measures
the set FiðtÞ � LiðtÞ of sexual partners. Let t ¼ 0; . . . ; τ þ 1, where the τ þ 1th point represents end-point 5
years after baseline. Suppose one is interested in the effect of early HIV treatment (A1iðtÞ) on the proportion
1=N

P
i Yiðτ þ 1Þ of HIV-infections at 5 years. One knows that an HIV-infected person that is being treated is

much less infectious than a non-treated HIV-infected person, so that early treatment might have a strong
beneficial effect on the spread of HIV-infection. One might be interested to estimate the mean outcome
1=N

P
i E0Yi;g� ðτ þ 1Þ under a stochastic intervention g� on AiðtÞ, t ¼ 0; . . . ; τ. For example, the stochastic

intervention deterministically starts HIV-treatment after the first observed HIV-infection, and it enforces no-
right-censoring. This would be an example of a deterministic dynamic intervention. In our model, we may
assume that our conditional distributions of LiðtÞ, YiðtÞ, and AiðtÞ, given the past on all individuals only
depends on the individual pasts of the sexual partners of subject i, beyond the past of subject i itself. In
particular, it is clear that the HIV-infection at time t for individual i is very much a function of the treatment
status of its sexual partners.

A simplified version of this example is the case that we only observe on individual i baseline covariates
Lið0Þ (including baseline HIV-infection status), treatment status Aið0Þ, and subsequent HIV-infection Yið1Þ, for
the N individuals. One might now assume that the treatment status of individual i is not only a function of its
own baseline characteristics, but also of the baseline characteristics of its sexual partners, and that its outcome
status is a function of the baseline characteristics and treatment status of its friends as well as its own.

Similarly, the treatment node could be defined as the indicator of condom use, so that the counter-
factual mean outcomes evaluates the effect of condom use on the spread of the HIV-epidemic. One could
also think about interventions on FiðtÞ itself, such as interventions that decrease the number jFiðtÞj of sexual
partners. This corresponds with specifying a conditional distribution of jFiðtÞj, given the past, at each time t,
where such a conditional distribution might be a part of the actual distribution of the set FiðtÞ, given
the past.

It is also of interest to note that a stochastic intervention could only target a random subset of the total
set of intervention nodes, ðAiðtÞ : i; tÞ, by focussing on a subset of individuals and a subset of the time-
points. That is, a stochastic intervention could be equal to the actual treatment mechanism that generated
the AiðtÞ at certain times and for certain individuals while it enforces an intervention elsewhere. For
example, resources might only allow one to carry out a limited number of interventions, and one wishes
to evaluate different strategies for selecting the nodes for which the intervention will be enforced.
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Another example of interest might be one in which taking an anti-depression drug or an intervention is
the treatment node, and a depression score at a final time-point is the outcome of interest. Consider a group
of individuals that are socially connected and for which a reasonable proportion is subjected to this
intervention or drug-treatment. One might expect that drug/intervention node of the friends of individual
i affects (indirectly) the psychological health and thereby outcome of individual i, so that this would be an
example of causal interference. In addition, one expects that drug/intervention node of individual i is
affected by the drug/intervention nodes of its friends and other features of its friends, so that this is also an
example of adaptive treatment allocation (i.e. treatment for individual i is affected by the past of the friends
of individual i, beyond the past of individual i itself). Thus, this would be an example where one naturally
needs to allow that both the treatment nodes and the outcome nodes of an individual are affected by the
observed past of its friends. Clearly, the causal effect of different stochastic interventions on the anti-
depression drug/intervention nodes for the individuals in the population will include the peer effects.

4 Maximum likelihood estimation, cross-validation,
super-learning, and targeted maximum likelihood
estimation

We could estimate the distribution of Lð0Þ with the empirical distribution that puts mass 1 on
ðLið0Þ : i ¼ 1; . . . ;NÞ. This choice also corresponds with a TMLE of the intervention-specific mean outcome
Eð�Yg� jLð0ÞÞ that conditions on Lð0Þ, as we formally show in our later sections for the single time-point data
structure. If it is assumed that ðLið0Þ : i ¼ 1; . . . ;NÞ are independent, then we estimate the distribution of
Lð0Þ with the NPMLE that maximizes the log-likelihood

P
i logQLið0ÞðLið0ÞÞ over all possible distributions of

Lð0Þ that the statistical model M allows. In particular, if it is known that Lið0Þ are i.i.d., then we would
estimate the common distribution Q0 of Lið0Þ with the empirical distribution that puts mass 1=N on Lið0Þ,
i ¼ 1; . . . ;N.

Regarding estimation of �Q0;t ¼ �Q0;LðtÞ for t ¼ 1; . . . ; τ þ 1, we consider the log-likelihood loss function for �Qt:

Ltð�QtÞ;�
XN
i¼1

log �QtðLiðtÞjCL
i;tÞ:

Note that E0Ltð�QtÞ is minimized in �Qt by the true �Q0;t, since, conditional on ð�Aðt � 1Þ; �Lðt � 1ÞÞ, the true
distribution of LiðtÞ is given by �Q0;tð�jCL

i;tÞ, i ¼ 1; . . . ;N. In addition, this expectation E0Ltð�QtÞ is well

approximated by 1
N

PN
i¼1 log �QtðLiðtÞjCL

i;tÞ, since, conditional on ð�Aðt � 1Þ; �Lðt � 1ÞÞ, this is a sum of indepen-

dent random variables LiðtÞ, i ¼ 1; . . . ;N. The latter allows us to prove convergence of the empirical mean

process to the true mean process uniformly in large parameter spaces for �Qt, using similar techniques as we

use in the Appendix based on weak-convergence theory in van der Vaart and Wellner [41]. As a conse-

quence, one could pose a parametric model for �Q0;t, say fQt;θ : θg, and use standard MLE

θN ¼ argmin
θ

LtðQt;θÞ;

as if the observations ðLiðtÞ;CL
i;tÞ, i ¼ 1; . . . ;N, are independent and identically distributed and we are

targeting this common conditional density of LiðtÞ given CL
i;t. More importantly, we can use loss-based

cross-validation and super-learning to fit this function �Q0;t of ðlðtÞ; cLt Þ, thereby allowing for adaptive
estimation of �Q0;t. Specifically, consider a collection of candidate estimators �̂Qt;k that maps a data set
fðLiðtÞ;CL

t;iÞ : ig into an estimate, k ¼ 1; . . . ;K, and let Pt
N denote the empirical distribution that puts mass

1=N onto each LiðtÞ;CL
t;i. Given a random split vector BN 2 f0; 1gN , define Pt;1

N;BN
and Pt;0

N;BN
as the empirical

distributions of the validation sample fi : BnðiÞ ¼ 1g and training sample fi : BNðiÞ ¼ 0g, respectively. We
can now define the cross-validation selector kn of k as

M. J. van der Laan: Population of Causally Connected Units 27



kn ¼ argmin
k

EBNP
t;1
N;BN

Ltð �̂Qt;kðPt;0
N;BN

Þ

¼ argmin
k

EBN

X
i:BN ðiÞ¼1

log �̂Qt;kðPt;0
N;BN

ÞðLiðtÞjCL
t;iÞ:

If LiðtÞ is continuous, one could code LiðtÞ in terms of binary variables IðLiðtÞ ¼ lÞ across the different
levels l of LiðtÞ, and model the conditional distribution/hazard of IðLiðtÞ ¼ lÞ, given LiðtÞ � l and
�Aðt � 1Þ; �Lðt � 1Þ, as a function of CL

t;i and l, as in van der Laan [60, 61]. One could now construct candidate
estimators of this conditional hazard, possibly smoothing in the level l, by utilizing estimators of predictors
of binary variables in the machine learning literature, including standard logistic regression software for
fitting parametric models. Similarly, this can be extended to multivariate LiðtÞ by first factorizing the
conditional distribution of LiðtÞ in univariate conditional distributions. In this manner, one obtains then
candidate estimators of �Q0;LðtÞ based on a large variety of algorithms from the literature.

We could fit each �Q0;t separately for t ¼ 1; . . . ; τ þ 1, but it is also possible to pool across t by
constructing estimators and using cross-validation based on the sum loss function

LðQÞ ¼
X
t

Ltð�QtÞ:

Similarly, we can use the log-likelihood loss function for �gt:

Ltð�gtÞ ¼ �
XN
i¼1

log �gtðAiðtÞjCA
t;iÞ;

and use loss-based cross-validation and super-learning to fit �gt, possibly pooling across time based on the
sum loss function

LðgÞ ¼
X
t

Ltð�gtÞ:

Given the resulting estimator QN of Q0, one can evaluate ΨðQNÞ as estimator of ψ0 ¼ ΨðQ0Þ, according
to the iterative conditional expectation mapping presented earlier. Since QN is optimized to fit Q0 (i.e.
involving trading off bias and variance w.r.t. Q0, not ψ0), such a data-adaptive plug-in estimator, although it
inherits the (e.g. minimax adaptive) rate of convergence at which QN converges to Q0, it is overly biased for
ΨðQ0Þ, so that ΨðQNÞ will generally not converge to ΨðQ0Þ at rate 1=

ffiffiffiffi
N

p
.

TMLE: TMLE will involve modifying an initial estimator �Qt;N into a targeted version �Q�
t;N , t ¼ 1; . . . ; τ þ 1,

through utilization of an estimator gN of g0, a least-favorable submodel (w.r.t. target parameter ψ0)
f�Qk

t;Nð�; gNÞ : �g through a current fit �Qk
t;N at � ¼ 0, fitting � for each t and each step k with standard MLE

"N;t;k, iterative updating �Qkþ1
t;N ¼ �Qk

t;Nð"N;t;kÞ, t ¼ 1; . . . ; τ þ 1, till convergence in k ¼ 1; 2; . . . . The resulting TMLE
of ψ0 is defined accordingly as the substitution estimator ΨðQ�

NÞ. Thus, a TMLE will also involve estimation of
the intervention mechanism g0 ¼ ð�g0;t : t ¼ 0; . . . ; τÞ. To define such a TMLE, we need to determine the efficient
influence curve of the statistical target parameter, which will imply these least-favorable submodels. We refer to
our technical report van der Laan [62] for a derivation of the efficient influence curve, a study of its robustness,
and a detailed presentation of this general TMLE. (In the next section, we also showcase the formula for this
efficient influence curve.) Instead, in this article, we will focus on the single time-point longitudinal data
structure with Oi ¼ ðWi ¼ Lið0Þ;Ai ¼ Aið0Þ;YiÞ and present a complete self-contained analysis of the TMLE.

5 Characterizing the optimal asymptotic variance of the MLE in
terms of efficient influence curve

Due to our sequential conditional independence assumption, the log-likelihood of O, i.e. the log of the data-
density (eq. 4) of O, can be represented as a double sum over time-points t and units i, and for each t, the
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sum over i consists of independent random variables, conditional on the past. As a consequence, under
regularity conditions, one can show that the log-likelihood is asymptotically normally distributed.
Therefore, we conjecture that we can establish so-called local asymptotic normality of our statistical
model, which involves establishing asymptotic normality of log-likelihood under sampling from fluctua-
tions/submodels P"¼1=

ffiffiffi
N

p � M of a fixed data distribution P across all possible fluctuations. As shown in
van der Vaart [35], for models satisfying the local asymptotic normality condition, the normal limit
distribution of an MLE is an optimal limit distribution based on the convolution theorem [34]. In this
section, we informally demonstrate the importance of the efficient influence curve as the random variable
whose variance characterizes the normal limit distribution of an MLE of the target parameter for our semi-
parametric model for N ! 1, and thereby characterizes the normal limit distribution of optimal estimators.
As part of this we use a template for establishing the normal limit distribution of the MLE, which can be
equally well applied to the TMLE.

Even though it is well known that a regular estimator based on sample of n i.i.d. observations is efficient
if and only if it is asymptotically linear with influence curve equal to the efficient influence curve, here we
are not interested in asymptotics when we observe n of our data structures that are indexed by this
parameter N (like observing an i.i.d. sample O1; . . . ;On, where each Oi describes the data on N causally
connected units), but we are interested in the asymptotics in N based on a single draw of O. Therefore, we
think it is important to point out the asymptotic behavior of the MLE based on such a single ON when
N ! 1, showing that the asymptotic variance of the MLE is still characterized by the efficient influence
curve. Our lesson is that our goal should still be to construct an estimator that is asymptotically normally
distributed with variance equal to the variance of the efficient influence curve, appropriately normalized,
and our proposed TMLE achieves this goal by using least-favorable submodels whose score span the
efficient influence curve.

Specifically, we show that, under appropriate regularity conditions required for an MLE to be valid (i.e.
all observables are discrete, so that MLE is well defined asymptotically), the asymptotic variance of a
standardized MLE

ffiffiffiffi
N

p ðψN � ψ0Þ of the target parameter equals the limit in N of NP0fD�ðQ0; g0Þg2, where
P0fD�ðQ0; g0Þg2 is the variance of the efficient influence curve D�ðQ0; g0Þ. The formal analysis of an MLE
requires understanding of an empirical process ðZNðQÞ : QÞ (specified below) uniformly in Q, which is
challenging due to the fact that, contrary to ZNðQ0Þ, at misspecified Q, the time-specific components of
ZNðQÞ cannot be represented as sums of independent random variables, conditional on the history at that
time. Since the TMLE is tailored to deal with the curse of dimensionality (and MLE is a special case of TMLE
by defining the initial estimator for the TMLE as the MLE, assuming this MLE is a well-defined estimator),
while a regularized MLE will not be asymptotically normally distributed when the observables are contin-
uous valued, the analysis of a TMLE is more important. Such a formal analysis is presented for the point-
treatment K ¼ 0 case in a later section and much can be learned from that analysis for the purpose of
analyzing the TMLE or MLE for general K. Nonetheless, the template below can be used to establish the
asymptotic normality for both the MLE and also for the TMLE under the assumption that initial estimator
QN ; gN is consistent for Q0; g0.

Let QN be an MLE, assuming it is well defined for N large enough (i.e. all covariates are discrete). We
wish to analyze the plug-in MLE ΨðQNÞ of ψ0. We can represent the efficient influence curve as
D�ðQ; gÞ ¼ D�ðQ; hðQ; gÞ;ΨðQÞÞ for some parameter hðQ; gÞ, as shown in our technical report. In our accom-
panying technical report we show that P0D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ ¼ ðψ0 �ΨðQNÞÞ þ RN , where RN is a
second-order term defined as sum of two terms RNðQN ;Q0Þ and RNððhN ; h0Þ; ðQN ;Q0ÞÞ. The first involves
square differences of QN ;Q0, while the second involves the product of differences hðg0;QNÞ � hðg0;Q0Þ and
QN � Q0. We will assume that RN ¼ oPð1=

ffiffiffiffi
N

p Þ, which basically corresponds with assuming that relevant
parts of Q0 are estimated by QN at a rate faster than N�1=4. Since QN is an MLE, and D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ
is a score at PQN ;g0 , we have that the MLE solves the efficient influence curve equation

D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ ¼ 0:
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We also have P0D�ðQ0; h;ψ0Þ ¼ 0 for any h, as explicitly shown in our technical report. This allows us to
establish a first-order expansion of the standardized MLE:

ðΨðQNÞ � ψ0Þ ¼ � P0D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ þ RN

¼D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ � P0D�ðQN ; hðg0;QNÞ;ΨðQNÞÞ þ RN :

Thus under the assumption that RN ¼ oPð1=
ffiffiffiffi
N

p Þ, it follows that the asymptotic distribution offfiffiffiffi
N

p ðΨðQNÞ �ΨðQ0ÞÞ equals the limit distribution of

ZNðQNÞ;
ffiffiffiffi
N

p
ðD�ðQN ; hðg0;QNÞ;ΨðQNÞÞ � P0D�ðQN ; hðg0;QNÞ;ΨðQNÞÞÞ:

A non-trivial analysis as carried out for the case τ ¼ 0, and using appropriate conditions, can be used to
establish that ZNðQNÞ � ZNðQ0Þ ¼ oPð1Þ, so that ZNðQNÞ behaves as ZNðQ0Þ ¼

ffiffiffiffi
N

p ðD�ðQ0; h0;ψ0Þ�
P0D�ðQ0; h0;ψ0ÞÞ. Under these assumptions, it then remains to investigate weak convergence of ZNðQ0Þ as
N converges to infinity.

In our technical report, we establish the following representation of the efficient influence curve:

D�ðQ0; g0Þ ¼ 1
N

P
i
D�
Lið0ÞðQ0ÞðLið0ÞÞ þ 1

N

P
t

P
j

1
N

P
m

h�t;m
�ht

ðCL
t;jÞ
P
l
Dl;t;mðLjðtÞ;CL

t;jÞ;

where

Dl;t;m ¼ EðYðlÞjLmðtÞ ¼ LjðtÞ;CL
t;m ¼ CL

t;jÞ � EðYðlÞjCL
t;m ¼ CL

t;jÞ;

h�t;mðcÞ ¼ PQ0;g� ðCL
t;m ¼ cÞ, ht;mðcÞ ¼ PQ0;g0ðCL

t;m ¼ cÞ, and �ht ¼ 1
N

P
m ht;m. Here, we assumed that Lið0Þ,

i ¼ 1; . . . ;N, are independent. Thus, we can represent the efficient influence curve as

D�ðQ0; g0Þ ¼ 1
N

X
i

D�
Lið0ÞðQ0ÞðLið0ÞÞ þ 1

N

X
t

X
j

D�
t ðQ0; g0ÞðLjðtÞ;CL

t;jÞ;

where we defined

D�
t ðQ0; g0ÞðLjðtÞ;CL

t;jÞ ¼
1
N

X
m

h�t;m
�ht

ðCL
t;jÞ
X
l

Dl;t;mðLjðtÞ;CL
t;jÞ:

Note that D�
t ðQ0; g0Þ has conditional mean zero, given CL

t;j. In order to claim that D�
t ðQ0; g0Þ has finite

variance one needs that the summation over l reduces essentially to a finite sum due to LmðtÞ being
conditionally independent of YðlÞ, given CL

t;m, for most m.
This yields the following representation (suppressing the dependence of D� on P0):

ZNðQ0Þ ¼ 1ffiffiffiffi
N

p
X
i

DLið0ÞðLið0ÞÞ þ
1ffiffiffiffi
N

p
X
t;i

D�
t ðLiðtÞ;CL

t;iÞÞ;

where D�
t is a function of LiðtÞ and CL

t;i with conditional mean zero, given CL
t;i. Due to factorization of the

likelihood in terms of
Q

t;i
�QtðLiðtÞjCL

t;iÞ and that D�
t is a score of �Qt, it follows that ZNðQ0Þ is an orthogonal

sum over t; i in L20ðP0Þ, so that the variance of ZNðQ0Þ is given by

VARZNðQ0Þ ¼ 1
N

X
i

P0DLið0ÞðLið0ÞÞ2 þ
1
N

X
t;i

P0fD�
t ðLiðtÞ;CL

t;iÞg2:

We have

P0fD�
t ðLiðtÞ;CL

t;iÞg2 ¼
ð
lðtÞ;cðtÞ

D�
t ðlðtÞ; cðtÞÞ2�Q0;tðlðtÞjcðtÞÞht;iðcðtÞÞ:

Thus, the asymptotic variance of ZNðQ0Þ is given by limit of

σ20;σ2Lð0Þ þ lim
N!1

X
t

ð
lðtÞ;cðtÞ

fD�
t ðlðtÞ; cðtÞÞg2�Q0;tðlðtÞjcðtÞÞ�htðcðtÞÞ;
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where �ht ¼ 1
N

P
i ht;i, and it can be expected that �ht converges to a fixed function as N ! 1. Here we defined

σ2Lð0Þ ¼ lim
N!1

1
N

X
i

P0DLið0ÞðLið0ÞÞ2:

Note that we also have that σ20 ¼ limN!1 NP0fD�g2 equals N times the variance of the efficient influence
curve D� ¼ D�ðP0Þ for the target parameter Ψ at P0. This demonstrates that the asymptotic variance of
ZNðQ0Þ (and thus the asymptotic variance of the standardized MLE

ffiffiffiffi
N

p ðΨðQNÞ � ψ0Þ is given by
σ20 ¼ limN!1 NP0fD�ðP0Þg2.

This does not demonstrate the asymptotic normality of the MLE yet. For that purpose, we note that
ZNðQ0Þ ¼ ZLð0Þ;N þPt ZN;tðQ0Þ, where ZN;tðQ0Þ ¼ 1=

ffiffiffiffi
N

p P
i D

�
t;iðQ0Þ, with D�

t;i ¼ D�
t ðLiðtÞ;CL

t;iÞ, is a sum of
independent random variables LiðtÞ, conditional on �Aðt � 1Þ; �Lðt � 1Þ. As a consequence of the latter, it
follows that EZN;t1ðQ0ÞZN;t2ðQ0Þ ¼ 0 for t1 < t2 (i.e. just condition on �Aðt2 � 1Þ; �Lðt2 � 1Þ, making ZN;t1 -fixed,
and use that EðZN;t2ðQ0Þj�Aðt2 � 1Þ; �Lðt2 � 1ÞÞ ¼ 0). Using CLTs, we can therefore establish that for each
t ¼ 0; . . . ; τ þ 1, ZN;tðQ0Þ converges weakly to a normal distribution ZtðQ0Þ. Under weak regularity condi-
tions, this also implies that EðZt1ðQ0ÞZt2ðQ0ÞÞ ¼ 0 for t1 < t2 and thus that these t-specific limit normally
distributed random variables ZtðQ0Þ are pairwise independent. As a consequence, the sum across t con-
verges to a normal distribution with variance equal to the sum of the t-specific variances, and thus σ20 as
defined above. To conclude, under appropriate regularity conditions, we will have thatffiffiffiffi
N

p ðΨðQNÞ � ψ0Þ � ZNðQ0Þ converges weakly to Nð0; σ20Þ
This demonstrates that the efficient influence curve characterizes the limit distribution of the maximum

likelihood estimator, and thus indeedcharacterizes an asymptotically optimalmean zero normal limit distribution
with variance equal to the asymptotic variance of the “efficient influence curve empirical process” ZNðQ0Þ.

6 The TMLE of causal effect of single time-point intervention

We will present the TMLE for the point-treatment intervention case (i.e. τ ¼ 0). This case is of great interest
itself, extends estimation of a causal effect of a single time-point intervention to dependent data of the form
studied in this article, and thereby covers important applications. In the next section, we will formally
analyze this TMLE. The tools of the proof will be generalizable to the general τ case. In addition, the single
time-point case allows for a TMLE that is actually double robust in the sense that it remains consistent if
either Q0 or a h0ðQ0; g0Þ is consistently estimated, while the efficient influence curve for the general case
with τ >0 appears to not satisfy such a double robustness result as is evident from the efficient influence
curve representation provided in our technical report van der Laan [62].

6.1 Structural equation model

Using notation Wi for the baseline covariate Lið0Þ, and Ai for Aið0Þ, the structural equation model for the
τ ¼ 0 case reduces now to

Wi ¼ Lið0Þ ¼ fWiðUWiÞ
Ai ¼ Aið0Þ ¼ fAðcAi ðWÞ;UAiÞ
Yi ¼ Lið1Þ ¼ fYðcYi ðW ;AÞ;UYiÞ
i ¼ 1; . . . ;N;

where the fixed-dimensional summary measures cAi ðWÞ and cYi ðW ;AÞ are determined by W ¼ ðW1; . . . ;WNÞ
and ðW ;AÞ with A ¼ ðA1; . . . ;ANÞ, respectively. We assume throughout that A is discrete valued, so that
conditional densities of A, given W, are just conditional probability distributions: this is by no means a
necessary condition, but simplifies presentation. The “friends” Fi of subject i may be included in
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Wi: Fi � Wi. The function cAi ðWÞ includes Wi, beyond summary measures of ðWj : j 2 FiÞ and might be
defined as cAi ðWÞ ¼ ðWi; ðWj : j 2 FiÞÞ, assuming that jFij � K <1 for some fixed K, so that cAi ðWÞ can
indeed be defined as a fixed multivariate dimensional function not depending on N. Similarly, the function
cYi ðW;AÞ includes ðWi;AiÞ beyond summary measures of ððWj;AjÞ : j 2 FiÞ and might be defined as
cYi ðW;AÞ ¼ ðWi;Ai; ððWj;AjÞ : j 2 FiÞÞ. We also use the short-hand notation CY

i ¼ cYi ðA;WÞ and CA
i ¼ cAi ðWÞ.

The above structural equation model assumes that Ai and Yi are the same function of this dimension
reduction ðWi; ðWj : j 2 FiÞÞ and ðWi;Ai; ðWj;Aj : j 2 FiÞÞ, respectively, for each i, so that two units with the
same number of friends who have the same individual covariate and treatment values, and also have the
same values for the covariates and treatments of their friends, will be subjected to the same conditional
distribution for drawing their treatment and outcome. In our asymptotics theorem in the next section, we
treat Fi, i ¼ 1; . . . ;N, as fixed, so that also the probability distribution of O and the target parameter ψ0 are
indexed by the fixed value of ðFi : i ¼ 1; . . . ;NÞ.

In addition, we assume that conditional on W, (1) ðUAi ;UYiÞ, i ¼ 1; . . . ;N, are i.i.d. and (2) for each i, UAi is
independent ofUYi . In onemodel, we assume thatUWi , i ¼ 1; . . . ;N, are i.i.d.: note that (since fWi is allowed to be
different for each i) this corresponds with assuming that W1; . . . ;WN are independent, but not necessarily
identically distributed. We will highlight the case that this latter assumption is considerably weakened, which
will be made explicit in our theorem. These independence assumptions on the Ui’s imply that (1)W1; . . . ;WN are
independent (or more generally, their dependence is weak enough), (2) conditional on W ¼ ðW1; . . . ;WNÞ,
A1; . . . ;AN are independent, and (3) conditional on ðW;AÞ, Y1; . . . ;YN are independent. Thus, all the depen-
dence between units is explained by the observed pasts of the units themselves and of their friends.

Causal quantity: Let g� be a user-supplied conditional distribution of A, given W, and let us denote the
random variable with this distribution with A� ¼ ðA1�; . . . ;AN�Þ. For simplicity, let us assume that under this
g�Ai� are conditionally independent, given W, and that g�i ðAi;�jWÞ ¼ �g�ðAi;�jCA;�

i Þ for a common conditional
density �g� and summary measure CA;�

i ¼ cA;�i ðWÞ. Our goal is to estimate the mean of the counterfactual
outcome of �Y ¼ 1=N

PN
i¼1 Yi under the stochastic intervention g�. Let Yg� ¼ ðYg�;i : i ¼ 1; . . . ;NÞ be the

counterfactual indexed by a stochastic intervention g� on A and �Yg� ¼ 1=N
PN

i¼1 Yg�;i. The causal quantity
of interest is defined as ΨFðPU;W ;A;YÞ ¼ EPU;W ;A;Y

�Yg� , which is a parameter of the distribution of ðU;W ;A;YÞ
modeled by the above structural equation model. In this expectation defining ΨF , we actually condition on
the vector F ¼ ðF1; . . . ; FNÞ of sets of friends.

Identifiability from observed data distribution: We observe O ¼ ðO1; . . . ;ONÞ, where Oi ¼ ðWi;Ai;YiÞ. Due
to the above assumptions, the probability distribution of O is given by:

PðOÞ ¼ QWðWÞ
YN
i¼ 1

�gðAijCA
i Þ�QYðYijCY

i Þ; ð7Þ

where �gð�jcAÞ is a common (in i) density for Ai for each value cA, and �QYð�jcYÞ is a common density for Yi for
each value cY . Our model also implies a model QW on the distribution QW of W, such as the model that
assumes that all Wi are independent.

Since our assumptions imply the randomization assumption stating that A ¼ ðA1; . . . ;ANÞ is indepen-
dent of UY ¼ ðUYi : i ¼ 1; . . . ;NÞ, given W ¼ ðW1; . . . ;WNÞ, the post-intervention probability distribution Pg�

of ðW ;Yg� Þ ¼ ðWi;Yi;g� : i ¼ 1; . . . ;NÞ is identified by the following G-computation formula applied to the
probability distribution P of O:

Pg� ðW;A�;YÞ ¼ QWðWÞ
YN
i¼ 1

�QYðYijCY ;�
i Þ�g�ðAi;�jCA;�

i Þ ð8Þ

;Pg� ðW ;A�;YÞ;
where �QYð�jCY ;�

i Þ is defined as the conditional distribution of Yi, given cYi ðA�;WÞ with A in the parents
cYi ðA;WÞ replaced by A�. We denoted the probability distribution of on the right-hand side with Pg� , which is
thus always defined as a parameter of the data distribution P of O for a P in the statistical model for
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P ¼ PðPU;OÞ implied by our causal model for the underlying distribution PU;O. The random variable with
distribution Pg� is denoted with ðW ;A�;Yg� Þ.
Statistical model, statistical target parameter, and statistical estimation problem: Let M be the
statistical model for the data distribution P of O defined by (eq. 7) in which QW 2 QW for a specified
model QW , and the common �g 2 G for some model G, while �QY is unspecified. Thus, the density of O
factorizes in three factors:

PðOÞ ¼ QWðWÞ
YN
i¼1

�QYðYijCY
i Þ
YN
i¼1

�gðAijCA
i Þ;

where QW 2 QW , �QY is unspecified, and �g 2 G. This defines the statistical model M.
Let the statistical target parameter mapping Ψ : M! IR be defined as ΨðPÞ ¼ EPg� �Yg� . Under the stated

causal model and identifiability assumptions under which P ¼ PPU;W ;A;Y , we have ΨðPÞ ¼ ΨFðPU;W ;A;YÞ, so
that in that case ΨðPÞ can be interpreted as the desired causal quantity. Our goal is to construct an estimator
of ψ0 ¼ ΨðP0Þ based on O ¼ ðO1; . . . ;ONÞ,P0 2 M, which defines the statistical estimation problem.

Let �QðCYÞ ¼ Ð y�QYðyjCYÞdμðyÞ be the conditional mean under �QY . Note that EðYijA;WÞ ¼ �QðCY
i Þ. The

target parameter ΨðPÞ only depends on P through QW , and �Q:

ψ0 ¼ E0�Yg�

¼ Ψð�Q0;QW;0Þ

;
1
N

XN
j¼1

ð
a;w

�Q0ðcYj ða;wÞÞg�ða jwÞQW ;0ðdwÞ; ð9Þ

where QW ;0ðdwÞ ¼ QW ;0ðwÞdμWðwÞ denotes integration w.r.t. measure implied by density QW;0 w.r.t. some
dominating measure μW . If we want to emphasize that ΨðPÞ only depends on P through QðPÞ ¼ ðQW ; �QÞ, then
we will also use (and abuse) the notation ΨðQÞ to indicate the mapping from Q into the desired estimand.

6.2 Efficient influence curve

In our technical report van der Laan [62] we established a general representation of the efficient influence
curve of E�Yg� for the longitudinal data structure and the model QW that assumes that the baseline covariates
L1ð0Þ; . . . ; LNð0Þ are independent, and it is given by:

D�ðQ; gÞ ¼
XN
j¼ 1

EQ;g� ð�Y j Ljð0ÞÞ � EQ;g� �Y
� �

þ 1
N

X
t¼ 1;j;m

h�t;m
�ht

ðCL
t;jÞ EQ;g� ð�Y jLmðtÞ ¼ LjðtÞ;CL

t;m ¼ CL
t;jÞ � EQ;g� ð�Y jCL

t;m ¼ CL
t;jÞ

n o
:

For a different model for the covariate distribution of Lð0Þ, only the first component would be different. In
our case, we have τ ¼ 0, giving the following two terms:

D�ðQ; gÞ ¼
XN
j¼1

fEQ;g� ð�Y jLjð0ÞÞ � EQ;g� �Yg

þ
XN
j¼1

1
N

XN
m¼1

h�m
�h
ðCY

j Þ EQ;g� ð�Y jYm ¼ Yj;CY
m ¼ CY

j Þ � EQ;g� ð�Y jCY
m ¼ CY

j Þ
n o

;

where h�mðcÞ ¼ PQ;g� ðCY
m ¼ cÞ, hmðcÞ ¼ PQ;gðCY

m ¼ cÞ, and �h ¼ 1
N

Pn
m¼1 hmðcÞ are densities w.r.t. some appro-

priate dominating measure μ. We have, using short-hand notation E� for EQ;g� ,

M. J. van der Laan: Population of Causally Connected Units 33



EQ;g� ð�Y jYm;CY
mÞ¼

1
N

X
j�m

E�ðYjjYm;CY
mÞ þ 1=NYm

¼ 1
N

X
j�m

E�ðE�ðYjjYm;W;AÞjYm;CY
mÞ þ 1=NYm

¼ 1
N

X
j�m

E�E�ðYjjW;AÞjYm;CY
mÞ þ 1=NYm

¼ 1
N

X
j�m

E�ð�QðCY
j ðW ;AÞÞjYm;CY

mÞ þ 1=NYm;

and

PðW ;AjYm;CY
mÞ ¼ IðcYmðW ;AÞ ¼ CY

mÞ
PðW ;A;YmÞ
PðYm;CY

mÞ

¼ IðcYmðW;AÞ ¼ CY
mÞ

PðYmjW ;AÞPðW ;AÞÞ
PðYmjCY

mÞPðCY
mÞ

¼ IðcYmðW;AÞ ¼ CY
mÞ

PðYmjCY
mÞPðW ;AÞÞ

PðYmjCY
mÞPðCY

mÞ
¼ PðW ;AjCY

mÞ;

and thereby

E�ð�Y jYm;CY
mÞ ¼

1
N

X
j�m

E�ð�QðcYj ðW ;AÞÞjCY
mÞ þ 1=NYm:

Thus,

E�ð�Y jCY
mÞ ¼

1
N

X
j�m

E�ð�QðcYj ðW;AÞÞjCY
mÞ þ 1=N �QðCY

mÞ:

Therefore,

EQ;g� ð�Y jYðmÞ ¼ YðjÞ;CY
m ¼ CY

j Þ � EQ;g� ð�Y jCY
m ¼ CY

j Þ
n o

¼ 1
N fYj � �QðCY

j Þg;

which does thus not depend on m.
This proves the following representation of the efficient influence curve in the case τ ¼ 0:

D�ðQ; gÞ ¼
XN

j¼ 1
fEQ;g� ð�Y jLjð0ÞÞ � EQ;g� �Yg

þ 1
N

XN

j¼ 1

�h�

�h
ðCY

j Þ Yj � �QðCY
j Þ

n o
:

We will state this result and the double robustness of the efficient influence curve in the following theorem.

Theorem 1 Consider the model M in which W1; . . . ;WN are assumed to be independent. The efficient influence
curve D�ðPÞ at P 2 M of target parameter Ψ : M ! IR is given by

D�ðPÞ¼
XN

i¼ 1
D�
Wi
ðQW ; �QÞðWiÞ þ

XN

i¼ 1

1
N

�hðg�;QWÞðCY
i Þ

�hðg;QWÞðCY
i Þ

ðYi � �QðCY
i ÞÞ;

;D�
WðPÞ þ D�

YðPÞ
where

D�
Wi
ðQW ; �QÞðWiÞ ¼ EQ;g� ð�Y jWiÞ � EQ;g� ð�YÞ

¼ 1
N

XN
j¼1

ð
a;w�i

g�ðajw�i;WiÞ�QðcYj ða;w�i;WiÞÞ
Y
l�i

QWlðwlÞ � ψ

¼ 1
N

XN
j¼1

fEðYg�
j jWiÞ � EWiEðYg�

j jWiÞg;
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hiðg;QWÞðcÞ;
ð
a;w;cYi ða;wÞ¼c

gðajwÞ
YN
l¼ 1

QWðdwlÞ ¼ EWgiðcjWÞ;

and giðcjW ¼ wÞ ¼ P0ðcYi ðA;WÞ ¼ cjW ¼ wÞ is the conditional probability that cYi ðA;WÞ equals c, given
W ¼ w, which is a probability determined by gðAjWÞ. In addition, �h ¼ 1

N

P
i hi and �h� ¼ 1

N

P
i h

�
i with

h�i ¼ hiðg�;QWÞ are densities defined w.r.t. a dominating measure μ and it is assumed that �h�=�h is uniformly
bounded on a set that contains with probability 1 CY

i for all i.

Double robustness of efficient influence curve: Represent the efficient influence curve as D�ð�Q;QW ; gÞ ¼
D�
WðQW ; �QÞ þ D�

YðQW ; �Q; gÞ. We have

P0D�
WðQW ;0; �QÞ ¼ 0;

P0D�
Yð�Q;QW ;0; g0Þ ¼ ψ0 �Ψð�Q;QW ;0Þ;

so that

P0D�ð�Q;QW ;0; g0Þ ¼ ψ0 �Ψð�Q;QW ;0Þ:
Since the efficient influence curve at P0 depends on g0 only through �hðg0;QW ;0Þ, we have that if
�hðg;QW ;0Þ ¼ �hðg0;QW;0Þ, then

P0D�
Yð�Q;QW ;0; g0Þ ¼ ψ0 �Ψð�Q;QW ;0Þ;

and thus

P0D�ð�Q;QW ;0; gÞ ¼ ψ0 �Ψð�Q;QW;0Þ:
Let PW

0 denote the conditional distribution of O, given W, and let QW ;N be the degenerate distribution of W that
puts mass 1 on W. We also note that

PW
0 D�

Yð�Q;QW;N ; g0Þ ¼ Ψð�Q0;QW ;NÞ �Ψð�Q;QW ;NÞ: ð10Þ
We also have that for all g,

P0D�
Yð�Q0;QW;0; gÞ ¼ 0:

Explicit proof of double robustness: Even though our general theorem in the technical report can be
applied to this single time-point case and this double robustness result follows by noting that the second-
order term RðQ;Q0Þ in that theorem equals 0, here we provide an explicit proof of the stated double
robustness for this single time-point case. Firstly, we have

E0D�
Wi
ðQW ;0; �QÞðWiÞ ¼ 1

N

XN
j¼1

ð
a;w

g�ðajwÞ�QðcYj ða;wÞÞQW;0ðdwÞ �Ψð�Q;QW ;0Þ

¼ 0:

We also have

E0

X
i

D�
Yi
ð�Q;QW;0; g0Þ¼ 1

N

X
i

E0

�h�0ðCY
i Þ

�h0ðCY
i Þ

ðYi � �QðCY
i ÞÞ

¼ 1
N

X
i

ð �h�0ðcÞ
�h0ðcÞ

ð�Q0 � �QÞðcÞhi;0ðcÞdμðcÞ

¼
ð
�h�0ðcÞð�Q0 � �QÞðcÞdμðcÞ

¼ ψ0 �Ψð�Q;QW ;0Þ:
This derivation with P0 replaced by PW

0 also establishes (eq. 10).
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This proves that with D�
i ¼ D�

Wi
þ D�

Yi
, D� ¼Pi D

�
i , we have

E0

X
i

D�
i ðQW;0; �Q; g0Þ ¼ 0þ ψ0 �Ψð�Q;QW ;0Þ:

This proves the robustness w.r.t. misspecification of �Q. In addition, it follows trivially that
E0D�ð�Q0;QW;0; gÞ ¼ 0 for any choice g.

6.3 Double robustness for an inefficient influence curve

In the following lemma, we present an inefficient influence curve and establish its double robustness. This
could be used to construct an inefficient TMLE analogue to the efficient TMLE presented below.

Lemma 1 Suppose CY
i ðA;WÞ only depends on A;W through ðAi;WiÞ; ððAj;WjÞ : j 2 FiÞ. For notational conve-

nience, in this lemma let Fi include i itself: i 2 Fi. Define the conditional probability densities
g�i ðAj : j 2 FijWj : j 2 FiÞ and gi;0ðAj : j 2 FijWj : j 2 FiÞ, and define

D�
Yi;1ð�Q;QW;0; g0Þ ¼ 1

N

g�i;0ðCY
i Þ

gi;0ðCY
i Þ

ðYi � �QðCY
i ÞÞ:

Let D�
i;1 ¼ D�

Wi
þ D�

Yi;1 and D�
1 ¼

P
i D

�
i;1. We have

E0D�
1 ðQW ;0; �Q; g0Þ ¼ ψ0 �Ψð�Q;QW ;0Þ:

We also have E0D�
1 ðQW;0; �Q0; gÞ ¼ 0 for all g.

Proof: We have

E0
X
i

D�
Yi
ð�Q;QW ;0; g0Þ¼ 1

N

X
i

E0
g�i;0ðCY

i Þ
gi;0ðCY

i Þ
ð�Q0ðCY

i Þ � �QðCY
i ÞÞ

¼ 1
N

X
i

E0

ð
aj:j2Fi

g�i;0ðaj : j 2 FijWj : j 2 FiÞ
gi;0ðaj : j 2 FijWj : j 2 FiÞ ð

�Q0 � �QÞðaj;Wj : j 2 FiÞ

gi;0ðaj : j 2 FijWj : j 2 FiÞ

¼ 1
N

X
i

E0

ð
aj:j2Fi

g�i;0ðaj : j 2 FijWj : j 2 FiÞð�Q0 � �QÞðaj;Wj : j 2 FiÞ

¼ ψ0 �Ψð�Q;QW ;0Þ: □

6.4 Estimating equation approach

Consider the efficient influence curve and let us represent it as an estimating function in ψ:

D�ðQ; g;ψÞ ¼
XN
i¼ 1

ðD�
Wi
ðQÞ � ψÞ þ D�

Yi
ðQ; g0Þ;

where now D�
Wi

¼ EQð�Yg� jWiÞ. We will represent it as D�ðQ; �h;ψÞ to stress that it only relies on ðQ; gÞ through
ðQ; �hðQ; gÞÞ. We have E0D�ðQ; �h0;ψÞ ¼ ψ0 � ψ, so that D� is a targeted estimating function for fitting ψ0. Given
an estimator �hN and QN of �h0 and Q0, respectively, based on the data O, we can estimate ψ with the solution of

0 ¼ D�ðQN ; �hN ;ψÞðOÞ:
Since D�ðQ; �h;ψÞ ¼ D�ðQ; �hÞ � Nψ, this solution is given by
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ψN ¼ 1
N

XN
i¼1

fD�
Wi
ðQNÞ þ D�

Yi
ðQN ; �hNÞg:

This estimator, as the TMLE presented below, is double robust w.r.t. misspecification of ð�h0; �Q0Þ and is
asymptotically efficient if both are estimated consistently, assuming the required regularity conditions hold
(as presented in our theorem below). Since it is not a substitution estimator, it will be more sensitive to
practical violations of the positivity assumptions due to �h�N=�hN being large.

Remark regarding the balance of the two contributions in the efficient influence curve: The factor 1=N
in D�

Yi
might come as a surprise in relation to D�

Wi
. Let us consider the case that g�ðajwÞ ¼Qn

i¼1 g
�
i ðaijwiÞ. To

intuitively understand that this efficient influence curve does indeed represent a balance between these two
contributions, we note the following:X

i

D�
Wi

¼
X
i

EQð�Yg� jWiÞ �ΨðQÞ� �

¼
XN
i¼1

1
N

XN
j¼1

EQðY�
j jWiÞ �ΨðQÞ

( )

¼ 1
N

XN
i¼1

XN
j¼1

Iði 2 FjÞðEQðY�
j jWiÞ �ΨjðQÞÞ

n o
;

where ΨðQÞ ¼ 1=N
P

j ΨjðQÞ, and ΨjðQÞ ¼ EQY�
j . Thus, indeed the contribution

P
i D

�
Wi

is of the same size as
function of N as

P
i D

�
Yi
, under the assumption that jFij � K <1 for some K <1, which is indeed an

assumption we made to establish
ffiffiffiffi
N

p
-asymptotics.

6.5 TMLE

Recall the target parameter representation ΨðQW ; �QÞ defined by (eq. 9).
Let �QN be an estimator of �Q0, where �Q0ðcÞ ¼ E0ðYijCY

i ¼ cÞ. Suppose Yi 2 f0; 1g or that Yi is continuous
with values in ð0; 1Þ. This estimator �QN could be based on the log-likelihood loss function

� Lð�QÞðOÞ ¼
XN
i¼1

log �QðCY
i ÞYið1� �QðCY

i ÞÞ1�Yi

n o
:

For example, suppose that we assume a logistic regression model �QθðcÞ ¼ 1
1þexpð�mθðcÞÞ . Then we can

estimate θ with the standard maximum likelihood based logistic regression estimator:

θN ¼ argmax
θ

XN
i¼1

log �QθðCY
i ÞYið1� �QθðCY

i ÞÞ1�Yi

n o
:

More generally, one can also use cross-validation based on this loss function and thereby estimate �Q0 with
an Lð�QÞ-based super-learner. The super-learner takes as input a library of candidate logistic regression
estimators (including machine learning algorithms) and uses cross-validation to select the optimal
weighted-combination of this library of estimators, where the weight is obtained by minimizing the cross-
validated risk based on this loss function. Thus, if one uses V-fold cross-validation, then one divides up the
sample ðYi;CY

i Þ, i ¼ 1; . . . ;N, in V-subgroups, one defines one of the subgroups as validation sample, and
the remainder as training sample. One then trains the jth algorithm on the vth training sample, and one

evaluates the v-specific cross-validated risk �Pi2ValðvÞ log �QN;TrðvÞ;jðCY
i ÞYið1� �QN;TrðvÞ;jðCY

i ÞÞ1�Yi for this jth

algorithm. This is done for each choice of sample split v 2 f1; . . . ;Vg, and the V cross-validated risks are
averaged, giving a single cross-validated risk for the jth algorithm. One could now select the best choice jN
by selecting the algorithm that has the smallest cross-validated risk. The estimator �QN;JN is referred to as the
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discrete super-learner. Similarly, one can define a candidate algorithm �QN;α ¼
P

j αj
�QN;j for a vector of

weights α and select the optimal choice αN that minimizes the cross-validated risk of �QN;α over the choice α.

This estimator �QN;αN is referred to as the super-learner. The estimator could also be based on a squared error
loss function

L2ð�QÞðOÞ ¼
XN
i¼1

ðYi � �QðCY
i ÞÞ2:

Let �QW ;N be a nonparametric maximum likelihood estimator of QW 2 QW , thus respecting the model QW

for the joint distribution of W1; . . . ;WN . For example, if Wi are i.i.d., then we would estimate this marginal
distribution of Wi with the empirical distribution of ðW1; . . . ;WNÞ. If W1; . . . ;WN are only known to be
independent, then we would estimate each marginal distribution of Wi with the discrete distribution that
puts mass 1 on the singleton Wi, i ¼ 1; . . . ;N: note that this empirical distribution is equivalent with the joint
distribution that puts mass 1 on ðW1; . . . ;WNÞ. If the model QW is larger than the independence model, then
we would still estimate QW with this degenerate distribution QW;N .

Given the estimator �QN and QW;N of �Q0 and QW;0, one could now define a corresponding plug-in
estimator Ψð�QN ;QW;NÞ. However, the TMLE differs from this estimator using a targeted version �Q�

N of �QN

instead.
Let �gN be an estimator of �g0, and let gN be the corresponding estimator of the conditional distribution g0

of A, given W. Given the model assumption gðAjWÞ ¼Qi �gðAijcAi ðWÞÞ for a common conditional density �g,
this estimator can be based on the log-likelihood loss:

Lð�gÞðOÞ ¼ �
XN
i¼1

log �gðAijCA
i Þ:

As explained above, this could be a simple logistic regression estimator or a super-learner based on this loss
function based on the sample ðAi;CA

i ¼ cAi ðWÞÞ, i ¼ 1; . . . ;N.
Given �gN , QW ;N , and �QN , let f�QNð�Þ : �g be a target-parameter-specific submodel through �QN defined by

Logit�QNð"Þ ¼ Logit�QN þ �
�hðg�;QW ;NÞ
�hðgN ;QW;NÞ

;

where �hNðcÞ ¼ 1
N

PN
i¼1 hi;NðcÞ, with hi;NðcÞ ¼ PQW ;N ;gN ðcYi ðA;WÞ ¼ cÞ, and, similarly, �h�NðcÞ ¼ 1

N

PN
i¼1 h

�
i;NðcÞ,

with h�i;NðcÞ ¼ PQW;N ;g� ðcYi ðA�;WÞ ¼ cÞ, all defined as densities w.r.t. a dominating measure μ.
Let

�N ¼ argmin
�

Lð�QNð�ÞÞðOÞ

be the maximum likelihood estimator, which simply involves running univariate logistic regression on a

pooled data set with outcomes Yi and covariate
�hðg�;QW ;N Þ
�hðgN ;QW ;N Þ ðC

Y
i Þ, using as off-set Logit �QN . This defines now an

update �Q�
N ¼ �QNð�NÞ.

The TMLE of ψ0 is defined as the corresponding plug-in estimator

ψ�
N ¼ Ψð�Q�

N ;QW ;NÞ:
We note that this TMLE solves the efficient influence curve equation

D�ð�Q�
N ;QW ;N ; gN ;ψ�

NÞðOÞ ¼ 0;

which is a key ingredient in our proof of asymptotic normality of ψ�
N . Or, using the notation

�hN ¼ �hðQW;N ; gNÞ, and D�ð�Q;QW ; �h;ψÞ, we can write this as

D�ð�Q�
N ;QW;N ; �hN ;ψ�

NÞ ¼ 0:
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Specifically, being a substitution estimator ΨðQ�
NÞ and using an NPMLE of QW;0, we haveP

i D
�
Wi
ðQ�

NÞ ¼ 0, while the targeted update �Q�
N of �QN guarantees thatX

i

D�
Yi
ð�Q�

N ;
�hðQW ;N ; gNÞÞ ¼ 0:

6.6 The clever covariate

Computation of the above TMLE requires the construction of an estimator �h�N=�hN of the clever covariate
�h�0=�h0 (density ratio). This estimator needs to be evaluated at CY

i for each i ¼ 1; . . . ;N, in order to compute
the TMLE update �Q�

N . In addition, since ΨðQW;N ; �Q�
NÞ involves integration of �Q�

NðCY
i ða�;wÞÞ over any point in

support of W ;A� w.r.t. product measure QW ;N 	 g�, we also need to evaluate �h�N=�hN at any such point. One
possible estimator is a plug-in estimator

�h�N
�hN

ðcÞ ¼
P

i PQW ;N ;g� ðcYi ðA;WÞ ¼ cÞP
i PQW;N ;gN ðcYi ðA�;WÞ ¼ cÞ ;

obtained by plugging in our empirical counterpart QW ;N for QW;0, and an estimator gN of g0. Let us consider
the case that QW ;N puts mass 1 on W. In that case, this simplifies toP

i

Ð
a� IðcYi ða�;WÞ ¼ cÞg�ðajWÞP

i

Ð
a� IðcYi ða�;WÞ ¼ cÞgNðajWÞ :

In addition, one can use that cYi ða;wÞ ¼ ðaj;wj : j 2 FiÞ so that for each i, the integral only integrates over
ðaj : j 2 FiÞ, where we used the convention that i 2 Fi. Nonetheless, this type of implementation can easily
be quite computationally overwhelming.

Therefore, we use this subsection to formulate insights about the clever covariate that will allow a much
easier implementation of an estimator of this clever covariate. The basic idea is that we will directly estimate
�h0 instead of indirectly through plugging in estimators of QW and g0. These insights are formulated in the
following lemma, where we consider the case that CY

i ¼ ðWj;Aj : j 2 FiÞ with i 2 Fi.

Lemma 2 We note that �h0 ¼ 1=N
P

i hi;0 is a mixture of densities hi;0 of CY
i (living in a single space CY common

in i) and thus represents a density of a random variable which we will denote with CY 2 CY. Suppose
CY ¼ ðWc

j ;A
c
j : j ¼ 1; . . . ; kÞ for some k, representing covariates and treatment values of the subject and its

friends.
• We have

�h0 ¼ argmax
�h

E0

XN
i¼1

log �hðCY
i Þ; ð11Þ

where we maximize over a set of densities of CY that contains the true �h0.
• The density �h0 can be factorized as

�h0ðWc
j ;A

c
j : j ¼ 1; . . . ; kÞ ¼ �gc0ðAc

j : jjWc
j : jÞ�Qc

WðWc
j : jÞ;

where �gc0 is the conditional density of ðAc
j : jÞ, given ðWc

j : jÞ, and �Qc
W is the marginal density of ðWc

j : jÞ, under
the joint density �h0.

• We also have

�gc0 ¼ argmax
�gc

E0

XN
i¼1

log �gcðAj : j 2 FijWj : j 2 FiÞ; ð12Þ

where we maximize over a set of conditional densities of ðAc
j : jÞ, given ðWc

j : jÞ, that contains the true �gc0, and,
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�Qc
W ;0 ¼ argmax

�Qc
W

E0

XN
i¼ 1

log �Qc
WðWj : j 2 FiÞ: ð13Þ

• By the same arguments, �h�0 ¼ �g�c0 �Qc
W;0, where

�h�0 is a density of random variable CY ;� ¼ ðWc;�
j ;Ac;�

j : jÞ,

�h�0 ¼ argmax
�h

EPQ0 ;g�

XN
i¼ 1

log �hðCY ;�
i Þ; ð14Þ

�g�c0 is the conditional density of ðAc;�
j : jÞ, given ðWc;�

j : jÞ, and �Qc
W ;0 is the marginal of ðWc;�

j : jÞ, under the joint
density �h�0. The latter equals the �Qc

W ;0 defined above as the marginal density under �h0.
• As a consequence, we can conclude that

�h�0
�h0

ðCYÞ ¼ �g�c0
�gc0

ðCYÞ: ð15Þ

Thus, the take home point of this lemma is (eq. 15) teaching us that we only need to estimate �g�c0 and �gc0,
where �gc0 can be fitted as if we are estimating a conditional density of ðAc

j : jÞ, given ðWc
j : jÞ, based on data

ðAi; ðAj : j 2 FiÞÞ, ðWi; ðWj : j 2 FiÞ, i ¼ 1; . . . ;N, as if these N observations are i.i.d. That is, an important
practical implementation is to fit �gc0 with maximum likelihood based estimation, treating CY

i as i.i.d., as if we
are fitting the common conditional distribution of ðAj : j 2 FiÞ, given ðWj : j 2 FiÞ. For example, if Aj is
binary, jFij ¼ k, then such a conditional distribution could be factorized in terms of a product of k binary
conditional distributions. Each of these binary conditional distributions can be fitted with logistic regres-
sion, possibly incorporating adaptive estimation. The asymptotic consistency of such a maximum likelihood
based estimator, and the validity of cross-validation ignoring the dependence, would rely on CY

i only being
dependent on CY

j for a finite (universal in N) number of j�i. Such an estimator yields an actual fitted
function �gcN that is easily evaluated at any required value.

Suppose now that g0 is known, as in an RCT. The above-mentioned approach would ignore the
knowledge on g0 and is thus not necessarily appropriate. If g0 is very simple, as if often the case in an
RCT, then one might simply be able to show that �gc0 is known (e.g. if the randomization probability for Ai

does not depend on covariates) in which case there is no need to estimate �gc0. In such cases, one could also
use a simple marginal empirical distribution for this conditional density �gc0 in the estimation procedure
outlined in previous paragraph. Consider now the case that g0 is known, but that it is a quite complex
function. In that case, one could decide to simulate a very large number of ðW ;AÞ from ðQW ;N ; g0Þ and use
an adaptive maximum likelihood based estimator of �gc0 based on this large sample using the method
presented in previous paragraph. This maximum likelihood based estimator would obviously utilize that
it is known that g0 only depends on certain covariates, so that the estimator can be simplified as much as
possible. That is, we use the above-described estimation procedure for estimation of �gc0, but now applied to
a very large data set simulated from the distribution of ðW ;AÞ under QW;N 	 g0. In this manner, one can still
obtain excellent approximation of the true �gc0 that fully utilizes that we know the true g0.

Let us now discuss estimation of �g�c0 . Given that we know g�, as above for the case that g0 is known, one
might either be able to determine �g�c0 (e.g. if the randomization probabilities of Ai;� do not depend on
covariates), and for complex g�, we can simulate a very large number ðW;A�Þ from ðQW;N ; g�Þ, and use an
adaptive maximum likelihood based estimator of �g�c0 based on this large sample using the above-described
estimation procedure.

In this manner, we obtain a functional form that approximates �gc0 and �g�c0 well (by utilization of g0; g�

being known), and that one can evaluate for any CY . The TMLE �Q�
N can now be computed, and the target

parameter evaluation Ψð�Q�
N ;QW ;NÞ as well.

Suppose now that CY
i ¼ ðAi; �Ac

i ; ðWj : j 2 FiÞÞ, where �Ac is a summary measure of the treatment nodes
ðAj : j 2 FiÞ of the friends of subject i. In this case, by a simple generalization of the lemma above, it follows
that �gc0 only involves fitting the conditional density of ðAi; �Ac

i Þ, given ðWj : j 2 FiÞ, treating these i-specific
data points as i.i.d., as above. Thus, a reduction of the dependence of CY

i on the treatment nodes (i.e. a
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model assumption in our model) would result in a significantly less variable estimated clever covariate
�h�0=�h0, and the above method can still be applied. For example, one might feel that it is a reasonable
assumption to assume that the mean outcome for unit i depends on A;W only through the treatment
node for subject i and the proportion of treated among the friends of i, beyond dependence on all the
covariates.

7 Asymptotic normality of TMLE of counterfactual mean of
single time-point stochastic intervention

In this section, we state a theorem establishing the asymptotics of the TMLE of ψ0 under conditions.
Subsequently, we discuss the implications of this theorem regarding statistical inference in terms of
confidence intervals. The proof is deferred to the Appendix. In the Appendix of our technical report, we
demonstrate that our proof is generalizable to the general longitudinal data structures. In this section, we
define Fi to include i itself: i.e. i 2 Fi.

Theorem 2 Consider the statistical formulation of data O ¼ ðO1; . . . ;ONÞ,P0 2 M, Oi ¼ ðWi;Ai;YiÞ, statistical
model M, and statistical target parameter Ψ : M ! IR, all defined conditionally on the network-profile
F ¼ ðF1; . . . ; FNÞ. Recall that this network-profile F implies that Yi only depends on ðW ;AÞ through
ðWj;Aj : j 2 FiÞ and that Ai depends on W through ðWj : j 2 FiÞ. Suppose �g0 2 G, and that QW;0 2 QW satisfies
an independence assumption specified below, and �QY ;0 is unspecified. A probability distribution of O is thus
parameterized by QW ; �g; �QY as follows:

PðOÞ ¼ QWðWÞ
YN
i¼ 1

�gðAi jCA
i Þ�QðYi jCY

i Þ; ð16Þ

where CY
i ¼ cYi ðA;WÞ 2 CY � IRd1 , CA

i ¼ cAi ðWÞ 2 CA � IRd2 , �QYð�jcÞ is a density for Y for each possible c 2 CY ,
but is otherwise unspecified, �gð�jcÞ is a density for A for each possible c 2 CA, and QW 2 QW. This defines the
statistical model M for the probability distribution of O.

For a specified stochastic intervention g�, the target parameter Ψ : M! IR is defined by

ΨðP0Þ¼ EP0
�Yg� ¼ Ψð�Q0;QW ;0Þ

¼ 1
N

XN

j¼1

ð
a;w

�Q0ðcYj ða;wÞÞg�ðajwÞQW ;0ðdwÞ;

where QW ;0ðwÞ ¼ P0ðW ¼ wÞ (defined as density w.r.t. some dominating measure), QW;0ðdwÞ ¼
QW ;0ðwÞdμWðwÞ denotes integration w.r.t. the measure implied by QW ;0, �Q0ðcYj ðA;WÞÞ ¼ E0ðYjjA;WÞ, and
�Q0ðcÞ ¼

Ð
y y

�QYðdyjcÞ is the mean under density �QYð�jcÞ.
Let D�ð�Q;QW ; g0ÞðOÞ be the efficient influence curve of Ψ as defined in Theorem 1:

D�ð�Q;QW ; gÞ ¼PN
i¼1

fD�
Wi
ðQW ; �QÞðWiÞ þ D�

Yi
ð�Q;QW ; gÞg;

where

D�
Yi
ð�Q;QW ; gÞ ¼ 1

N

�hðg�;QWÞðCY
i Þ

�hðg;QWÞðCY
i Þ

ðYi � �QðCY
i ÞÞ;

and D�
Wi

¼ Eð�Yg� jWiÞ �ΨðPÞ. We will also denote these functions with D�ð�Q;QW ; �hÞ and D�
Yi
ð�Q;QW ; �hÞ to

emphasize that they only depend on g through �h. We use the definitions of �h0ðcÞ ¼ 1
N

PN
i¼1 h0;iðcÞ,

�h�0 ¼ 1
N

PN
i¼1 h

�
0;i, h0;iðcÞ ¼ Pg0;QW ;0ðcYi ðA;WÞ ¼ cÞ, h�0;iðcÞ ¼ Pg�;QW ;0ðcYi ðA;WÞ ¼ cÞ, defined as densities w.r.t. a

dominating measure μ, and let ~h0 ¼ �h�0=�h0.
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Let QW ;N be the distribution that puts mass 1 on ðW1; . . . ;WNÞ. Consider the TMLE
ψ�
N ¼ ΨðQ�

NÞ ¼ Ψð�Q�
N ;QW ;NÞ defined above using �gN in �hN ¼ �hðgN ;QW ;NÞ. As shown above, this TMLE solves

D�ð�Q�
N ;QW ;N ; �hNÞðOÞ ¼ 0:

Note that ~hN is a plug-in estimator of ~h0 implied by �gN 2 G and QW;N .
We make the following assumptions:

Entropy condition: Consider a class F Y of functions cY ! �QðcYÞ on a set in CY � IRd that contains cYðA;WÞ
with probability 1. Assume that �Q�

N 2 F Y with probability 1. Consider a class F h of functions cY ! �hðcYÞ on
CY � IRd. Assume that ~h�N 2 F h with probability 1. Define the dissimilarity measure on the Cartesian product of
F ¼ F Y 	F h 	 G:

dðð~h1; �Q1; �g1Þ; ð~h; �Q; �gÞÞ ¼ max sup
c2CY

j~h1 � ~hj; sup
c2CY

j�Q1 � �Qj; sup
c2CA

j�g1 � �gj
 !

:

Assume that there exists some η >0, so that
Ð η
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log Nð�;F ; dÞð Þp

d�<1, where Nð�;F ; dÞ is the number of
balls of size � w.r.t. metric d needed to cover F .

In particular, this assumption holds if supθ2F Y
k θ k�v <1, supθ2F h

k θ k�v <1, sup�g2G k �g k�v <1,
where k θ k�v is the uniform sectional variation norm as defined in Gill et al. [41] and van der Laan [63].

Universal bound: Assume supθ2F;O jf jðOÞ<1, where the supremum of O is over a set that contains O with
probability 1. This assumption will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Uniform consistency and rate condition: Assume dð~hN ; �Q�
N ; �gNÞ; ð~h0; �Q�; �g0ÞÞ ! 0 in probability as N ! 1,

RN;1;�
ð
c

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q�

N � �Q�ÞðcÞ�h0ðcÞdμðcÞ ¼ oPð1=
ffiffiffiffi
N

p
Þ

and

RN;4 ¼
ð
c

�h�N
�hN

�
�h�0
�h


 �
1
�h0

ð�hN � �h0Þð�Q0 � �Q�ÞðcÞ�h0dμðcÞ ¼ oP
1ffiffiffiffi
N

p
� 	

:

Asymbiotic linearity condition on �gN :

Ð
c

�h�0
�h20

�hðgN � g0;QW;0Þ
N

ð�Q� � �Q0ÞðcÞ�h0ðcÞdμðcÞ

¼ 1
N

XN
i¼1

f 1A;iðOÞ þ oPð1=
ffiffiffiffi
N

p
Þ;

where f 1A;iðOÞ only depends on O through ðAi; ðWj : j 2 FiÞÞ, and E0ðf 1A;iðOÞjWÞ ¼ 0.

Positivity condition: Assume

sup
c2CY

�h�ðg�;QW;0Þ
�hðg0;QW ;0Þ

ðcÞ<1:

Universal bound on connectivity between units: Assume that there exists a K <1 so that supi jFij<K for
all i ¼ 1; . . . ; a.s.

Universal bound on dependence of W-distribution, and stochastic intervention: Assume that
there exists a K <1, so that g�ðAj : j 2 FijWÞ only depends on ðWj : j 2 RiÞ with maxi jRij<K, and, for
each i, Wi is independent of ðWj : j 2 Sci Þ with maxi jSij � K, where Sci ¼ fj : j 62 Sig, and K does not
depend on N.
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First-order approximation: Then,

ψ�
N � ψ0 ¼ 1

N

XN
i¼1

ffiðOÞ � P0fig þ oPð1=
ffiffiffiffi
N

p
Þ;

where

fi ¼ D�
Y ;ið�Q�;QW ;0; g0Þ þ f 1A;i þ f 1W;i þ f 2W ;i

f 1W;iðWÞ ¼
ð
a

�Q�ðcYi ða;WÞÞg�ðajWÞ

f 2W ;iðWÞ ¼
ð
c

h�i;N
�h0

�
�h�0
�h20

hiðg0;QW ;NÞ
( )

ðcÞð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ

h�i;NðcÞ ¼
ð
a
IðcYi ða;WÞ ¼ cÞg�ðajWÞ ¼ g�i ðcjWÞ

hiðg0;QW;NÞðcÞ ¼
ð
a
IðcYi ða;WÞ ¼ cÞg0ðajWÞ ¼ g0;iðcjWÞ:

Weak convergence of first-order approximation: We can orthogonally decompose

fiðOÞ � P0fi ¼ fY;iðOÞ þ fA;iðOÞ þ fW ;iðOÞ;
where

fY ;i ¼ D�
Y;i � E0ðD�

Y ;ijA;WÞ

¼
�h�0
�h0

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ

fA;i ¼ E0ðD�
Y ;ijA;WÞ � E0ðD�

Y;ijWÞ þ f 1A;i

¼
�h�0
�h0

ðCY
i Þð�Q0 � �Q�ÞðCY

i Þ

�
ð
c

�h�0
�h0

ðcÞð�Q0 � �Q�ÞðcÞg0;iðcjWÞ þ f 1A;i

E0ðD�
Y ;ijWÞ ¼

ð
c

�h�0
�h0

ð�Q0 � �Q�ÞðcÞg0;iðcjWÞ

fW ;i ¼ f 1W;i þ f 2W ;i þ E0ðD�
Y ;ijWÞ � P0ff 1W ;i þ f 2W;i þ E0ðD�

Y ;ijWÞg

¼
ð
a

�Q0ðcYi ða;WÞÞg�ðajWÞ �
ð
a;w

�Q0ðcYi ða;WÞÞg�ðajwÞQW ;0ðdwÞ

¼
ð
c

�Q0ðcÞg�i ðcjWÞ �
ð
c;w

�Q0ðcÞg�i ðcjwÞQW ;0ðdwÞ:
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For ði; jÞ 2 f1; . . . ;Ng2, let RWði; jÞ be the indicator that fW ;i and fW;j are dependent, RAði; jÞ ¼ IðFi ˙ Fj�;Þ, and
R2ði; jÞ ¼ IðRAði; jÞ ¼ 1 or RWði; jÞ ¼ 1Þ. For example, if W1; . . . ;WN are independent, then RWði; jÞ ¼ IðRi ˙Rj�;Þ.
We have

1ffiffiffiffi
N

p
X
i

ffiðOÞ � P0fig )d Nð0; σ2Þ; where σ2 ¼ σ2Y þ σ2A þ σ2W ;

and

σ2Y ¼ lim
N!1

1
N

XN
i¼1

P0f 2Y;i

σ2A ¼ lim
N!1

1
N

X
i1;i2

RAði1; i2ÞP0fA;i1 fA;i2

σ2W ¼ lim
N!1

1
N

X
i1;i2

RWði1; i2ÞP0fW ;i1 fW ;i2 ;

assuming these limits exist, and P0f denotes the marginal expectation of f ðOÞ, given F. As a consequence,ffiffiffiffi
N

p ðψ�
N � ψ0Þ )d Nð0; σ2Þ.

Alternative expression of asymptotic variance: One can also represent σ2 as

σ2 ¼ lim
N!1

1
N

X
i1;i2

R2ði1; i2ÞP0fi1 fi2 :

To provide the reader with a general understanding of the asymptotic normality of the TMLE we note
the following. In the Appendix, we provide general conditions under which a process ZN ¼ ðZNðθÞ : θ 2 FÞ,
where ZNðθÞ ¼ 1=

ffiffiffiffi
N

p P
i fiðθÞðOÞ, converges weakly to a Gaussian process Z ¼ ðZðθÞ : θ 2 FÞ as random

functionals in the Banach space ,1ðFÞ of real valued functionals on a family F of functions, endowed with
the supremum norm [41], where the dependence between the fiðθÞs is restricted by assuming that fiðθÞðOÞ
can only depend on a set of maximally K fjðθÞðOÞs, where the integer bound K does not depend on N. For
completeness, we provide here the general theorem that is a corollary from the results established in the
Appendix and provides the key building block for the probabilistic component of our proofs:

Theorem 3 Consider a process ZN ¼ ðZNðθÞ : θ 2 FÞ, with ZNðθÞ ¼ 1=
ffiffiffiffi
N

p PN
i¼1 fiðθÞðOÞ, where

E0fiðθÞðOÞ ¼ 0, for each i, fiðθÞ is independent of ffjðθÞ : j 2 Sci g for a set Si � f1; . . . ;Ng with
maxi jSij<K for a universal K, where Sci ¼ fj : j 62 Sig, and F is a set of multivariate uniformly bounded
real valued functions θ : IRd ! IR. Let Rði; jÞ be the indicator that fiðθÞ and fjðθÞ are dependent. We make
the following additional assumptions:

• For all integers p>0, fE0fiðθÞðOÞpg1=p � C k θ k1 for supremum norm k θ k on F, and
universal C <1.

• There exists an η>0 so that the entropy integral
Ð η
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logNð�;F ; k � k1Þp

d�<1 for F w.r.t. norm k � k1
is finite.

• The marginal distributions ZNðθÞ converge to a normal distribution ZðθÞ for all θ 2 F .

Then ZN converges weakly to a Gaussian process Z identified by the covariance operator �ðθ1; θ2Þ defined by

�ðθ1; θ2Þ ¼ lim
N!1

1
N

XN
i¼1

XN
j¼1

Rði; jÞE0fiðθ1Þfjðθ2Þ:

In particular, ZN is asymptotically equicontinuous in the sense that if θ1N � θ2N ! 0 w.r.t. supremum norm,
where θ1N ; θ2N 2 F, then ZNðθ1NÞ � ZNðθ2NÞ converges to zero in probability.
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7.1 Statistical inference

One can estimate σ2 by plugging in estimators QW;N ; �Q�
N ;

�hN in the expressions for fY ;i; fW ;i; fA;i. Given an
estimator of σ2N , one can then construct a confidence interval ψ�

N 
 1:96σN=
ffiffiffiffi
N

p
. If σN is consistent for σ, then

this will be an asymptotically valid 0.95-confidence interval. The expression for σ2 suggests that a consistent
estimator of σ2 relies on consistent estimation of �Q0, even though the consistency of ψ�

N only relies on a
consistent estimator of �h0 and thus the relevant part of g0 (since the expectation w.r.t. W is consistently
estimated). Even if ψ�

N relied on a less nonparametric estimator of �Q0, this suggests using a super-learner
using flexible machine learning algorithms when estimating this asymptotic variance σ2. However, below,
we provide alternative estimators of the asymptotic variance that appear to avoid having to estimate �Q0.

Ignoring contribution of �gN : We claim that if g0 is unknown, and one uses an MLE gN according to some
model, then ignoring the contribution f 1A;i in fA;i due to estimation of g0 will result in an upper bound σ2N;u for
the actual asymptotic variance σ2 of the TMLE, based on a generalization of the result in van der Laan and
Robins [3]. This result relies on the fact that g0 is an orthogonal nuisance parameter w.r.t. ψ0. Such a result
would then allow us to use this simplified plug-in estimator σ2N;u (using gN for g0) in the statistical model M
in which g0 is not known but a correctly specified model for g0 (i.e. �g0) is available. Again, such a result will
need to be formally established in future research.

In the sequel of this subsection, we suggest the following practical proposals for variance estimation.

Assuming a consistent �Q�
N : Suppose that one is willing to assume that �Q�

N is consistent for �Q0. In that case,
ignoring the f 1A;i contribution by the argument above, it follows that fA;i ¼ 0, so that we can estimate σ2 with

σ2N ¼ 1
N

XN
i¼1

�h�N
�hN

ðCY
i ÞðYi � �Q�

NðCY
i ÞÞ


 �2

ð17Þ

þ 1
N

XN
i;j

fW ;ið�Q�
N ;QW ;NÞfW ;jð�Q�

N ;QW ;NÞ;

where

fW ;ið�Q;QWÞ ¼
ð
a

�QðcYi ðA;WÞÞg�ðajWÞ �
ð
a;w

�QðcYi ða;WÞÞg�ðajwÞQWðdwÞ:

Assuming rare outcome: suppose now that one is not willing to assume that �Q�
N is consistent but it is

known that �Q0 is close to zero (e.g. rare outcome). In addition, assume that �Q� � 0 as well, which can be
guaranteed by incorporating such a constraint in the logistic regressions submodel of the TMLE as in Balzer
and van der Laan [64]. In that case it follows that the contributions to the variance of fA;i and fW ;i are second-
order relative to the contributions of fY;i w.r.t. �Q0 � 0. As a consequence, in that case, it would be
appropriate to still use this estimate σ2N (eq. 17), and the inconsistency of �Q�

N will only make the estimate
of σ2Y conservative. In fact, by this argument one could even drop the σ2W contribution, but for the sake of
being conservative, we would recommend including this term.

A generally appropriate variance estimator: We now proceed with deriving a more general variance
estimator under reasonable assumptions. Firstly, we will ignore the contribution f 1A;i due to estimation of g0,
and as mentioned above we conjecture (based on i.i.d. theory) that this will only make the variance
estimator conservative. Secondly, we note that (recall fW ;i ¼ fW;ið�Q0;QW ;0Þ)

fi ¼ fY ;i þ fA;i þ fW ;i

¼ ~h0ðCY
i ÞðYi � �Q�ðCY

i ÞÞ þ fW ;i

¼ ~h0ðCY
i ÞðYi � �Q�ðCY

i ÞÞ þ fW ;ið�Q�;QW ;0Þ þ ffW ;ið�Q�
0;QW ;0Þ � fW ;ið�Q�;QW ;0Þg;
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where fW;ið�Q�;QW ;0Þ ¼
Ð
c
�Q�ðcÞg�i ðcjWÞ � Ðc;w �Q�ðcÞg�i ðcjwÞQW;0ðdwÞ. We now note that

1
N

XN

i¼1
ffW;ið�Q�

0;QW;0Þ � fW ;ið�Q�;QW;0Þg ¼ 1
N

XN

i¼1

ð
c
ð�Q0 � �Q�ÞðcÞg�i ðcjWÞ

�EQW ;0

1
N

XN

i¼1

ð
c
ð�Q0 � �Q�ÞðcÞg�i ðcjWÞ

¼ Ψð�Q0;QW;NÞ �Ψð�Q�;QW ;NÞ � EWfΨð�Q0;QW;NÞ �Ψð�Q�;QW ;NÞ;
where in this last expression QW;N denotes the empirical distribution that puts mass 1 on W. As shown in the
next section, it follows that

ffiffiffiffi
N

p ðΨð�Q�
N ;QW;NÞ �Ψð�Q0;QW;NÞ converges to a normal distribution, and there-

fore one expects that the conditional bias
ffiffiffiffi
N

p ðΨð�Q�;QW ;NÞ �Ψð�Q0;QW ;NÞÞ ¼ oPð1Þ. We will assume that
indeed

ffiffiffiffi
N

p ðΨð�Q�;QW ;NÞ �Ψð�Q0;QW ;NÞ ¼ oPð1Þ. Under this assumption, we have that
1
N

PN
i¼1ffW;ið�Q�

0;QW;0Þ � fW ;ið�Q�;QW ;0Þg ¼ oPð1=
ffiffiffiffi
N

p Þ. As a consequence,

1ffiffiffiffi
N

p
XN
i¼1

fi � 1ffiffiffiffi
N

p
XN
i¼1

~h0ðCY
i ÞðYi � �Q�ðCY

i ÞÞ

þ 1ffiffiffiffi
N

p
XN
i¼1

ð
c

�Q�ðcÞg�i ðcjWÞ �
ð
c;w

�Q�ðcÞg�i ðcjwÞQW;0ðdwÞ

 �

:

In addition, the first sum on the right-hand side already has conditional mean zero, given W, so that the
asymptotic variance of the left-hand side equals the variance of the first sum plus the variance of the second
sum. The second variance can be consistently estimated with

σ2W;N ¼ 1
N

X
i1;i2

RWði1; i2ÞfW ;i1ð�Q�
N ;QW ;NÞfW ;i2ð�Q�

N ;QW ;NÞ:

The variance of the first sum can be represented as:

P0
1
N

X
i;j

RAði; jÞ~h0ðCY
i ÞðYi � �Q�ðCY

i ÞÞ~h0ðCY
j ÞðYj � �Q�ðCY

j ÞÞ

� 1
N

X
i;j

RAði; jÞP0
~h0ðCY

i ÞðYi � �Q�ðCY
i ÞÞP0

~h0ðCY
j ÞðYj � �Q�ðCY

j ÞÞ:

If one is willing to assume that

lim
N!1

1
N

X
i;j

RAði; jÞP0
~h0ðCY

i ÞðYi � �Q�ðCY
i ÞÞP0~h0ðCY

j ÞðYj � �Q�ðCY
j ÞÞ � 0;

then a conservative estimate of the first variance is defined as:

σ2Y ;N ¼ 1
N

X
i;j

RAði; jÞD�
Y;ið�Q�

N ;QW ;N ; �h0ÞD�
Y ;jð�Q�

N ;QW ;N ; �h0Þ:

Till what degree this is a reasonable assumption will need to be further studied. Under this assumption, the
proposed estimator of the asymptotic variance σ2 is given by

σ2N;1 ¼ σ2W ;N þ σ2Y;N :

8 TMLE of intervention-specific mean, conditional on W

In our target parameter, we conditioned on the network information F ¼ ðF1; . . . ; FNÞ, but marginalized over
W, given F. As a consequence, in order to establish asymptotic normality of the TMLE we had to rely on an
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independence assumption on the joint distribution of W (given F), such as that all W1; . . . ;WN are
independent, or only that each Wi only depends on maximally K Wj’s. In this section, we define the target
parameter conditional on all of W, which happens to equal Ψð�Q0;QW ;NÞ, where QW;N is the empirical
distribution that puts mass 1 on W. Our target parameter is now a parameter of the conditional distribution
PW
0 of O, given W, modeled in same way as above (but without need to model a distribution of W). Its

efficient influence curve is now just the D�
Yð�Q0;QW ;N ; �hðg0;QW ;NÞÞ-component, where for the sake of nota-

tional convenience we will still denote �hðg0;QW;NÞ with �h0 (just in this section and in proof of next theorem
in the Appendix). We will use the same TMLE as presented in the previous sections. In the Appendix, we
show how our template for analyzing the TMLE can be modified to analyze the TMLE with respect to this
conditional W-specific target parameter, and that essentially the terms due to estimation of QW ;0 now drop
while the other terms are essentially the same. As a consequence, there is no need to redo all the technical
proofs. Our proof now relies on the identity PW

0 D�
Yð�Q;QW;N ; �h0Þ ¼ Ψð�Q0;QW;NÞ �Ψð�Q;QW ;NÞ, as established

by (eq. 10). This results in the following Theorem 4. This theorem differs from Theorem 2 in that it dropped
the independence assumption on the distribution of W and that the asymptotic variance of the TMLE (w.r.t.
Ψð�Q0;QW ;NÞ instead of Ψð�Q0;QW ;0Þ) does not include the σ2W -term anymore. Thus, by changing our target
parameter to this conditional version, we removed a restrictive assumption and we reduced the asymptotic
variance of the TMLE w.r.t. this conditional target parameter.

Theorem 4 The conditional probability distribution of O, given W, is parameterized by �g; �QY as follows:

PWðOÞ ¼
YN
i¼1

�gðAijCA
i Þ�QYðYijCY

i Þ; ð18Þ

where CY
i ¼ cYi ðA;WÞ 2 CY � IRd1 , CA

i ¼ cAi ðWÞ 2 CA � IRd2 , �QYð�jcÞ is a density for Y for each possible c 2 CY ,
but is otherwise unspecified, �gð�jcÞ is a density for A for each possible c 2 CA, and �g 2 G. This defines the
statistical model MW for the conditional probability distribution PW

0 of O, given W. Let QW ;N denote the
probability distribution of W that puts mass 1 on the observed W ¼ ðW1; . . . ;WNÞ.

For a specified stochastic intervention g�, the target parameter Ψ : MW ! IR is defined by

ΨWðPWÞ ¼ Ψð�Q;QW;NÞ
¼ 1

N

XN
j¼1

ð
a;w

�QðcYj ða;wÞÞg�ðajwÞQW ;NðdwÞ

¼ 1
N

XN
j¼1

ð
a

�QðcYj ða;WÞÞg�ðajWÞ;

where �QðcYj ðA;WÞÞ ¼ EPðYjjA;WÞ. Since ΨWðPWÞ only depends on PW through �Q, we will also denote this
parameter with ΨWð�QÞ.

The efficient influence curve of ΨW at PW is given by:

D�
Yð�Q;QW ;N ; �hÞ ¼

PN
i¼1 D

�
Yi
ð�Q;QW;N ; �hÞ;

where

D�
Y ;ið�Q;QW ;N ; �hÞ ¼ 1

N

�hðg�;QW ;NÞðCY
i Þ

�hðg;QW;NÞÞðCY
i Þ

ðYi � �QðCY
i ÞÞ:

Consider the TMLE ψ�
N ¼ ΨðQ�

NÞ ¼ Ψð�Q�
N ;QW;NÞ defined above using �gN in �hN ¼ �hðgN ;QW;NÞ. As shown

above, this TMLE solves

D�
Yð�Q�

N ;QW ;N ; �hNÞðOÞ ¼ 0:

We use the definitions �hðcÞ ¼ 1
N

PN
i¼1 hiðcÞ, �h�N ¼ 1

N

PN
i¼1 h

�
i;N , hiðcÞ ¼ Pg;QW;N ðcYi ðA;WÞ ¼ cÞ, h�i;NðcÞ ¼

Pg�;QW ;N ðcYi ðA;WÞ ¼ cÞ, defined as densities w.r.t. a dominating measure μ, and let ~h ¼ �h�N=�h, ~h0 ¼ �h�N=�h0,
where �h0 ¼ �hðg0;QW ;NÞ. Note that ~hN ¼ �h�N=�hN is a plug-in estimator of ~h0 ¼ �h�N=�h0 implied by �gN 2 G
and QW ;N .
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We make the following assumptions:

Entropy condition: Consider a class F Y of functions cY ! �QðcYÞ on a set in CY � IRd that contains cYðA;WÞ
with probability 1. Assume that �Q�

N 2 F Y with probability 1. Consider a class F h of functions cY ! ~hðcYÞ on
CY � IRd. Assume that ~hN 2 F h with probability 1. Define the dissimilarity measure on the Cartesian product
of F ¼ F Y 	 F h 	 G:

dðð~h1; �Q1; �g1Þ; ð~h; �Q; �gÞÞ ¼ max sup
c2CY

j~h1 � ~hj; sup
c2CY

j�Q1 � �Qj; sup
c2CA

j�g1 � �gj
� 	

:

Assume that there exists some η>0, so that
Ð η
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log Nð�;F ; dÞð Þp

d�<1, where Nð�;F ; dÞ is the number of balls
of size � w.r.t. metric d needed to cover F .

In particular, this assumption holds if supθ2FY
maxðk ~h k�υ; k �Q k�υ; k �g k�υÞ<1, where k � k�υ is the uni-

form sectional variation norm as defined in Gill et al. [65] and van der Laan [63].

Universal bound: Assume supθ2F ;O jf jðOÞ<1, where the supremum of O is over a set that contains O with
probability 1. This assumption will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Uniform consistency and rate condition: Assume dð~hN ; �Q�
N ; �gNÞ; ð~h0; �Q�; �g0ÞÞ ! 0 in probability as N ! 1,

RN;1;�
ð
c

�h�N
�hN

�
�h�N
�h0

� 	
ð�Q�

N � �Q�Þ�h0ðcÞdμðcÞ ¼ oPð1=
ffiffiffiffi
N

p
Þ

and

RN;4 ¼
ð
c

�h�N
�hN

�
�h�N
�h0


 �
1
�h0

ð�hN � �h0Þð�Q0 � �Q�ÞðcÞ�h0dμðcÞ ¼ oP
1ffiffiffiffi
N

p
� 	

:

Asymptotic linearity condition on �gN :ð
c

�h�N
�h20

�hðgN � g0;QW ;NÞ
N

ð�Q� � �Q0ÞðcÞ�h0ðcÞdμðcÞ

¼ 1
N

XN
i¼1

f 1A;iðOÞ þ oPð1=
ffiffiffiffi
N

p
Þ;

where f 1A;iðOÞ only depends on O through ðAi; ðWj : j 2 FiÞÞ, and E0ðf 1A;iðOÞjWÞ ¼ 0.

Positivity condition:

sup
c2CY

�h�ðg�;QW ;NÞ
�hðg0;QW ;NÞ

ðcÞ<1:

Universal bound on connectivity: Assume that there exists a K <1 so that supi jFij<K for all i ¼ 1; . . . ; a.s.

Restriction on stochastic intervention: Assume g�ðAj : j 2 FijWÞ only depends on W through ðWj : j 2 RiÞ
with maxi jRij<K for some universal K <1.

First-order approximation: Then,

ψ�
N � ψW

0 ¼ 1
N

XN
i¼1

ffWi ðOÞ � PW
0 fWi g þ oPð1=

ffiffiffiffi
N

p
Þ;

where

fWi ¼ D�
Y ;ið�Q�;QW;N ; �h0Þ þ f 1A;i:

Weak convergence of first-order approximation: We can orthogonally decompose
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fWi ðOÞ � PW
0 fi ¼ fY ;iðOÞ þ fA;iðOÞ;

where

fY ;i ¼D�
Y ;i � E0ðD�

Y;ijA;WÞ

¼
�h�N
�h0

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ;

fA;i ¼E0ðD�
Y ;ijA;WÞ � E0ðD�

Y;ijWÞ þ f 1A;i

¼
�h�N
�h0

ðCY
i Þð�Q0 � �Q�ÞðCY

i Þ

�
ð
c

�h�N
�h0

ðcÞð�Q0 � �Q�ÞðcÞg0;iðcjWÞ þ f 1A;i:

For ði; jÞ 2 f1; . . . ;Ng2, let RAði; jÞ ¼ IðFi ˙ Fj�;Þ. We have

1ffiffiffiffi
N

p
X
i

ffWi ðOÞ � PW
0 fWi g )d Nð0; σ2;WÞ; where σ2;W ¼ σ2Y þ σ2A;

and

σ2Y ¼ lim
N!1

1
N

XN
i¼1

PW
0 f 2Y ;i

σ2A ¼ lim
N!1

1
N

X
i1;i2

RAði1; i2ÞPW
0 fA;i1 fA;i2

assuming these limits exist, and PW
0 f denotes the conditional expectation of f ðOÞ, given W. As a consequence,ffiffiffiffi

N
p ðψ�

N � ψW
0 Þ )d Nð0; σ2;WÞ.

Alternative expression of asymptotic variance: One can also represent σ2;W as

σ2;W ¼ lim
N!1

1
N

X
i1;i2

RAði1; i2ÞPW
0 fi1 fi2 :

8.1 Variance estimation

Known g0 and consistent �Q�
N : Let us consider an RCT so that gN ¼ g0 and the term f 1A;i ¼ 0. If one is willing

to assume that �Q�
N is consistent for �Q0, then fA;i ¼ f 1A;i ¼ 0. Therefore, in this case, the asymptotic variance

can be estimated as

σ2;WN ¼ 1
N

XN
i¼1

�h�N
�hN

ðCY
i ÞðYi � �Q�

NðCY
i ÞÞ


 �2

: ð19Þ

Known g0, rare outcome: Suppose now that we still have an RCT, but we are not willing to assume �Q�
N is

consistent, but �Q0 is close to zero (e.g. rare outcome). In addition, assume �Q� � 0: i.e. one might incorporate
this constraint on �Q0 in the submodel of the TMLE, as in Balzer and van der Laan [64]. It follows that a first-
order (w.r.t. �Q0 approximating zero) approximation of the asymptotic variance σ2;W can still ignore the
fA;i-contribution. As a consequence, in that case an appropriate approximation of the asymptotic variance is
given by σ2Y ¼ limN!1 1

N

PN
i¼1 P

W
0 f 2Y ;i. That is, this asymptotic variance σ2Y is approximated by

1
N

XN
i¼1

�h�N
�hN

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ

 �2

:
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However, the latter is conservatively estimated by using a possibly inconsistent �Q�
N , showing that we can

still use (eq. 19) as the estimator of the asymptotic variance.

Ignoring contribution of gN is conservative: Even when g0 is estimated with gN , as argued before, we
suggest that the contribution f 1A;i only reduces the asymptotic variance, so that ignoring this contribution
will be fine for the sake of reliable statistical inference. Thus, our overall conclusion is that (eq. 19) is an
appropriate (possibly conservative) estimator for the asymptotic variance when either �Q�

N is consistent or if
�Q0 � 0.

A general variance estimator: Assume that

Ψð�Q0;QW;NÞ �Ψð�Q�;QW ;NÞ ¼ oPð1=
ffiffiffiffi
N

p
Þ:

Since this represents the bias term of the TMLE Ψð�Q�
N ;QW ;NÞ, and we have asymptotic normality offfiffiffiffi

N
p ðΨð�Q�

N ;QW ;NÞ �Ψð�Q0;QW ;NÞ, and �Q�
N is consistent for �Q�, this should be true under the assumptions of

the previous theorem. However, under this assumption we have that, ignoring f 1A;i,

fA;i ¼
�h�N
�h0

ðCY
i Þð�Q0 � �Q�ÞðCY

i Þ þ oPð1=
ffiffiffiffi
N

p
Þ;

and, as a consequence,

fWi ¼
�h�N
�h0

ðCY
i ÞðYi � �Q�ðCY

i ÞÞ ¼ D�
Y ;ið�h0; �Q�Þ:

Note that indeed

PW
0

1
N

XN
i¼1

~hðg0;QW ;NÞðCY
i ÞðYi � �Q�ðCY

i ÞÞ ¼Ψð�Q0;QW;NÞ �Ψð�Q�;QW ;NÞ

¼ oPð1=
ffiffiffiffi
N

p
Þ:

Thus, under the assumptions of the Theorem, and ignoring the f 1A;i contribution from gN , we have

ffiffiffiffi
N

p
ðψ�

N � ψ0Þ ¼
1ffiffiffiffi
N

p
XN
i¼1

~hðg0;QW ;NÞðYi � �Q�ðCY
i ÞÞ þ oPð1Þ;

where the linear term has conditional mean zero w.r.t. PW
0 . The conditional variance of the linear term on

the right-hand side is thus given by the following expression:

σ2W ¼ 1
N

X
i;j

RAði; jÞ PW
0 fWi fWj � PW

0 fWi PW
0 fWj

n o
:

Suppose that

lim
N!1

1
N

X
i;j

RAði; jÞPW
0 D�

Y;ið�Q�;QW ;N ; �h0ÞPW
0 D�

Y ;jð�Q�;QW ;N ; �h0Þ � 0:

Then a conservative estimate of the last expression σ2W is defined as:

σ2WN ¼ 1
N

X
i;j

RAði; jÞD�
Y ;ið�Q�

N ;QW;N ; �h0ÞD�
Y ;jð�Q�

N ;QW ;N ; �h0Þ:

Note that if �Q�
N is consistent for �Q0, then this estimator is asymptotically equivalent with (eq. 19), but we

expect the latter to be significantly larger for finite samples when �Q�
N is not a good approximation of �Q0. If

g0 is not known, then �h0 is replaced by its estimator �hN .
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9 Summary and concluding remarks

We formulated a general causal model for the longitudinal data structure generated by a finite population of
causally connected units. This allows us to define counterfactuals indexed by interventions on the treatment
nodes of the units, and corresponding causal contrasts. We established identifiability of the causal
quantities from the data observed on the units when observing all units or a random sample of the units,
assuming that the size of the population converges to infinity, under appropriate assumptions. Our causal
assumptions implied conditional independence across units at time t, conditional on the past of all units,
resulting in a factorized likelihood of the observed data (even though the observed data is generated by a
single experiment, not by a repetition of independent experiments). To deal with the curse of dimensionality
we assumed that a unit’s dependence on the past of other units can be summarized by a finite dimensional
measure and that this dependence is described by a common function across the units. This describes now
the statistical model for the data distribution and the statistical target parameter, and thereby the statistical
estimation problem. We demonstrated that we can use cross-validation and super-learning to estimate the
different factors of the likelihood. Given the statistical model and statistical target parameter that identifies
the counterfactual mean under an intervention, we derived the efficient influence curve of the target
parameter. We showed that this efficient influence curve characterizes the normal limit distribution of a
maximum likelihood estimator and thus still represents an optimal asymptotic variance among estimators of
the target parameter. However, due to the curse of dimensionality, maximum likelihood estimators will be
ill-defined for finite samples, and smoothing will be needed.

Such smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly
biased w.r.t. the target parameter, and, as a consequence, generally not result in asymptotically normally
distributed estimators of the statistical target parameter. Therefore, we formulated targeted maximum
likelihood estimators of this estimand and showed that the robustness of the efficient influence curve
implies that the bias of the TMLE will be a second-order term involving squared differences �hn � �h0 and
Qn � Q0 for two nuisance parameters �h0 ¼ �hðg0;Q0Þ and the relevant factor of likelihood Q0. Subsequently,
as showcased in this article, we focussed on defining and analyzing the TMLE of causal effects of an
intervention on a single treatment node on a future outcome. In this special case, we showed that the
efficient influence curve is double robust w.r.t. these two nuisance parameters �h0; �Q0, where �h0 depends on
the intervention mechanism and the distribution of the covariates, and �Q0 is a common conditional mean
function for the outcome. We established two formal asymptotic normality theorems for the TMLE under the
assumption that each unit is only connected to fewer than K other units for a universal K.

In future work, it will be of interest to extend our asymptotics theorem to the case that a unit can
depend on a fixed (in N)-dimensional summary measure that can depend on a number of units that can
converge to infinity with sample size. We can also be less-restrictive and allow that these summary
measures have a dimension K that increases with N, and then establishes rates of convergence that are
slower than 1=

ffiffiffiffi
N

p
and establishes corresponding (e.g. normal) limit distributions. In addition, in future

work, the finite sample behavior of these estimators and confidence intervals will need to be evaluated
through simulation studies. We will also generalize our TMLE to the TMLE of parameters defined by
marginal structural working models for the causal dose–response curve for a collection of stochastic
interventions. We also plan to investigate if there are other causal models for causally connected
units that might allow the formulation of TMLE for the general longitudinal data structure in terms of
sequential regressions, as in the double robust estimating equation based estimators for i.i.d. data
presented in Bang and Robins [58] and subsequent analogue TMLE in van der Laan and Gruber [59] and
Petersen et al. [66].

Overall, we believe that the statistical study of these causal models for dynamic networks of units
provides a fascinating and important area of future research, relying on deep advances in empirical process
and statistical estimation theory, while raising new challenges. In the mean time, these advances will be
needed to move forward statistical practice.
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Appendix

Introduction to Appendix

We start out with presenting a general template of our proof of Theorem 2 which establishes the asymptotics
of the TMLE for the case τ ¼ 0. In this template, we define the remaining ingredients (eq. A1), (eq. A2), and
(eq. A3) that will need to be established in the remainder of the proof. Each of these three ingredients is
carried out in a separate section. These sections are themselves organized by special tasks that need to be
carried out. We conclude with a similar template of the proof of Theorem 4, demonstrating that the
technical components are the same as needed for Theorem 2. At the end of the Appendix, we provide a
notation index that will be helpful to read through the article as well as through the Appendix.

General template of proof of Theorem 2

Recall that D� ¼ 1=N
PN

j¼1 D
�
j ðOÞ is a sum over the units j. We will use the notation PND� ¼ D�ðOÞ ¼

1=N
PN

j¼1 D
�
j ðOÞ, while P0D� ¼ 1=N

P
j EP0D

�
j ðOÞ is its expectation w.r.t. distribution P0. Due to Theorem 1,

we have D� ¼ D�
W þ D�

Y , P0D�
Wð�Q�

N ;QW ;0Þ ¼ 0, P0D�
Yð�Q�

N ;QW ;0; �h0Þ ¼ ψ0 �Ψð�Q�
N ;QW;0Þ, and PND�

Wð�Q�
N ;

QW ;NÞ ¼ PND�
Yð�Q�

N ;QW ;N ; �hNÞ ¼ 0. In particular, this yields

P0D�ð�Q�
N ;QW ;0; �h0Þ ¼ ψ0 �Ψð�Q�

N ;QW;0Þ:
We now proceed as follows:

Ψð�Q�
N ;QW ;NÞ � ψ0 ¼ Ψð�Q�

N ;QW;NÞ �Ψð�Q�
N ;QW ;0Þ þΨð�Q�

N ;QW;0Þ � ψ0

¼ Ψð�Q�
N ;QW;NÞ �Ψð�Q�

N ;QW ;0Þ � P0D�
Yð�Q�

N ;QW ;0; �h0Þ

¼ Ψð�Q�
N ;QW;NÞ �Ψð�Q�

N ;QW ;0Þ þ ðPN � P0ÞD�
Yð�Q�

N ;QW;0; �h0Þ

þPNfD�
Yð�Q�

N ;QW;N ; �hNÞ � D�
Yð�Q�

N ;QW ;0; �h0Þg

¼ Ψð�Q�
N ;QW;NÞ �Ψð�Q�

N ;QW ;0Þ þ ðPN � P0ÞD�
Yð�Q�

N ;QW;0; �h0Þ

þðPN � P0ÞfD�
Yð�Q�

N ;QW;N ; �hNÞ � D�
Yð�Q�

N ;QW ;0; �h0Þg

þP0fD�
Yð�Q�

N ;QW ;N ; �hNÞ � D�
Yð�Q�

N ;QW;0; �h0Þg:
We note that

fD�
Yð�Q�

N ;QW ;N ; �hNÞ � D�
Yð�Q�

N ;QW ;0; �h0Þg

¼ 1
N

XN
i¼1

�h�N
�hN

�
�h�0
�h0

� 	
ðYi � �Q�

NðCY
i ÞÞ;
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where �h�N ¼ �hðg�;QW;NÞ, �h�0 ¼ �hðg�;QW ;0Þ, and �h0 ¼ �hðg0;QW ;0Þ. From this, it follows that

P0fD�
Yð�Q�

N ;QW ;N ; �hNÞ � D�
Yð�Q�

N ;QW ;0; �h0Þg

¼ P0
1
N

XN
i¼1

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q0 � �Q�ÞðCY

i Þ

�P0
1
N

XN
i¼1

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q�

N � �Q�ÞðCY
i Þ

;
ð
c

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q0 � �Q�Þ�h0ðcÞdμðcÞ þ RN;1;

where we used that for a given function f P0
1
N

Pn
i¼1 f ðCY

i Þ ¼
Ð
c f ðcÞ�h0ðcÞdμðcÞ. We assumed that the second-

order term RN;1 ¼ oPð1=
ffiffiffiffi
N

p Þ. In addition, we define

RN;2 ; ðPN � P0ÞfD�
Yð�Q�

N ;QW ;N ; �hNÞ � D�
Yð�Q�

N ;QW;0; �h0Þg

¼ 1
N

XN
i¼1

�h�N
�hN

�
�h�0
�h0

� 	
ðYi � �Q�

NðCY
i ÞÞ � P0

�h�N
�hN

�
�h�0
�h0

� 	
ðYi � �Q�

NðCY
i ÞÞ


 �
:

We also note that

Ψð�Q�
N ;QW;NÞ �Ψð�Q�

N ;QW;0Þ

¼ 1
N

XN
i¼1

ð
a

�Q�
NðcYi ða;WÞÞg�ðajWÞ �

ð
�Q�
NðcYi ða;wÞÞg�ðajwÞQW;0ðdwÞ


 �

;
1
N

XN
i¼1

ff 1W ;iðWÞ � P0f 1W;ig þ RN;0;

where

f 1W;i ¼
ð
a

�Q�ðcYi ða;WÞÞg�ðajWÞ ¼
ð
�QðcÞg�i ðcjWÞ;

and

RN;0 ¼ 1
N

XN
i¼1

ð
c
ð�Q�

N � �Q�ÞðcÞg�i ðcjWÞ �
ð
ð�Q�

N � �Q�ÞðcÞg�i ðcjwÞQW ;0ðdwÞ

 �

:

We used here that
Ð
a
�QðcYi ða;WÞÞg�ðajWÞ ¼ Ðc �QðcÞg�i ðcjWÞ. Define the process Z1

W ;Nð�QÞ ¼ 1ffiffiffi
N

p
PN

i¼1

ff 1W ;ið�QÞ � P0f 1W ;ið�QÞg indexed by �Q. Note that
ffiffiffiffi
N

p
RN;0 ¼ Z1

W;Nð�Q�
N � �Q�Þ. As a consequence, showing that

RN;0 ¼ oPð1=
ffiffiffiffi
N

p Þ corresponds with proving that Z1
W ;Nð�NÞ ¼ oPð1Þ for a sequence �N that converges to zero w.

r.t. supremum norm. Therefore, our proof will involve studying this empirical process Z1
W ;N and establishing

the required asymptotic equicontinuity. In this manner, we will establish

RN;0 ¼ oPð1=
ffiffiffiffi
N

p
Þ ðA2Þ
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Thus, we have obtained the following expansion:

ψ�
N � ψ0 ¼ 1

N

XN
i¼1

ff 1W;iðWÞ � P0fW ;ig þ ðPN � P0ÞD�
Yð�Q�

N ;QW;0; �h0Þ

þ
ð
c

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ þ RN;1 þ RN;2 þ oPð1=

ffiffiffiffi
N

p
Þ;

We have

ðPN � P0ÞD�
Yð�Q�

N ;QW;0; �h0Þ ¼ ðPN � P0ÞD�
Yð�Q�;QW ;0; �h0Þ

þðPN � P0ÞfD�
Yð�Q�

N ;QW;0; �h0Þ � D�
Yð�Q�;QW;0; �h0Þg

;ðPN � P0ÞD�
Yð�Q�;QW ;0; �h0Þ þ RN;3:

We will show that

RN;2 ¼ oPð1=
ffiffiffiffi
N

p
Þ and RN;3 ¼ oPð1=

ffiffiffiffi
N

p
Þ ðA3Þ

To understand these last two terms, define the process

ZNð~h; �QÞ ¼ 1ffiffiffiffi
N

p
XN
i¼1

~hðCY
i ÞðYi � �QðCY

i ÞÞ � P0~hðCY
i ÞðYi � �QðCY

i ÞÞ
n o

;

which is a sum of the form ZNð~h; �QÞ ¼ 1ffiffiffi
N

p
P

i fið�Q; hÞðOiÞ indexed by ð~h; �QÞ, where ~h plays role of �h�=�h. Note

that RN;2 ¼ ZNð~hN � ~h0; �Q�
NÞ, while RN;3 ¼ ZNð~h0; �Q�

N � �Q�Þ. Thus, showing that RN;2 ¼ oPð1=
ffiffiffiffi
N

p Þ and

RN;3 ¼ oPð1=
ffiffiffiffi
N

p Þ comes down to showing that ZNð"NÞ ¼ oPð1=
ffiffiffiffi
N

p Þ for "N converging to zero w.r.t. supre-

mum norm. Therefore, our proof will involve studying this process ZNðÞ and establishing the required
asymptotic equicontinuity. Specifically, we will decompose this process in three orthogonal processes that
can be represented as sums over functions of conditionally independent random variables identified by the
sets Fi (analogue to orthogonal decomposition below of the first-order approximation) and establish this

asymptotic equicontinuity for each of the three orthogonal processes.
Consider now the term

ð
c

�h�N
�hN

�
�h�0
�h0

� 	
ð�Q0 � �Q�Þ�h0ðcÞdμðcÞ: ð20Þ

This term equals

ð
c

�h�NðcÞ
�hNðcÞ

�
�h�0ðcÞ
�h0ðcÞ

dμðcÞ

 �

ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ

¼
ð
c

�h�N � �h�0
�h0

ðcÞ �
�h�0
�h20

ð�hN � �h0ÞðcÞ
( )

ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞþRN;4;

where

RN;4 ¼
ð
c

�h�N
�hN

�
�h�0
�h0


 �
1
�h0

ð�hN � �h0Þð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ:
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We assumed that RN;4 ¼ oPð1=
ffiffiffiffi
N

p Þ. Using that �h0 ¼ 1
N

P
i hiðg0;QW ;0Þ, �hN ¼ 1

N

PN
i¼1 hiðgN ;QW ;NÞ, and

�h�N ¼ 1
N

P
i hiðg�;QW ;NÞ, it follows that (eq. 20) reduces to

1
N

XN
i¼1

ð
c

hiðg�;QW ;NÞ
�h0

ðcÞ �
�h�0
�h20

hiðgN ;QW;NÞ
( )

ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞþoPð1=
ffiffiffiffi
N

p
Þ

¼ 1
N

XN
i¼1

ð
c

hiðg�;QW ;NÞ
�h0

ðcÞ �
�h�0
�h20

hiðg0;QW;NÞ
( )

ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ

� 1
N

XN
i¼1

ð
c

�h�0
�h20

hiðgN � g0;QW ;NÞð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ þ oPð1=
ffiffiffiffi
N

p
Þ

;
1
N

XN
i¼1

f 2W ;iðWÞ

� 1
N

XN
i¼1

ð
c

�h�0
�h20

hiðgN � g0;QW ;NÞð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ þ oPð1=
ffiffiffiffi
N

p
Þ

;Z2
W ;N=

ffiffiffiffi
N

p
� 1
N

XN
i¼1

ð
c

�h�0
�h20

hiðgN � g0;QW ;0Þð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ

� 1
N

XN
i¼1

ð
c

�h�0
�h20

hiðgN � g0;QW ;N � QW ;0Þð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ þ oPð1=
ffiffiffiffi
N

p
Þ

;Z2
W ;N=

ffiffiffiffi
N

p
þ
ð
c

�h�0
�h20

�hðgN � g0;QW ;0Þ
N

ð�Q� � �Q0ÞðcÞ�h0ðcÞdμðcÞ�RN;5 þ oPð1=
ffiffiffiffi
N

p
Þ;

where we note that P0f 2W ;i ¼ 0, and we defined

RN;5 ¼ 1
N

XN
i¼1

ð
c

�h�0
�h20

hiðgN � g0;QW ;N � QW ;0Þð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ

¼ 1
N

XN
i¼1

ð
c

�h�0
�h20

ð�Q0 � �Q�ÞðcÞ�h0ðcÞdμðcÞ
ð
a
IðcYi ða;WÞ ¼ cÞðgN � g0ÞðajWÞ




�
ð
w

ð
a
IðcYi ða;wÞ ¼ cÞðgN � g0ÞðajwÞQW ;0ðdwÞ

�

¼ 1
N

XN
i¼1

ð
a

�h�0
�h20

ð�Q0 � �Q�ÞðcYi ða;WÞÞðgN � g0ÞðajWÞ

� 1
N

XN
i¼1

ð
w

ð
a

�h�0
�h20

ð�Q0 � �Q�ÞðcYi ða;wÞÞðgN � g0ÞðajwÞQW ;0ðdwÞ

;
1
N

XN
i¼1

f 3W ;ið�gNÞ � f 3W ;ið�g0Þ
n o

ðWÞ

;Z3
W ;Nð�gNÞ=

ffiffiffiffi
N

p
� Z3

W;Nð�g0Þ=
ffiffiffiffi
N

p
;

where we defined the process Z3
W;Nð�gÞ ¼ 1ffiffiffi

N
p
PN
i¼1

ff 3W;ið�gÞðWÞ � P0f 3W ;ið�gÞg with

f 3W ;ið�gÞðWÞ ¼
ð
a

�h�0
�h20

ð�Q0 � �Q�ÞðcYi ða;WÞÞgðajWÞ:
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The term Z2
W ;N ¼ 1=

ffiffiffiffi
N

p P
i
ff 2W ;iðWÞ � P0f 2W ;ig is included in the first-order expansion and thus partly char-

acterizes the normal limit distribution of ψ�
N , so that its analysis will be part of the analysis of the first-order

approximation. Since hiðg;QW;NÞ only depends on ðW1; . . . ;WNÞ through ðWj : j 2 FiÞ, where we condition on

F1; . . . ; FN , we will indeed be able to show that a term Z2
W ;N is nicely behaved empirical process (converging to a

normal distribution), even though each i-specific term is correlated with the j-specific terms when Fi
T
Fj�;.

Showing that Z3
W;Nð�gNÞ � Z3

W ;Nð�g0Þ ¼ oPð1Þ comes down to showing that ðZ3
W;Nð�gÞ : �g 2 GÞ is an asymp-

totic equicontinuous process w.r.t. supremum norm, and that �gN � �g0 converges to zero w.r.t. the supremum
norm. In this manner, we show that

RN;5 ¼ oPð1=
ffiffiffiffi
N

p
Þ ðA4Þ

We assumed that ð
c

�h�0
�h20

�hðgN � g0;QW ;0Þ
N

ð�Q� � �Q0ÞðcÞ�h0ðcÞdμðcÞ

¼ 1
N

XN
i¼1

f 1A;iðOiÞ þ oPð1=
ffiffiffiffi
N

p
Þ;

where f 1A;iðOÞ only depends on O through ðAi; ðWj : j 2 FiÞÞ, and E0ðf 1A;iðOÞjWÞ ¼ 0.
Thus, if we prove (eq. A2), (eq. A3), and (eq. A4), then we have obtained the following first-order

expansion:

ψ�
N � ψ0 ¼ 1

N

XN
i¼1

ff 1W ;iðWÞ � P0f 1W ;ig þ
1
N

X
i

ff 2W;iðWÞ � P0f 2W ;ig

þ ðPN � P0ÞD�
Yð�Q�;QW ;0; �h0Þ

þ 1
N

XN
i¼1

f 1A;iðOÞ þ oPð1=
ffiffiffiffi
N

p
Þ:

Analysis of first-order approximation: Let �fW ;i ¼ f 1W ;i þ f 2W ;i. The first-order approximation equals

1=N
P
i
fD�

Y;ið�Q�;QW ;0; �h0ÞðOiÞ þ �fW ;iðWÞ þ f 1A;iðOÞ � P0fD�
Y;i þ �fW ;igg

;1=N
P
i
fiðOÞ:

It remains to prove that this first-order expansion converges to a normal limit distribution. This proof has its
own outline. Firstly, we decompose 1=N

P
i fiðOÞ by fi ¼ fW ;i þ fA;i þ fY ;i, where fW;i ¼ E0ðfijWÞ � E0fi,

fA;i ¼ E0ðfijA;WÞ � E0ðfijWÞ, and fY ;i ¼ fi � E0ðfijA;WÞ. We can represent 1
N

P
i fiðOÞ as ZNY=

ffiffiffiffi
N

p þ ZNA=ffiffiffiffi
N

p þ ZNW=
ffiffiffiffi
N

p
, where ZNW ¼ 1=

ffiffiffiffi
N

p P
i fW ;i, ZNA ¼ 1=

ffiffiffiffi
N

p P
i fA;i, and ZNY ¼ 1=

ffiffiffiffi
N

p P
i fY ;i. It follows that

fW ;i simplifies to:

fW;iðWÞ ¼
ð
a

�Q0ðcYi ða;WÞÞg�ðajWÞ

�
ð
a;w

�Q0ðcYi ða;WÞÞg�ða;WÞQW ;0ðdwÞ

¼
ð
c

�Q0ðcÞg�i ðcjWÞ �
ð
c;w

�Q0ðcÞg�i ðcjWÞQW ;0ðdwÞ:

In addition,

fY;i ¼ D�
Y ;i � E0ðD�

Y ;ijA;WÞ ¼
�h�0
�h0

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ;

and fA;i ¼ E0ðD�
Y ;ijA;WÞ � E0ðD�

Y;ijWÞ þ f 1A;i. We also note that, conditional on W ;A, ZNY is a sum of inde-
pendent mean zero random variables fY ;iðYiÞ (functions of Yi); conditional on W, ZNA is a sum of
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fA;iðAj : j 2 FiÞ with conditional mean zero, given W; Ai, i ¼ 1; . . . ;N are (conditionally) independent, given
W; and, finally, ZNW ¼ 1=

ffiffiffiffi
N

p P
iffW ;iðWj : j 2 RiÞ � P0fW ;ig, with W satisfying our independence assumption

(e.g. W1; . . . ;WN are independent). Recall that the sets Ri are defined such that g�ðAj : j 2 FijWÞ only
depends on W through ðWj : j 2 RiÞ.

Exploiting these independence structures, we will show that

ZNY )d Nð0; σ2YÞ
ZNA )d Nð0; σ2AÞ
ZNW )d Nð0; σ2WÞ ðA1Þ

with the expressions for σ2Y , σ2A, and σ2W as specified in the theorem. Here (eq. A1) represents all
three convergence statements. Due to the orthogonality of the three empirical processes, using moment
generating functions, our results also imply ZNY þ ZNA þ ZNW )d Nð0; σ2 ¼ σ2Y þ σ2A þ σ2WÞ. For example,
we can analyze EðZNY þ ZNAÞp ¼

P
t cðp; kÞEfZNYgkEfZNAgp�k and use convergence of moments of each

process separately to establish convergence to EðZY þ ZAÞp. Once we have convergence of all moments,
and we can bound EðZNY þ ZNAÞp � Cp for some C <1, which follows from results established in our
separate analysis, then we obtain convergence in moment generating function, and thereby weak
convergence of the sum ZNY þ ZNA. In this manner, the desired weak convergence of the sum
ZNY þ ZNA þ ZNW is shown.

This finishes the outline of the proof. It remains to establish (eq. A1), (eq. A2), (eq. A3), and (eq. A4).

(A3)

(A3): Outline of proof

Let ~h ¼ �h�=�h and we will denote D�
Y with D�

Yð~h; �QÞ. Our goal is to prove thatffiffiffiffi
N

p ðPN � P0ÞfD�
Yð~h0; �Q�

NÞ � D�ð~h0; �Q�Þg ¼ oPð1Þ and
ffiffiffiffi
N

p ðPN � P0ÞfD�
Yð~hN ; �Q�

NÞ � D�
Yð~h0; �Q�

NÞg ¼ oPð1Þ. Let
P0;Y jA;Wf , P0;AjWf , and P0;Wf , denote the expectation operators w.r.t. their respective conditional distribu-
tions. We have

ZNð~h; �QÞ ¼
ffiffiffiffi
N

p
ðPN � P0ÞD�

Yð~h; �QÞ ¼
ffiffiffiffi
N

p
ðPN � P0;Y jA;WÞD�

Yð~h; �QÞ

þ
ffiffiffiffi
N

p
ðPN � P0;AjWÞP0;Y jA;WD�

Yð~h; �QÞ

þ
ffiffiffiffi
N

p
ðPN � P0;WÞP0;AjWP0;Y jA;WD�

Yð~h; �QÞ

¼ 1ffiffiffiffi
N

p
XN
i¼1

~hðCY
i ÞðYi � �Q0ðCY

i ÞÞ

þ 1ffiffiffiffi
N

p
XN
i¼1

f~hðCY
i Þð�Q0 � �QÞðCY

i Þ �
ð
c

~hðcÞð�Q0 � �QÞðcÞg0;iðcjWÞg

þ 1ffiffiffiffi
N

p
XN
i¼1

f
ð
c

~hð�Q0 � �QÞðcÞg0;iðcjWÞ � P0D�
Yð~h; �QÞg

;ZNYð~hÞ þ ZNAð~h; �QÞ þ ZNWð~h; �QÞ:
We now note that, for a fixed ð~h; �QÞ, conditional on ðW ;AÞ, ZNY is a sum of independent mean zero random
variables fY ;iðYiÞ (functions of Yi). We also note that for a fixed ð~h; �QÞ, conditional on W, ZNA is a sum of
mean zero fA;iððAj : j 2 FiÞÞ, where Ai, i ¼ 1; . . . ;N are (conditionally) independent. Finally, for a fixed ð~h; �QÞ,
ZNW ¼ 1=

ffiffiffiffi
N

p P
i fW ;iðWj : j 2 FiÞ � P0fW ;i, and, by assumption on QW ;0, for each i, fW ;i is only dependent on

maximally K fW;j.
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Let �Q� be the limit of �QN , and let ~h0 ¼ �h�0=�h0 be the limit of ~hN . By exploiting these independence
structures, we will use empirical process theory to establish that

ZNYð~hNÞ ¼ ZY
Nð~h0Þ þ oPð1Þ

ZNAð~hN ; �Q�
NÞ ¼ ZNAð~h0; �Q�Þ þ oPð1Þ

ZNWð~hN ; �Q�
NÞ ¼ ZNWð~h0; �Q�Þ þ oPð1Þ:

This then establishes RN;2 ¼ oPð1=
ffiffiffiffi
N

p Þ and RN;3 ¼ oPð1=
ffiffiffiffi
N

p Þ.

(A3): Outline of establishing asymptotic equicontinuity of a process

For that purpose, we will apply Lemma 5 in van der Vaart and Wellner [41], which concerns establishing
weak convergence of a process ðZNðθÞ : θ 2 FÞ, indexed by a θ ¼ ð~h; �QÞ 2 F . Given that F is a subset of
some metric space of functions with metric d, one defines Nð�; F; dÞ as the minimal number of balls of size �
needed to cover F . In addition, for a given strictly monotone function λ : IR�0 ! IR, let k ZNðθÞ kλ¼
inffc0 : λðjZNðθÞj=c0Þ � 1g be the so-called orlics norm of the random variable ZNðθÞ.

For example, one can select the Lp-norm k ZNðθÞ kp¼
Ð
EfZNðθÞgp

� �1=pof ZNðθÞ for arbitrary large p
which correspond with the choice of orlics norm defined by λpðxÞ ¼ xp. The orlics norm implied by
λ2;eðxÞ ¼ expðx2Þ � 1 is the typical orlics norm pursued in the case of sums of independent random
variables, and this is the one we will also use.

This Lemma 5 states that, if (1) k ZNðθ1Þ � ZNðθ2Þ kλ is bounded by cdðθ1; θ2Þ for some universal
constant c and metric dð�; �Þ, (2) F is totally bounded w.r.t. this metric d, (3) for some η >0,Ð η
0 λ

�1 Nð�;F ; dÞð Þd�<1, (4) the marginal distributions ZNðθÞ converge to a normal distribution ZðθÞ, then
ZN converges weakly to a Gaussian process Z in ,1ðFÞ, where ,1ðFÞ is the metric space of functions
G : F ! IR endowed with supremum norm k G kF¼ supθ2F jGðθÞj. We assumed that our parameter space F
for ð~h0; �Q0Þ consists of uniformly bounded functions on a set CY that contains CY

i ðA;WÞ with probability 1,
and we defined the metric d as the supremum norm. Thus, (2) holds. We posed (3) as an entropy condition
on the parameter space F , which will thus hold by assumption. For example, F could be the class of
functions on CY � IRd that have uniform sectional variation norm bounded by a M <1, in which case this
entropy condition holds. Under conditions 1–3 we have that the process ZN is asymptotically tight, and, for
any sequence δn ! 0, we have for each x >0,

P sup
dðθ1;θ2Þ< δn

jZNðθ1Þ � ZNðθ2Þj> x
 !

! 0 as N ! 1:

So once we have established the orlics-norm condition (1), then this tightness can be used to establish that
terms ZNðθNÞ � ZNðθÞ ¼ oPð1Þ for random θN 2 F converging to θ 2 F w.r.t. metric d in probability,
assuming F satisfies the entropy condition and is totally bounded w.r.t. this metric d.

Bounding the orlics norm of our empirical processes

The orlics norm k � kλ indexed by function λ2ðxÞ ¼ expðx2Þ � 1 is defined as

k X kλ¼ inf c >0 : E expðjXj2=CÞ � 1 � 1
n o

:

We consider a stochastic process XNðθÞ indexed by θ 2 F for a class of functions F . In our application,

we have that, for example, θ ¼ ð�Q; ~hÞ 2 F represents two real valued functions �Q and ~h defined on a set

CY � IRd that contains fcYi ðA;WÞ : ig with probability 1. In addition, our processes can be represented as
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XNðθÞ ¼ 1=
ffiffiffiffi
N

p PN
i¼1 fiðθÞðOÞ, where, for example, for each i there is an associated set Fi � f1; . . . ;Ng,

and, if Fi ˙ Fj ¼ ;, then fiðθÞðOÞ and fjðθÞðOÞ are independent, and, in general, it is known that for each
i, fiðθÞ is independent of ffjðθÞ : j 2 Sci g for sets Si with maxi jSij � K. For some of our processes, these

independencies are conditional on a random variable (e.g. conditional on infinite sequence
ðW1; . . . ; Þ; ðA1; . . .Þ). In that case, we will apply our general proof below conditional on this random
variable and obtain a bound on the orlics norm that holds for almost every value of the conditioning
random variable. For example, one establishes a universal bound C in
k XNðθ1Þ � XNðθ2Þ kλ <C k f1 � f2 k with the P in the orlics norm being a conditional distribution,

given a value of the conditioning random variable) where C does not depend on the value of the
random variable one conditions upon. Finally, we really need to bound k XNðθ1Þ � XNðθ2Þ kλ , so that we
will apply the lemmas below to XNðθ1Þ � XNðθ2Þ instead of XNðθÞ.

So our goal is to bound k XNðθÞ kλ� C k θ k for some universal (in N and θ 2 F ) . As outlined in
previous subsection, the choice of orlics norm and norm k θ k for θ 2 F is important, since the corre-
sponding entropy requirement on F is that

Ð η
0 λ

�1ðNð�; k � k;FÞÞd�<1. We will establish our results for the
strongest orlics norm which corresponds with λ2ðxÞ, while we select the supremum norm
k θ k¼ maxðk �Q k1; k ~h k1Þ for the functions θ 2 F .

Lemma 3 Let k X kλ be the orlics norm defined above w.r.t. λðxÞ ¼ expðx2Þ � 1. Suppose that for each p

EjXNðθÞjp � CðN; pÞ k θ kp :

Let DðNÞ be a number so that X1
p¼1

CðN; 2pÞDðNÞ2p=p! � 1:

Then,

k XNðθÞ kλ� 1
DðNÞ k θ k :

In particular, if CðN; pÞ can be bounded from above by CðpÞ constant in N, and one finds a D (constant in N) so
that

P1
p¼1 Cð2pÞD2p=p! � 1, then it follows that k XNðθÞ kλ� 1

D k θ k.

Proof. We first note

E expfðXNðθÞ=CÞg2 � 1 ¼
X1
p¼1

E jXNðθÞj=Cð Þ2p
p!

¼
X1
p¼1

EjXNðθÞj2p
C2pp!

:

Suppose that for each even p EjXNðθÞjp � CðN; pÞ k θ kp . Then, we have

E expfXNðθÞ=Cg2 � 1 �
X1
p¼1

CðN; 2pÞ k θ k2p
C2pp!

:

So k XNðθÞ kλ is bounded by a C chosen so that

X1
p¼1

CðN; 2pÞ
p!

k θ k
C

� 	2p

� 1:

Let DðNÞ be a number so that

X1
p¼1

CðN; 2pÞDðNÞ2p=p! � 1:

Then, C can be selected so that k f k =C � DðNÞ, or equivalently, C �k θ k =DðNÞ. Thus, we have shown that

k XNðθÞ kλ� 1
DðNÞ k θ k . The last statement is straightforwardly shown. □
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Thus, apparently, it suffices to establish a bound of the type EjXNðθÞjp � CðN; pÞ k θ kp for some

CðN; pÞ that is somewhat well behaved as function in p for p ! 1 so that the previous lemma applies.
We use the following lemma to bound the pth moment of XNðθÞ.

Lemma 4 Assume that, for each i ¼ 1; . . . ;N, and each integer p, we have a universal constant C so that

k fiðθÞ kp ; EðfiðθÞðOÞÞpð Þ1=p� C k θ k : ð21Þ
Then, we have

E
Yp
j¼1

fj �
Yp
j¼1

k fj k2j� Cp k θ kp :

The bounding (eq. 21) is a straightforward consequence of our conditions stated in the theorem, where we
use the supremum norm on θ 2 F, thereby allowing us to apply this lemma.

Proof. By repeatedly applying Cauchy–Schwarz inequality, it follows that

E
Y
j

fjðθÞ �
Yp
j¼1

EfjðθÞ2j
� �1=ð2jÞ

¼
Yp
j¼1

k fjðθÞ k2j :

By assumption, k fjðθÞ k2j� C k θ k , so that the latter is bounded by Cp k θ kp . □
The following lemma provides us with an upper bound for CðN; pÞ so that EjXNðθÞjp � CðN; pÞ k θ k .

Lemma 5 Assume that, for each i, and each integer p, we have a universal constant C so that

k fiðθÞ kp¼ EðfiðθÞðOÞÞpð Þ1=p� C k θ k :

Let Rði1; . . . ; ipÞ be an indicator, identified by indices~i ¼ ði1; . . . ; ipÞ 2 f1; . . . ;Ngp, which equals 1 if there

exist a set FðilÞ among the sets Fði1Þ; . . . ; FðipÞ that is disjoint from the other sets. More generally, we can define

Rði1; . . . ; ipÞ equals 1 if there exists an element j 2 fi1; . . . ; ipg so that fjðθÞ is independent of fkðf Þ for all
k 2 fi1; . . . ; ipg with k�j.

Let

CðN; pÞ;N�p=2
X

~i
ð1� Rð~iÞÞ:

Then

k XNðθÞ kpp� CðN; pÞCp k θ kp :

Proof. We have

E 1=
ffiffiffiffi
N

p X
i

fi

 !p

¼ N�p=2
X
i1;...;ip

E
Yp
j¼1

fij

¼ N�p=2
X
i1;...;ip

ð1� Rði1; . . . ; ipÞÞE
Yp
j¼1

fij :

By the previous lemma, we have E
Qp

j¼1 fj � Cp k θ kp for a C <1, so that we obtain

E 1=
ffiffiffiffi
N

p X
i

fi

 !p

� N�p=2
X
i1;...;ip

ð1� Rði1; . . . ; ipÞÞCp k θ kp :□

By putting a bound on jFij, we can obtain a nice bound on
P

i1;...;ipð1� Rði1; . . . ; ipÞÞ, so that the previous
lemma combined with Lemma 3 results in the following lemma providing the desired universal bound on
the orlics norm.
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Lemma 6 Assume that, for each i, and each p, we have a universal constant C so that

k fiðθÞ kp¼ EðfiðθÞðOÞÞpð Þ1=p� C k θ k :

Assume that fi is independent of ffj : j 2 Sci g for a set Si � f1; . . . ;Ng and maxi jSij � K. For p an integer, we
have EjXNðθÞjp � CðN; pÞCp k θ kp , where

CðN; pÞ;N�p=2
X
i1;...;ip

ð1� Rði1; . . . ; ipÞÞ

� 2pðKpÞp=2ðN � KpÞp=2N�p=2:

For λðxÞ ¼ ex
2 � 1, we have k XNðθÞ kλ� C1ðKÞ k θ k for some C1ðKÞ � C

ffiffiffiffi
K

p
for some universal C <1.

Proof. We first need to show that CðN; pÞ � 2pðKpÞp=2ðN � KpÞp=2N�p=2. Selection of one particular~i corre-
sponds with p times in a row selecting an element in f1; . . . ;Ng. Without restrictions on this sequence of p

draws, one has N options at each of the subsequent p steps resulting in Np vectors~i. Suppose we have

arrived at the lth draw, so that we have a sequence ði1; . . . ; il�1Þ with corresponding sets Sði1Þ; . . . ; Sðil�1Þ. For
a next il we define a binary BðilÞ ¼ 1 if SðilÞ˙¨l�1

s¼1SðisÞ ¼ ;. Suppose BðilÞ ¼ 1. fi1; . . . ; ilg, il is an island, and
one cannot find a single element im in f1; . . . ;Ng=fi1; . . . ; ilg for which im is an element of both (1) Sil and (2)

¨s< l�1Sis , since we arranged that SðilÞ˙¨l�1
s¼1SðisÞ ¼ ;. As a consequence, an element with BðilÞ ¼ 1 will need

at least one future s> l selection with BðisÞ ¼ 0 in order to connect il with is, and such a future selection s

cannot simultaneously connect with another ij with j< l. As a consequence, if the sequence of p elements

ðBði1Þ; . . . ;BðipÞÞ has more than p=2 1’s, then there will be at least one island filg among fi1; . . . ; ipg of size 1

with BðilÞ ¼ 1. Thus, in that case 1� Rð~iÞ ¼ 0. Thus, we only need to count the vectors ~i for which
Bði1Þ; . . . ;BðipÞ has at most p=2 1’s.

For a choice with BðilÞ ¼ 1, we have at most N � Kp possible choices since we cannot select any of the
elements in Sði1Þ; . . . ; Sðil�1Þ. For a choice with BðilÞ ¼ 0, we have maximally Kp choices. The total number of
sequences Bði1Þ; . . . ;BðipÞ for which there are at most p=2 1’s is upper-bounded by 2p. The total number of
sequences ~i present in one such sequence is given by ðKpÞp=2ðN � KpÞp=2. To conclude, we have the
following upper bound

CðN; pÞ � 2pðKpÞp=2ðN � KpÞp=2N�p=2;

which proves our first result.
Thus, we have EjXNðθÞjp � CpCðN; pÞ k θ kp with CðN; pÞ bounded by this upper bound. We now want

to bound the orlics norm k XNðθÞ kλ2 . Let us first do this for the orlics norm λ1ðxÞ ¼ expðxÞ � 1. Using that
p! � ðp=2Þ!ðp=2Þp=2, ðN � KpÞ=N � 1, we have

k XNðθÞ kλ1¼ inf c0 :
X1
p¼1

CpCðp;NÞ
p!

k θ kp
cp0

� 1

( )

¼ inf c0 :
X1
p¼1

Cp2p

p!
ðKpÞp=2 ðN � KpÞp=2

Np=2

k θ kp
cp0

� 1

( )

� inf c0 :
X1
p¼1

2C
ffiffiffiffi
K

p k θ k
c0

 !p
pp=2

ðp=2Þ!ðp=2Þp=2
� 1

( )

¼ inf c0 :
X1
p¼1

2
ffiffiffi
2

p
C
ffiffiffiffi
K

p k θ k
c0

 !p
1

ðp=2Þ! � 1

( )
:

Thus there exists a c0 ¼ c0ðK;CÞ k θ k so that the term on the left of the inequality is smaller or equal than
1, so that we have shown k XNðθÞ kλ1� c0ðK;CÞ k θ k . It also follows that c0ðK;CÞ can be bounded by a
universal constant times

ffiffiffiffi
K

p
. This completes the proof for this orlics norm identified by λ1.
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Let us now do the proof for the orlics norm identified by λ2. Note E expfðXNðθÞ=c0Þ2g � 1 ¼P1
p¼1

EXN ðθÞ2p
c2p0 p!

.
Thus, we have

k XNðθÞ kλ2¼ inf c0 :
X1
p¼1

C2pCð2p;NÞ
p!

k θ k2p
c2p0

� 1

( )

¼ inf c0 :
X1
p¼1

C2p22p

p!
ðK2pÞp ðN � K2pÞp

Np

k θ k2p
c2p0

� 1

( )

� inf c0 :
X1
p¼1

2
ffiffiffi
2

p
C
ffiffiffiffi
K

p k θ k
c0

 !2p
pp

p!
� 1

8<
:

9=
;:

The term within ðÞ2p can be made smaller than an arbitrary number δ >0 by just selecting c0 large enough.
Therefore, we need to show that

P1
p¼1 δ

ppp=p! is bounded for some small enough δ>0. The proof then
proceeds as above for the λ1-orlics norm. Now, we note that, using 1� x � expð�xÞ for x � 0, andPp

j¼1ðj� 1Þ ¼ pðp� 1Þ=2,

p!
pp

¼
Yp
j¼1

f1� ðj� 1Þ=pg � expð�
Xp

j¼ 1
ðj� 1Þ=pÞ

¼ expð�
Xp

j;¼ 1
ðj� 1Þ=pÞ ¼ expð�1=ppðp� 1Þ=2Þ ¼ expð�ðp� 1Þ=2Þ:

Thus,
P1

p¼1 δ
ppp=p! behaves as

P1
p¼1 δ

p expððp� 1Þ=2Þ. Since expððp� 1Þ=2Þ � expðpÞ, by selecting δ small
enough with δ � expð1Þ< 1, this sum can be made arbitrarily small. As before it follows that c0 can be
bounded by universal constant times

ffiffiffiffi
K

p
. □

(A3): Asymptotic equicontinuity of ZNY ðh~Þ

The process ZNY ¼ 1=
ffiffiffiffi
N

p P
i fY ;i is a sum of independent random variables conditional on ðW ;AÞ, so that its

analysis is a simple imitation of the general analysis presented in previous subsection, conditional on W ;A.
The proof that the k � kp -norm (conditional on W ;A) of fY ;ið~h1Þ � f Yi ð~h2Þ is bounded by a universal constant
times the supremum norm of ~h1 � ~h2 is as follows:

EjA;Wfð~h1 � ~h2ÞðCY
i ÞðYi � �Q0ðCY

i ÞÞgp �k ~h1 � ~h2 kp1 EjA;WðYi � �Q0ðCY
i ÞÞp

;Cp k ~h1 � ~h2 kp1;

where, because Yi � 1 and �Q0 � 1, we have that C � 1.

(A3): Asymptotic equicontinuity of ZNAðh~;Q�Þ

Conditional on W, for a fixed θ ¼ ð~h; �QÞ, we can represent this process as 1=
ffiffiffiffi
N

p P
iffA;iðOÞ � PW

0 fA;ig, where
fA;i depends on A through ðAj : j 2 FiÞÞ, while all Ai, i ¼ 1; . . . ;N, are independent. As a consequence, for
each i, conditional on W, fA;i is independent of ðfA;j : j; Fj ˙ Fi ¼ ;Þ. Again, the above general analysis can be
applied, and the proof that the k � kp -norm of fA;iðθ1Þ � fA;iðθ2Þ is bounded by a universal constant times the
supremum norm of θ1 � θ2 is as follows. Firstly,

fA;ið~h1; �Q1Þ � fA;ið~h2; �Q2Þ ¼ ~h1ð�Q0 � �Q1Þ � ~h2ð�Q0 � �Q2Þ
� ð
ð
~h1ð�Q0 � �Q1Þg0;i �

ð
~h2ð�Q0 � �Q2Þg0;i

¼ð~h1 � ~h2Þð�Q0 � �Q2Þ þ ~h1ð�Q2 � �Q1Þ
� ð
ð
ð~h1 � ~h2Þð�Q0 � �Q2Þg0;i þ

ð
~h1ð�Q2 � �Q1Þg0;i:

62 M. J. van der Laan: Population of Causally Connected Units



We have k ð~h1 � ~h2Þð�Q0 � �Q2Þ kp�k ~h1 � ~h2 k1 and k ~h1ð�Q2 � �Q1Þ kp�k ~h1 k1k �Q2 � �Q1 k1 . By our uniform

bound on the class of functions F we have that k ~h1 k1 <M <1 for some M <1. We also have

k
ð
ð~h1 � ~h2Þð�Q0 � �Q2Þg0;i kp�k

ð
c
ð�Q0 � �Q2ÞðcÞg0;iðcjWÞ k1k ~h1 � ~h2 k1;

where k Ðcð�Q0 � �Q2ÞðcÞg0;iðcjWÞ k1� supW

Ð
c g0:iðcjWÞ ¼ 1. The same bounding applies to k ~h1ð�Q2 � �Q1Þg0;i.

This proves that indeed k fA;ið~h1; �Q1Þ � fA;ið~h2 � �Q2Þ kp is bounded by C times maxðk ~h1 � ~h2 k1;

k �Q1 � �Q2 k1Þ, which completes the proof.

(A3): Asymptotic equicontinuity of ZNW ðh~;Q�Þ

Conditional on F1; . . . ; FN , we can represent ZNWð~h; �QÞ as 1=N
P

iffW ;ið~h; �QÞðWj : j 2 RiÞ � P0fW ;ig.
Specifically, fW ;ið~h; �QÞ ¼

Ð
~hð�Q� �Q0Þg0;iðcjWÞ. Under our independence assumption, we know that for

each i, fW;i only depends on maximally K fW ;i. Thus, we can apply our general proof above to establish

the bound of its orlics norm. As above, we can show that the k � kp norm of fWi ðθÞ is bounded by a constant
C times the supremum norm of θ.

Proof of (A2)

Define the process Z1
W;Nð�QÞ ¼ 1ffiffiffi

N
p
PN

i¼1ff 1W ;ið�QÞ � P0f 1W ;ið�QÞg indexed by �Q, where f 1W ;ið�QÞ ¼
Ð
�QðcÞg�i ðcjWÞ. We

need to prove that RN;0 ¼ Z1
W;Nð�Q�

N � �Q�Þ ¼ oPð1Þ. This proof is completely analogue to our proof above for

establishing asymptotic equicontinuity of the other ZW;Nð~h; �QÞ process analyzed above, but now with respect

to the supremum norm for �Q.

Proof of (A4)

Recall the definition of the process

Z3
W ;Nð�gÞ ¼

1ffiffiffiffi
N

p
XN
i¼1

f 3W;ið�gÞ;

where

f 3W;ið�gÞ ¼
ð
a

�h�0
�h20

ð�Q0 � �Q�ÞðcYi ða;WÞÞgðajWÞ

�
ð
w

ð
a

�h�0
�h20

ð�Q0 � �Q�ÞðcYi ða;wÞÞgðajwÞQW;0ðwÞ;

and gðajwÞ is the conditional distribution of A ¼ ðA1; . . . ;ANÞ, given W, implied by �g. We need to prove that

Z3
W ;Nð�gNÞ � Z3

W;Nð�g0Þ ¼ oPð1Þ. This proof is completely analogue to our proof above for establishing asymp-

totic equicontinuity of the other ZW ;Nð~h; �QÞ process analyzed above, but now with respect to the supremum
norm for �g.
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(A1): Establishing weak convergence of first-order approximation of
standardized estimator

Outline of proof

Recall

ffiffiffiffi
N

p
ðψ�

N � ψ0Þ �
1ffiffiffiffi
N

p
X
i

fiðOÞ ¼ 1ffiffiffiffi
N

p
X
i

ffY ;i þ fA;i þ fW ;ig ¼ ZNY þ ZNA þ ZNW ;

where

fY ;i ¼
�hðg�Þ
�hðg0Þ

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ;

fA;i ¼
�hðg�Þ
�hðg0Þ

ðCY
i Þð�Q0 � �Q�ÞðCY

i Þ

�
ð
c

�hðg�Þ
�hðg0Þ

ðcÞð�Q0 � �Q�ÞðcÞg0;iðcjWÞ þ f 1A;i

fW ;i ¼
ð
c

�Q0ðcÞg�i ðcjWÞ �
ð
c;w

�Q0ðcÞg�i ðcjWÞQW ;0ðdwÞ:

We will establish weak convergence of each of the three terms separately.
The proof of weak convergence of ZNY can be based on standard CLT since, conditional on ðA;WÞ, ZNY is

a sum of mean zero independent random variables.

Lemma 7 ZNY ¼ 1=
ffiffiffiffi
N

p PN
i¼1 fY ;i converges weakly to a normal distribution with mean zero and variance

σ2Y ¼ lim
N!1

1
N

XN
i¼1

P0f 2Y ;i

¼ lim
N!1

ð
~h0ðcÞσ2YðcÞ�h�0ðcÞdμðcÞ;

assuming this limit exists, where

σ2YðCY
i Þ ¼ E0ðfYi � �Q0ðCY

i Þg2jA;WÞ ¼ E0ðfYi � �Q0ðCY
i Þg2jcYi ðA;WÞÞ:

For example, if Yi is binary, then the latter expression equals

σ2YðCY
i Þ ¼ �Q0ð1� �Q0ÞðCY

i Þ:
Recall that �h�0 ¼ 1

N

P
i h

�
0;i.

We establish weak convergence of ZNA by establishing convergence of its pth moment. Specifically, we

establish that EðZNAÞp ! �ρp=2 p!
ðp=2Þ!2p=2 for p even, and EðZNAÞp ! 0 for p odd, as N ! 1, where �ρ represents

the limit of the second moment EðZNAÞ2. This convergence in moments implies that ZN converges weakly to

a normal distribution Nð0; σ2 ¼ �ρÞ, where we utilize the following two lemmas.

Lemma 8 A random variable Z with EZp ¼ �ρp=2 p!
2p=2ðp=2Þ! for p even, and EZp ¼ 0 for p odd has probability

distribution equal to Nð0; σ2 ¼ �ρÞ, the normal distribution with mean zero and variance �ρ.
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Proof. We have

E expðtZÞ ¼
X1
p¼0

tp

p!
EZp ¼

X1
p¼0

t2p

ð2pÞ!EZ
2p

¼
X1
p¼0

t2p

ð2pÞ! �ρ
p ð2pÞ!
p!2p

¼
X1
p¼0

ð0:5t2�ρÞp
p!

¼ expð0:5t2�ρÞ;
which is the moment generating function of Nð0; σ2 ¼ �ρÞ, i.e. a normal distribution with mean zero and
variance equal to �ρ. □

Lemma 9 Suppose EZp
N � Cp for a universal C<1. Suppose that EZp

N ! �ρp=2p!=ðp=2Þ!2p=2 for p even, and
EZp

N ! 0 for p odd, as N ! 1. Then ZN converges in distribution to Z ¼ Nð0; σ2 ¼ 2dÞ, as N ! 1.

Proof. Consider the moment generating function E expðtZNÞ when EZp
N ! �ρp=2 p!

ðp=2Þ!2p=2 . By Fubini’s theorem,

E
P1
p¼0

tp
ðpÞ! Z

p
N ¼ P1

p¼0

tp
p! EZ

p
N :

Because EZp
N � Cp, we have

X1
p¼M

tp

p!
EZp

N �
X1
p¼M

tp

p!
Cp;

which converges to zero in M ! 1. Therefore, we can truncate the summation defining the moment

generating function of ZN and focus on establishing convergence of E
PM

p¼0
tp
p! Z

p
N , but the latter follows

from EZp
N ! EZp as N ! 1. This proves that

E expðtZNÞ ! E expðtZÞ:
This proves that ZNðQÞ converges in distribution to ZðQÞ ¼ Nð0; σ2 ¼ �ρÞ as N ! 1. □

(A1): Establishing convergence of pth moment for ZNA

We consider the case that W1; . . . ;WN are independent, given F. The proof can be generalized to handle our
weaker independence assumption on the distribution of W.

Lemma 10 Consider the empirical mean ZNA ¼ 1ffiffiffi
N

p
P

i fA;i, Let

ρðj1; j2jWÞ ¼ E0ðfA;j1 fA;j2 jWÞ:
For example, if gN ¼ g0, we have

ρðj1; j2jWÞ ¼
ð �h�0ðc1Þ
�h0ðc1Þ

ð�Q0 � �QÞðc1Þ
�h�0
�h0

ðc2Þð�Q0 � �QÞðc2Þg0;j1;j2ðc1; c2jWÞ

�
ð �h�0
�h0

ðcÞð�Q0 � �QÞðcÞg0;j1ðcjWÞ
ð �h�0
�h0

ðcÞð�Q0 � �QÞðcÞg0;j2ðcjWÞ;

where g0;i;j is the conditional distribution of ðCiðA;WÞ;CjðA;WÞÞ, given W, which only depends on A through
ðAl : l 2 Fi¨FjÞ.

M. J. van der Laan: Population of Causally Connected Units 65



Let ρAðj1; j2Þ ¼ Eðρðj1; j2jWÞjFÞ. For two integers ði1; i2Þ, define R2ði1; i2Þ as the indicator that the intersec-
tion of Fi1 and Fi2 is non-empty. Assume that for a constant �ρA, we have

1
N

X
i1;i2 ;R2ði1;i2Þ¼1

ρAði1; i2Þ !N!1 �ρA:

We have for p even,

E
1ffiffiffiffi
N

p
X
i

fA;i

 !p

! p!
ðp=2Þ!2p=2 �ρ

p=2
A as N ! 1:

For p odd, this pth moment converges to zero.

Proof. Given an index~i ¼ ði1; . . . ; ipÞ 2 f1; . . . ;Ngp (one among Np), we can draw a graph by drawing a line
between two elements il1 ; il2 in fi1; . . . ; ipg whenever the two corresponding sets Fðil1Þ and Fðil2Þ have a non-
empty intersection. Classify an element ði1; . . . ; ipÞ by the sizes of the connected sets that make up the graph

of ði1; . . . ; ipÞ. One category of indices is that each connected set is of size 2, assuming p is even, and let R2ð~iÞ
be the indicator of falling in this category. For each of the other categories with all connected sets of size

larger or equal than 2, but at least one larger than 2, we can show that its number X of elements is of smaller

order than N�p=2: N�p=2X ! 0 as N ! 1, using that jFij<K. The latter shows, in particular, that the

moment for p odd converges to zero. In addition, for~i with R2ð~iÞ ¼ 1, let j ¼ 1; . . . ; p=2 index the p=2 pairs

that are connected, and let j1ð~iÞ; j2ð~iÞ denote the two indices in fi1; . . . ; ipg corresponding with each jth pair.
We also note that ðfA;j1 ; fA;j2Þ are independent across the pairs j, conditional on W. We have

EjW
1ffiffiffiffi
N

p
X
i

fA;i

 !p

¼ N�p=2
X
i1;...;ip

R2ði1; . . . ; ipÞ
Yp=2
j¼1

EfA;j1ð~iÞfA;j2ð~iÞ þ oð1Þ

¼ N�p=2
X
i1;...;ip

R2ði1; . . . ; ipÞ
Yp=2
j¼1

ρðj1; j2jWÞ þ oð1Þ:

Let ðFi;WiÞ represent the i-specific baseline covariates, so that Fi is separate from Wi. We now want to take a
conditional expectation, given F1; . . . ; FN , of the last expression in order to obtain an expression for the pth

moment only conditioning on F. Conditional on F1; . . . ; FN , the indicators R2ð~iÞ are fixed. Since ρðj1; j2jWÞ
only depends on W through ðWi : i 2 Fj1¨Fj2Þ, the sets Fj1¨Fj2 in the product over j are disjoint across j, and
W1; . . . ;WN are independent, it follows that, conditional on F ¼ ðF1; . . . ; FNÞ,

E
1ffiffiffiffi
N

p
X
i

fA;i

 !p

� N�p=2
X
i1;...;ip

R2ði1; . . . ; ipÞ
Yp=2
j¼1

Eðρðj1; j2jWÞjFÞ:

Let ρAðj1; j2Þ ¼ Eðρðj1; j2jWÞjFÞ. For two integers ði1; i2Þ, define R2ði1; i2Þ as the indicator that the intersection of

Fi1 and Fi2 is non-empty. Let R2 ¼ fði1; i2Þ 2 f1; . . . ;Ng2 : R2ði1; i2Þ ¼ 1g, and Rp=2
2 is the Cartesian product of

this set. Let R ¼ fði1; . . . ; ipÞ : R2ð~iÞ ¼ 1g, where we are reminded that R2ð~iÞ is the indicator of all connected
sets among fi1; . . . ; ipg being of size 2. We have the following lemmas.

Lemma 11 We have

N�p=2
X

ððj1;j2Þ:j¼1;...;p=2Þ2Rp=2
2

R2ðj1; j2 : j ¼ 1; . . . ; p=2Þ
Yp=2
j¼1

ρAðj1; j2Þ

¼ N�p=2
X

ððj1;j2Þ:j¼1;...;p=2Þ2Rp=2
2

Yp=2
j¼1

ρAðj1; j2Þ þ oð1Þ:
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Proof of Lemma 11. Note that the right-hand side sums over vectors in Rp=2
2 while the left-hand side sums

over vectors that are both in Rp=2
2 and satisfy that the corresponding p-dimensional vector is an element of

R. Since a vector made up of p=2-connected pairs can correspond with connected sets of larger size than 2,
we have that R � Rp=2

2 , i.e. the right-hand side sums over more elements. However, the number of these
extra vectors ~i 2 Rp=2

2 =R that should not have been counted is of smaller order than Np=2, so that the
contribution is negligible. □

Lemma 12 We have

N�p=2 P
i1;...;ip

R2ði1; . . . ; ipÞ
Qp=2
j¼1

ρAðj1; j2Þ

¼ p!
ðp=2Þ!2p=2 N

�p=2 P
ððj1;j2Þ:jÞ2Rp=2

2

R2ðj1; j2 : j ¼ 1; . . . ; p=2ÞQp=2
j¼1

ρAðj1; j2Þ:

Proof of Lemma 12: Consider a vector of three connected pairs ð1; 1Þ; ð2; 2Þ; ð3; 3Þ (i.e. p ¼ 6). These three
connected pairs appear 3! (i.e. ðp=2Þ!) times on right-hand side. However, on the left-hand side, any vector of
length 6 with two 1s, two 2s, and two 3s is counted, and there are 6!=23 (i.e. p!=2p=2) of such vectors: the
number of ordered vectors of length 6 is 6!, but flipping the two 1’s or two 2’s or two 3’s does not yield a
different vector. □

Finally, we state the following trivial result

Lemma 13 We have

X
ððj1;j2Þ:j¼1;...;p=2Þ2Rp=2

2

Yp=2
j¼1

ρAðj1; j2Þ ¼
X

fði1;i2Þ:R2ði1;i2Þ¼1g
ρAði1; i2Þ

0
@

1
Ap=2

:

This proves that

N�p=2 P
i1;...;ip

R2ði1; . . . ; ipÞ
Qp=2
j¼1

ρAðj1; j2Þ

¼ p!
ðp=2Þ!2p=2 N

�p=2
X

ððj1;j2Þ:jÞ2Rp=2
2

R2ðj1; j2 : j ¼ 1; . . . ; p=2Þ
Yp=2
j¼1

ρAðj1; j2Þ

� p!
ðp=2Þ!2p=2 N

�p=2
X

ððj1;j2Þ:jÞ2Rp=2
2

Yp=2
j¼1

ρAðj1; j2Þ

¼ p!
ðp=2Þ!2p=2 1=N

X
fði1;i2Þ:R2ði1;i2Þ¼1g

ρAði1; i2Þ
0
@

1
A

p=2

:

Finally, we assumed that the latter summation within the power converges to �ρ. Thus, for p even, we have

E
1ffiffiffiffi
N

p
X
i

fA;i

 !p

! p!
ðp=2Þ!2p=2 �ρ

p=2 : □

(A1): Convergence of pth moment of ZNW .

The same proof can be applied to establish the convergence of the pth moment of ZNW resulting in the
following lemma.

Lemma 14 Let ZNW ¼PiðfW ;iðWÞ � P0fW ;iÞ, and fW ;iðWÞ ¼ fW ;iðWj : j 2 RiÞ for set Ri defined by F with jRij<K
for some fixed K <1, where we condition on F. Let

ρWðj1; j2Þ ¼ E0ðfW ;j1ðWÞfW ;j2ðWÞjFÞ � E0ðfW;j1ðWÞjFÞE0ðfW ;j2ðWÞjFÞ:
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Specifically, for ZNW we have

fW ;iðWÞ ¼
ð
a

�Q0ðcYi ða;WÞÞg�ðajWÞ ¼
ð
c

�Q0ðcÞg�0;iðcjWÞ:

We assumed that g�ððAj : j 2 FiÞjWÞ only depends on ðWj : j 2 RiÞ for sets Ri implied by F. Thus, in this case

ρWðj1; j2Þ ¼ EW

ð
c1;c2

�Q0ðc1Þ�Q0ðc2Þg0;j1ðc1jWÞg0;j2ðc2jWÞ

�EW

ð
c

�Q0ðcÞg0;j1ðcjWÞEW

ð
c

�Q0ðcÞg0;j2ðcjWÞ:

For two integers ði1; i2Þ, define R2ði1; i2Þ as the indicator that the fW ;i1 and fW ;i2 are dependent (conditional on F).
Assume

1
N

X
i1;i2;R2ði1;i2Þ¼1

ρWði1; i2Þ !N!1 �ρ:

We have for p even,

E
1ffiffiffiffi
N

p
X
i

fW ;i

 !p

!N!1
p!

ðp=2Þ!2p=2 �ρ
p=2:

For p odd, this pth moment converges to zero.

General template of proof of Theorem 4

We have PW
0 D�

Yð�Q�
N ;QW ;N ; �hðQW ;N ; g0ÞÞ ¼ Ψð�Q0;QW ;NÞ �Ψð�Q�

N ;QW ;NÞ. We now proceed as follows:

Ψð�Q�
N ;QW ;NÞ �Ψð�Q0;QW ;NÞ ¼ � PW

0 D�
Yð�Q�

N ;QW;N ; �hðQW;N ; g0ÞÞ
¼ ðPN � PW

0 ÞD�
Yð�Q�

N ;QW ;N ; �hðQW ;N ; g0ÞÞ
þ PNfD�

Yð�Q�
N ;QW;N ; �hNÞ � D�

Yð�Q�
N ;QW ;N ; �hðQW;N ; g0Þg

¼ ðPN � PW
0 ÞD�

Yð�Q�
N ;QW ;N ; �hðQW ;N ; g0ÞÞ

þ ðPN � PW
0 ÞfD�

Yð�Q�
N ;QW ;N ; �hNÞ � D�

Yð�Q�
N ;QW;N ; �hðQW ;N ; g0ÞÞg

þ PW
0 fD�

Yð�Q�
N ;QW ;N ; �hNÞ � D�

Yð�Q�
N ;QW ;N ; �hðQW ;N ; g0ÞÞg:

The second term we denote with RN;2. We note that fD�
Yð�Q�

N ;QW;N ; �hNÞ � D�
Yð�Q�

N ;QW ;N ; �hðQW;N ; g0ÞÞg equals

1
N

XN
i¼1

�h�N
�hN

�
�h�N

�hðQW ;N ; g0Þ

 !
ðYi � �Q�

NðCY
i ÞÞ:

Thus, we have obtained the following expansion:

ψ�
N � ψ0 ¼ðPN � PW

0 ÞD�
Yð�Q�

N ;QW ;N ; �hðQW ;N ; g0ÞÞ

þPW
0

1
N

XN
i¼1

�h�N
�hN

�
�h�N

�hðQW;N ; g0Þ

 !
ð�Q0 � �Q�ÞðCY

i Þ þ RN ;

where

RN ¼ PW
0

1
N

XN
i¼1

�h�N
�hN

�
�h�N

�hðQW ;N ; g0Þ

 !
ð�Q� � �Q�

NÞðCY
i Þ

þ ðPN � PW
0 Þ 1

N

XN
i¼1

�h�N
�hN

�
�h�N

�hðQW ;N ; g0Þ

 !
ðYi � �Q�

NðCY
i ÞÞ

;RN;1 þ RN;2:
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By assumption, we have RN;1 ¼ oPð1=
ffiffiffiffi
N

p Þ.
We have

ðPN � PW
0 ÞD�

Yð�Q�
N ;QW;N ; �hðQW ;N ; g0ÞÞ ¼ ðPN � PW

0 ÞD�
Yð�Q�;QW ;N ; �hðQW ;N ; g0ÞÞ

þ ðPN � PW
0 ÞfD�

Yð�Q�
N ;QW ;N ; �hðQW ;N ; g0ÞÞ � D�

Yð�Q�;QW ;N ; �hðQW ;N ; g0ÞÞg
; ðPN � PW

0 ÞD�
Yð�Q�;QW ;N ; �hðQW ;N ; g0ÞÞ þ RN;3:

Analogue to our proof for Theorem 2, we can show that

RN;2 ¼ oPð1=
ffiffiffiffi
N

p
Þ and RN;3 ¼ oPð1=

ffiffiffiffi
N

p
Þ ðA3Þ

Consider now the term

PW
0

1
N

XN
i¼1

�h�N
�hN

�
�h�N

�hðQW;N ; g0Þ

 !
ð�Q0 � �Q�ÞðCY

i Þ:

We have

PW
0

1
N

XN
i¼1

�h�NðCY
i Þ

�hNÞðCY
i Þ

�
�h�NðCY

i Þ
�hðQW ;N ; g0ÞðCY

i Þ

( )
ð�Q0 � �Q�ÞðCY

i Þ

¼
ð
c

�h�NðcÞ
�hNðcÞ

�
�h�NðcÞ

�hðQW ;N ; g0ÞðcÞ

( )
ð�Q0 � �Q�ÞðcÞ�hðQW ;N ; g0ÞðcÞ

¼ �
ð
c

�h�N
�hðQW ;N ; g0Þ2

ð�hðQW ;N ; gNÞ � �hðQW ;N ; g0ÞÞðcÞð�Q0 � �Q�ÞðcÞ�hðQW ;N ; g0ÞðcÞ

þ RN;4;

where

RN;4 ¼
ð
c

�h�N
�hN

�
�h�N

�hðQW ;N ; g0Þ

( )
1
�h0

ð�hN � �hðQW ;N ; g0ÞÞð�Q0 � �Q�ÞðcÞ�hðQW ;N ; g0ÞðcÞ:

We assumed that RN;4 ¼ oPð1=
ffiffiffiffi
N

p Þ. We also assumed

�
ð
c

�h�N
�hðQW ;N ; g0Þ2

ð�hðQW ;N ; gNÞ � �hðQW ;N ; g0ÞÞðcÞð�Q0 � �Q�ÞðcÞ�hðQW ;N ; g0ÞðcÞ

¼ 1
N

XN
i¼1

f 1A;iðOÞ þ oPð1=
ffiffiffiffi
N

p
Þ;

where f 1A;iðOÞ only depends on O through ðAi; ðWj : j 2 FiÞÞ, and E0ðf 1A;iðOÞjWÞ ¼ 0.
Thus, we have obtained the following first-order expansion:

ψ�
N �ΨðQW;N ; �Q0Þ ¼ ðPN � PW

0 ÞD�
Yð�Q�;QW;N ; �hðQW;N ; g0ÞÞ

þ 1
N

XN
i¼1

ff 1A;i � PW
0 f 1A;ig þ oPð1=

ffiffiffiffi
N

p
Þ:

Analysis of first-order approximation: Let

fi ¼ D�
Y;ið�Q�;QW ;N ; �hðQW ;N ; g0ÞÞ þ f 1A;i:

Then, the first-order approximation is given by 1=N
P

iffiðOÞ � PW
0 fig, where PW

0 fi ¼ 0. It remains to prove
that this first-order expansion converges to a normal limit distribution. This proof has its own outline.
Firstly, we decompose 1=N

P
i fiðOÞ using fi ¼ fA;i þ fY ;i, where fA;i ¼ E0ðfijA;WÞ � E0ðfijWÞ, and

fY ;i ¼ fi � E0ðfijA;WÞ. Denote the two corresponding terms with ZNY=
ffiffiffiffi
N

p þ ZNA=
ffiffiffiffi
N

p
.
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Note that

fY;i ¼ D�
Y ;i � E0ðD�

Y ;ijA;WÞ ¼
�h�0
�h0

ðCY
i ÞðYi � �Q0ðCY

i ÞÞ;

and fA;i ¼ E0ðD�
Y ;ijA;WÞ � E0ðD�

Y ;ijWÞ þ f 1A;i. We also note that, conditional on ðW ;AÞ, ZNY is a sum of
independent mean zero random variables fY ;i (functions of Yi), and, conditional on W, ZNA ¼ 1=

ffiffiffiffi
N

p P
i fA;i

for some fA;i which depends on A through ðAj : j 2 FiÞ, while Ai, i ¼ 1; . . . ;N are pairwise (conditionally)
independent.

Analogue to our proof of Theorem 2, we can show that

ZNY )d Nð0; σ2YÞ
ZNA )d Nð0; σ2AÞ

with the expressions for σ2Y , σ
2
A as specified in the Theorem. Due to the orthogonality of the two empirical

processes, using moment generating functions, it also follows that ZNY þ ZNA )d Nð0; σ2 ¼ σ2Y þ σ2AÞ. □

Notation index

TMLE: Targeted Minimum Loss-Based Estimation/Estimator

Oi: Data observed on unit i. In general, Oi ¼ ðLið0Þ;Aið0Þ; . . . ; LiðKÞ;AiðτÞ; Liðτ þ 1Þ ¼ YiÞ, and the special
case τ ¼ 0 is denoted with Oi ¼ ðWi;Ai;YiÞ

AiðtÞ: Intervention node for unit i at time t

LiðtÞ: Measurements/covariates for unit i at time t in between intervention nodes Aiðt � 1Þ and AiðtÞ
Yi: Final outcome for unit i

�LiðtÞ: �LiðtÞ ¼ ðLið0Þ; . . . ; LiðtÞÞ. Similarly, we define �AiðtÞ
Li: Li ¼ ðLið0Þ; . . . ; Liðτ þ 1Þ ¼ YiÞ
FiðtÞ: Friends of unit i at time t indicating that LiðtÞ and AiðtÞ causally only depends on the history of all

subjects through the history of unit i itself and the history of its friends j 2 FiðtÞ. This defines exclusion
restrictions in the structural equation model for the equations for AiðtÞ and LiðtÞ. For the τ ¼ 0-data
structure, we denote this set with Fi

O: O ¼ ðO1; . . . ;ONÞ is the collection of all data on the N units

P0: P is possible probability distribution of data O under our model assumptions, and P0 is the true
probability distribution of O

L: L ¼ ðL1; . . . ; LNÞ
A: A ¼ ðA1; . . . ;ANÞ
�LðtÞ: �LðtÞ ¼ ð�LiðtÞ : i ¼ 1; . . . ;NÞ the history of L for all N units

�AðtÞ: �AðtÞ ¼ ð�AiðtÞ : i ¼ 1; . . . ;NÞ the history of treatment/intervention process A on all N subjects Y:
Y ¼ ðY1; . . . ;YNÞ the outcomes on all N subjects

�Y: �Y ¼ 1
N

PN
i¼1 Yi the average outcome for the combined N units

PaðAðtÞÞ: PaðAðtÞÞ ¼ ð�LðtÞ; �Aðt � 1ÞÞ, parent nodes of AðtÞ according to the following time-ordering only:
O ¼ ðLð0Þ;Að0Þ; . . . ; LðτÞ;AðτÞ;YÞ

PaðLðtÞÞ: PaðLðtÞÞ ¼ ð�Lðt � 1Þ; �Aðt � 1ÞÞ parent nodes of LðtÞ according to time-ordering only

F: F ¼ ðF1; . . . ; FNÞ the friend-process/network-process for all N units. In all probability distributions, we
always condition on Fð0Þ ¼ ðF1ð0Þ; . . . ; FNð0ÞÞ

U: U ¼ ðULð0Þ;UAð0Þ; . . . ;ULðτÞ;UAðτÞ;UYÞ the exogenous errors in the structural equation model for O defined
as Lð0Þ ¼ fLð0ÞðULð0ÞÞ;Að0Þ ¼ fAð0ÞðLð0Þ;UAð0ÞÞ; . . . , LðτÞ ¼ fLðτÞðPaðLðτÞÞ;ULðτÞÞ, AðτÞ ¼ fAðτÞðPaðAðτÞÞ;UAðτÞÞ,
Y ¼ fYðPaðYÞ;UYÞ, where f� are functions of the parent nodes and exogenous errors, modeled as in article
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PF: A possible probability distribution of ðO;UÞ as modeled by the structural equation model

PF
0: The true distribution of ðO;UÞ

MF: The set of possible probability distributions of ðO;UÞ as specified by the structural equation model
formulated in the article. We also refer to this as the full-data model

M: The set of possible probability distributions of O, implied by MF , or defined without reference to the
underlying model MF . M is called the statistical model for the data distribution P0

g�: g� ¼Qt g
�
t , g

�
t is a conditional distribution of a A�ðtÞ, given PaðA�ðtÞÞ, t ¼ 0; . . . ; τ. The distribution g�AðtÞ

is modeled through a common �g�t : g
�
t ðAðtÞjPaðAðtÞÞ ¼

QN
i¼1 �g

�
t ðA�

i ðtÞjPa�ðA�ðtÞÞ. �g� ¼ ð�g�t : t ¼ 0; . . . ; τÞ. g�
represents a stochastic intervention on the intervention nodes A representing the intervention that
replaces the true conditional distribution of AðtÞ, given PaðAðtÞÞ, by this user-supplied choice �g�t , for all
t ¼ 0; . . . ; τ. One can also denote A� ¼ Ag�

g: g ¼Qt gt. gt is a possible conditional distribution of AðtÞ, given PaðAðtÞÞ, t ¼ 0; . . . ; τ. The distribution
gAðtÞ is modeled through a common �gt: gtðAðtÞjPaðAðtÞÞ ¼

QN
i¼1 �gtðAiðtÞjPaðAðtÞÞ. �g ¼ ð�gt : t ¼ 0; . . . ; τÞ. g0

is the true conditional distribution parametrized in terms of the true �g0

Lg� : The post-intervention random version of L obtained by replacing the structural equations for A by the
stochastic intervention g�. It is also called a intervention-specific counterfactual

Yg� : The post-intervention random version of Y. Note Yg� is a component of Lg�

�Yg� : �Yg� ¼ 1
N

PN
i¼1 Yg�;i, the average outcome under intervention g�

Pg� : A possible probability distribution of the counterfactual Lg� . P0;g� the true probability distribution of Lg�
implied by the true distribution PF

0 of ðO;UÞ.
Pg� : The G-computation formula expression for Pg� , purely defined as a function of P. Under the posed

causal model MF , we would have Pg�;0 ¼ Pg�;0

Lg
�
: A random variable with probability distribution Pg�

0 . Similarly, we define Yg� and �Yg�

ΨF: ΨF : MF ! IR represents the parameter mapping that maps a distribution of the underlying ðO;UÞ into
the desired quantity of interest: ΨFðPF

0Þ represents the true causal quantity value. In this article, we
defined ΨFðPFÞ ¼ EPg�

�Yg� [Ψ:]Ψ : M ! IR represents the parameter mapping that maps a distribution of P
of O into a parameter value of interest. ΨðP0Þ represents the true statistical parameter value/estimand. In
this article, ΨðP0Þ ¼ EPg�

0

�Yg� , i.e. the expectation of �Y under the G-computation distribution Pg�
0 . Under the

causal model MF , we have ΨFðPF
0Þ ¼ ΨðP0Þ

Statistical estimation problem: Estimation of ψ0 ¼ ΨðP0Þ based on O,P0, i.e. defined separately from the
underlying causal model, but the causal model allows a causal interpretation EPF

0

�Yg�

CL
t;i;C

A
t;i: C

L
t;i ¼ cLt;ið�Lðt � 1Þ; �Aðt � 1ÞÞ, CA

t;i ¼ cAt;ið�LðtÞ; �Aðt � 1ÞÞ are i-specific summary measures of the past that
LiðtÞ and AiðtÞ depend upon, respectively

Q; �g: PðOÞ ¼ PQ;�gðOÞ;QLð0ÞðLð0ÞÞ
Qτþ1

t¼1

QN
i¼1

�QLðtÞðLiðtÞjCL
t;iÞ
Qτ

t¼0

Qn
i¼1 �gtðAiðtÞjCA

t;iÞ. Q¼ðQLð0Þ; �QLðtÞ : t ¼ 1; . . . ;
τ þ 1Þ. The statistical model M ¼ fPQ;�g : Q; �g 2 Gg, where Q is left-unspecified, and G is some model for �g
We denote �Q ¼ ð�QLðtÞ : t ¼ 1; . . . ; τ þ 1Þ and �g ¼ ð�gAðtÞ : t ¼ 0; . . . ; τÞ. Note �QLðtÞ and �gAðtÞ denote common
(in i) conditional distributions of LiðtÞ and AiðtÞ, respectively. We also use short-hand �Qt ¼ �QLðtÞ

CL;�
t;i : c

L
t;ið�Lðt � 1Þ; �A�ðt � 1ÞÞ, i.e. same summary measure as cLt;i but with A replaced by A�.

ΨðQÞ: Same as ΨðPÞ, but stressing that Ψ only depends on P through Q

D � ðQ; gÞ: The canonical gradient/efficient influence curve of Ψ : M ! IR at P ¼ PQ;�g . Also denoted with
D�ðQ; h;ΨðQÞÞ to stress that it only depends on g through a specified hðQ; gÞ and can be viewed as
estimating function in ψ

L(Q): A loss function ðO;QÞ ! LðQÞðOÞ for Q satisfying Q0 ¼ argminQ P0LðQÞ. In our case, we define a loss
for �QLðtÞ for each t and define Lð�QÞ as the sum-loss: Lð�QÞðOÞ ¼Pτþ1

t¼0 Ltð�QLðtÞÞðOÞ. For example, one can
use the log-likelihood loss. We use a separate loss function for QLð0Þ
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Lð�gÞ: A loss function ðO; �gÞ ! Lð�gÞðOÞ for �g. See Lð�QÞ for sum-loss representation

Cross-validation: For example, suppose we want to estimate �Q0;t ¼ �Q0;LðtÞ, the common conditional dis-
tribution of LiðtÞ, given CL

i;t. Create a data set ðLiðtÞ;CL
i;tÞ, i ¼ 1; . . . ;N. Consider a V-fold sample split of

these N observations in a so-called validation sample ValðvÞ � f1; . . . ;Ng and its complement, the so-
called training sample, TrðvÞ, v ¼ 1; . . . ;V . Let Qt;N;TrðvÞ be an estimator applied to the training sample
fðLiðtÞ;CL

i;tÞ : i 2 TrðvÞg. The cross-validated risk w.r.t. loss LtðÞ of this estimate is defined asP
v

P
i2ValðvÞ LtðQt;N;TrðvÞÞðLiðtÞ;CL

i;tÞ. A cross-validation selector among a set of candidate estimators is
defined as the one that minimizes this cross-validated risk across the candidate estimators. Similarly, we
can define cross-validation for estimation of �gt

h: hi;tðQ; gÞðctÞ ¼ PQ;gðCL
i;t ¼ ctÞ, i ¼ 1; . . . ;N, t ¼ 1; . . . ; τ þ 1. Similarly, we define hi;tðQ; g�Þ ¼ PQ;g� ðCL

i;t ¼ ctÞ.
Short-hand notations are hi;t and h�i;t. In addition, �ht ¼ 1

N

PN
i¼1 hi;t and

�h�t ¼ 1
N

PN
i¼1 h

�
i;t

Analogue point-treatment notation: PW , PAjW , PY jA;W , CA
i ¼ ciAðWÞ, CY

i ¼ ciYðA;WÞ, hiðQ; gÞðcÞ ¼
PQ;gðCY

i ¼ cÞ, �hðQ; gÞðcÞ ¼ 1
N

PN
i¼1 hiðQ; gÞðcÞ, �h� ¼ �hðQ; g�Þ, D�ðPÞ, D�ðQ; gÞ, D�ðQ; �hðQ; gÞ;ΨðQÞÞ,

Q ¼ ðQW ; �QÞ, �QY common conditional density of Yi, given CY
i , QW is the probability density of W and

�Q0ðCY
i Þ ¼ E�QY

ðYijA;WÞ ¼ EP0ðYijCY
i Þ, �gðAijCA

i Þ common density of Ai, given CA
i

D�
YðPÞ;D�

WðPÞ: D�ðPÞ ¼ D�
WðPÞ þ D�

YðPÞ, orthogonal decomposition in function of W and function of
O ¼ ðW;A;YÞ with conditional mean zero, given A;W, both are elements of the tangent space at P of
the statistical model M

PW: PW is conditional distribution of O, given W. PWf ¼ EPðf ðOÞjWÞ
ΨW : ΨWðPÞ ¼ Ψð�Q;QW ;NÞ, where QW ;N is probability distribution ofW that puts mass 1 on the observedW.

Pf: f always represents a function of O: O ! f ðOÞ. Pf ¼ EPf ðOÞ
PNf: PNf ¼ f ðOÞ since PN represents probability distribution that puts mass 1 on observed O

ZN(θ): ZNðθÞ ¼ 1ffiffiffi
N

p
PN

i¼1ffiðθÞðOÞ � P0fiðθÞg for specified fiðθÞ. ðZNðθÞ : θ 2 FÞ represents a process indexed
by class of functions F , which we aim to analyze. In our processes θ plays role of ð�Q; �g; �hÞ

fi, fY,i, fA,i, fW,i: Given a fiðOÞ, we orthogonally decompose fi ¼ fY ;i þ fA;i þ fW ;i with fY ;i ¼ fi � PA;W
0 fi,

fA;i ¼ PA;W
0 fi � PW

0 fi, fW;i ¼ PW
0 fi � P0fi, where PX

0 represents the conditional distribution of O, given X.

f 1W ;i; f
2
W ;i; f

1
A;i; etc:: fW;i indicates that it only depends on O through W and will be centered marginally, fA;i

indicates that it only depends on O through ðA;WÞ and will be centered conditional on W, and fY ;i
indicates that it is centered to have mean zero conditionally, given A;W. In addition, we use superscripts
to have notation for multiple of such functions if part of a single proof: e.g. f 1W;i; f

2
W;i. In different separate

parts of proofs, we often use same notation so that fW;i can denote one thing in one proof and another in
another proof.

ZNA, ZNY, ZNW: Given a mean zero centered process ðZNðθÞ ¼ 1ffiffiffi
N

p
P

i fiðθÞ : θ 2 FÞ, we define a corresponding
orthogonal decomposition ZN ¼ ZNY þ ZNA þ ZNW with ZY

NðθÞ ¼ 1ffiffiffi
N

p
PN

i¼1 fY ;iðθÞ, ZA
NðθÞ ¼ 1ffiffiffi

N
p
PN

i¼1 fA;iðθÞ,
and ZW

N ðθÞ ¼ 1ffiffiffi
N

p
PN

i¼1 fW ;iðθÞ
Nð�;F ; dÞ: Number of balls of size � needed to cover F w.r.t. metric d

CY, CA: CY is set that contains CY
i for all i with probability 1. It is a subset of IRk for some k (constant in N).

Similarly, CA is set that contains CA
i with probability 1

:k kλ: The orlics norm of a random variable implied by a strictly monotone function λ : IR�0 ! IR. We are
concerned with bounding the orlics norm of the random variable ZNðθÞ uniformly in θ and N.
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