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Abstract: Suppose that we observe a population of causally connected units. On each unit at each time-
point on a grid we observe a set of other units the unit is potentially connected with, and a unit-specific
longitudinal data structure consisting of baseline and time-dependent covariates, a time-dependent treat-
ment, and a final outcome of interest. The target quantity of interest is defined as the mean outcome for this
group of units if the exposures of the units would be probabilistically assigned according to a known
specified mechanism, where the latter is called a stochastic intervention. Causal effects of interest are
defined as contrasts of the mean of the unit-specific outcomes under different stochastic interventions one
wishes to evaluate. This covers a large range of estimation problems from independent units, independent
clusters of units, and a single cluster of units in which each unit has a limited number of connections to
other units. The allowed dependence includes treatment allocation in response to data on multiple units
and so called causal interference as special cases. We present a few motivating classes of examples, propose
a structural causal model, define the desired causal quantities, address the identification of these quantities
from the observed data, and define maximum likelihood based estimators based on cross-validation. In
particular, we present maximum likelihood based super-learning for this network data. Nonetheless, such
smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly bias w.r.t.
the target parameter, and, as a consequence, generally not result in asymptotically normally distributed
estimators of the statistical target parameter.

To formally develop estimation theory, we focus on the simpler case in which the longitudinal data
structure is a point-treatment data structure. We formulate a novel targeted maximum likelihood estimator
of this estimand and show that the double robustness of the efficient influence curve implies that the bias of
the targeted minimum loss-based estimation (TMLE) will be a second-order term involving squared differ-
ences of two nuisance parameters. In particular, the TMLE will be consistent if either one of these nuisance
parameters is consistently estimated. Due to the causal dependencies between units, the data set may
correspond with the realization of a single experiment, so that establishing a (e.g. normal) limit distribution
for the targeted maximum likelihood estimators, and corresponding statistical inference, is a challenging
topic. We prove two formal theorems establishing the asymptotic normality using advances in weak-
convergence theory. We conclude with a discussion and refer to an accompanying technical report for
extensions to general longitudinal data structures.
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1 Introduction and motivation

Most of the literature on causal inference has focussed on assessing the causal effect of a single or multiple
time-point intervention on some outcome based on observing n longitudinal data structures on n



14 —— M. ). van der Laan: Population of Causally Connected Units DE GRUYTER

independent units that are not causally connected. For literature reviews, we refer to a number of books on
this topic: Rubin [1], Pearl [2], van der Laan and Robins [3], Tsiatis [4], Hernan and Robins [5], and van der
Laan and Rose [6].

Such a causal effect is defined as an expectation of the effect of the intervention assigned to the unit on
the unit’s outcome, and causal effects of the intervention on other units on the unit’s outcome are assumed
non-existent. As a consequence, causal models only have to be concerned about the modeling of causal
relations between the components of the unit-specific data structure. Statistical inference is based on the
assumption that the n data structures can be viewed as n independent realizations of a random variable, so
that central limit theorems (CLTs) for sums of independent random variables can be employed. The latter
requires that the sample size n is large enough so that statistical inference based on the normal limit
distributions is indeed appropriate.

In many applications, one may define the unit as a group of causally connected individuals, often
called a community or cluster. It is then assumed that the communities are not causally connected, and that
the community-specific data structures can be represented as n independent random variables. One can
then define a community-specific outcome and assess the causal effect of the community level intervention/
exposure on this community-specific outcome with methods from the causal inference literature. Such
causal effects incorporate the total effect of community level intervention, where the effect of the commu-
nity level exposure on an individual in a community also occurs through other individuals in that same
community.

We refer to Halloran and Struchiner [7], Hudgens and Halloran [8], VanderWeele et al. [9], and Tchetgen
Tchetgen and VanderWeele [10] for defining different types of causal effects in the presence of causal
interference between units. Lacking a general methodological framework, many practical studies assume
away interference for the sake of simplicity. The risk of this assumption is practically demonstrated in Sobel
[11], who shows that ignoring interference can lead to completely wrong conclusions about the effectiveness
of the program. We also refer to Donner and Klar [12], Hayes and Moulton [13], and Campbell et al. [14] for
reviews on cluster randomized trials and cluster level observational studies.

In many such community randomized trials or observational studies, the number of communities is very
small (e.g. around 10 or so), so that the number of independent units itself is not large enough for statistical
inference based on limit distributions. In the extreme, but not uncommon, case, one may observe a single
community of causally connected individuals. Can one now still statistically evaluate a causal effect of an
intervention assigned at the community level on a community level outcome, such as the average of
individual outcomes? This is the very question we aim to address in this article. Clearly, causal models
incorporating all units are needed in order to define the desired causal quantity, and identifiability of these
causal quantities under (minimal) assumptions need to be established without relying on asymptotics in a
number of independent units.

An important ingredient of our modeling approach carried out in this article is the incorporation of
network information that describes for each unit i (in a finite population of N units) at certain points in time
t a set of other units F;(t) C {1,...,N} this unit may receive input from. This allows us to pose a structural
equation model for this group of units in which the observed data node at time ¢ of a unit i is only causally
affected by the observed data on the units in F;(t), beyond exogenous errors. This group of friends needs to
include the actual immediate friends of unit i that directly affect the data at time ¢ of unit i, and if one knows
the actual immediate friends, then F;(t) should not include anybody else. Such a structural equation model
could be visualized through a so-called causal graph involving all N units, which one might call a network.
Our assumptions on the exogenous errors in the structural equation model will correspond with assuming
sequential conditional independence of the unit-specific data nodes at time ¢, conditional on the past of all
units at time t. That is, conditional on the most recent past of all units, including the recent network
information, the data on the units at the next time-point are independent across units. The smaller these
sets Fi(t) (i.e. friends of i at time t) can be selected, the fewer incoming edges for each node in the causal
graph, the larger the effective sample size will be for targeting the desired quantity. Even though these
causal graphs allows the units to depend on each other in complex ways, if the size of F;(t) is bounded
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universally in N and under our independence assumptions on the exogenous errors, it will follow that the
likelihood of the data on all N units allows statistical inference driven by the number of units N instead of
driven by the number of communities (e.g. 1). In future work, we will generalize our formal asymptotic
results in which F;(¢) is universally bounded, to the case in which the size of F;(t) can grow with N.

To precisely define and solve the estimation problem, we will apply the roadmap for targeted learning
of a causal effect (e.g. Refs [2, 6, 15]). We start out with defining a structural causal model [2] that models
how each data node is a function of parent data nodes and exogenous variables, and defining the causal
quantity of interest in terms of stochastic interventions on the unit-specific treatment nodes. The structural
assumptions of the structural causal model could be visualized by a causal graph describing the causal
links between the N units and how these links evolve over time, and from that it is clear that this structural
causal model describes what one might call a dynamic causal network.

As mentioned above, our structural equation model also makes strong independence assumptions
on the exogenous errors, which imply that the unit-specific data nodes at time t are independent across
the N units, conditionally on the past of all N units. We refer to this assumption as a sequential
conditional independence assumption. Thus, it is assumed that any dependence of the unit-specific
data nodes at time ¢ can be fully explained by the observed past on all N units. (In our technical report,
we weakened this assumption to allow for residual dependence after this adjustment, among units that
are causally connected.) As a next step in the roadmap, we then establish the identifiability of the
causal quantity from the data distribution under transparent additional (often non-testable) assump-
tions. This identifiability result allows us to define and commit to a statistical model that contains the
true probability distribution of the data, and an estimand (i.e. a target parameter mapping applied to
true data distribution) that reduces to this causal quantity if the required causal assumptions hold. The
statistical model needs to contain the true data distribution, so that the statistical estimand can be
interpreted as a pure statistical target parameter, while under the stated additional causal conditions
that were needed to identify the causal effect, it can be interpreted as the causal quantity of interest.
This statistical model, and the target parameter mapping that maps data distributions in this statistical
model into the parameter values, defines the pure statistical estimation problem. As a next step in the
roadmap, we develop targeted estimators of the statistical estimand and develop the theory for
statistical inference. To understand the deviation between the estimand and the causal quantity under
a variety of violations of these causal assumptions, one may carry out a sensitivity type analysis [16-18,
36], which represents the final step of the roadmap.

Since the statistical model does not assume that the data generating experiment involves the repetition
of independent experiments, the development of targeted estimators and inference represents novel and
new challenges in estimation and inference that, to the best of our knowledge, have not been addressed by
the current literature. TMLE was developed for estimation in semi-parametric models for i.i.d. data [6, 19, 20]
and extended to a particular form of dependent treatment/censoring allocation as present in group
sequential adaptive designs [19, 21, 22] and community randomized trials [23]. In this article, we need to
generalize TMLE to the complex semi-parametric statistical model presented in this article, and we also
need to develop corresponding statistical inference.

Our models generalize the models in the causal inference literature for independent units. Even though
in this article our causal model models a single group of units, it obviously includes the case that the units
can be partitioned in multiple causally independent groups of units. In addition, our models also incorpo-
rate group sequential adaptive designs in which treatment allocation to an individual can be based on what
has been observed on previously recruited individuals in the trial [19, 21, 22, 24]. Our models also allow that
the outcome of an individual is a function of the treatments other individuals received. The latter is referred
to as interference in the causal inference literature. Thus the causal models proposed in this article do not
only generalize the existing causal models for independent units, but they also generalize causal models
that incorporate previously studied causal dependencies between units. Finally, we note that our models
and corresponding methodology can also be used to establish a methodology for assessing causal effects of
interventions on the network on the average of the unit-specific outcomes. For example, one might want to
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know how the community level outcome changes if we change the network structure of the community
through some intervention, such as increasing the connectivity between certain units in the community. In
this case, our treatment nodes need to be defined as properties of the sets F;(t) so that a change in treatment
corresponds with a change in the network structure.

Nonetheless, our assumed universal bounds on the size of F;(t) in our formal results exclude many
realistic and important types of networks, demonstrating that our asymptotic theorems need to be further
generalized in order to capture many realistic networks, but that will be beyond the scope of this article.

1.1 A bibliographic remark and possible relation to network literature

We acknowledge that our contribution does not really fit well in the current literature on networks, which is
much more concerned with properties of the network structure and uses particular types of models and
estimands that are often not embedded within a causal model as we have done here (e.g. Ref. [25]). Our
contribution is aligned and builds on the current causal inference literature (Neyman-Rubin or Pearl’s
structural equation models) to define the causal quantity of interest and establish identifiability from
observed data. In addition, it builds on the modern literature of targeted learning in semi-parametric
models and weak-convergence theory in order to deal with the estimation problem based on dependent
data. Nonetheless, we think it is appropriate to define and model networks of units in terms of a structural
equation model, so that the impact of interventions on this network of units can be formally defined, and
methods for assessing such causal effects can be developed, as we do in this article. Therefore, we suggest
and hope that our contributions may become relevant to the literature on networks.

In this article, we focussed on the case that we observe all N units in the population, while we refer to
our technical report for generalizing this to sampling a random sample from this population of N units. We
also restricted our attention to particular types of causal quantities, namely the counterfactual mean under
a stochastic intervention on the unit-specific treatment nodes (and thereby also causal contrasts). The
network literature, on the other hand, has been much more focussed on particular types of direct/indirect
and peer effects among others (e.g. see Bakshy et al. [26] and Airoldi et al. [27] for estimation of causal peer
influence effects, and the above references). We hope to apply our framework and approach to tackle such
questions as well in future research.

We refer to Aronow and Samii [28] for an inverse probability of treatment weighted approach for
estimation of an average causal effect (ACE) under general interference, relying on the experimental design
to generate these required generalized propensity scores. In addition, these authors also provide finite
sample positively biased estimators of the true (non-identifiable) conditional variance of this IPTW-estima-
tor, conditioning on the underlying counterfactuals, again relying on knowing the generalized propensity
score. In addition, the authors consider asymptotics when one observes multiple independent samples from
subpopulations, the number of subpopulations converging to infinity, each sample allowing for their
general type of interference.

Their innovative approach relies on defining an exposure model that maps the treatment nodes of the N
units and specified characteristics of unit i into a generalized exposure of unit i. For example, you might
define this generalized exposure as the vector of exposures of the friends of unit i, beyond the exposure of
unit i itself. It defines for each unit i the counterfactual outcome corresponding with the static intervention
that sets this generalized exposure to a certain value, same for each unit i, and then defines the counter-
factual mean outcome as the expectation of the average of these unit-specific counterfactuals. It inverses
probability weights by the conditional probability of this generalized exposure to obtain an unbiased
estimator of this expectation of the average of these counterfactual outcomes.

Our model includes the case of observing many independent clusters of units as a special case, but by
assuming more general conditional independence assumptions we also allow for asymptotic statistical
inference when we only observe one population of interconnected units, we define causal quantities in
terms of stochastic interventions on the N unit-specific exposures, we allow for more general dependencies



DE GRUYTER M. J. van der Laan: Population of Causally Connected Units = 17

than interference, and we develop highly efficient estimators that are very different from the above-
mentioned IPTW-type estimator, overall making our approach distinct from Aronow and Samii [28].

1.2 Organization of article
The organization of this article is as follows.

Section 2: We formulate a counterfactual causal model that can be viewed as an analogue of the structural
causal model actually used in this article. This section provides a perspective of the contribution of this
article in the context of the causal inference literature that relies on the Neyman-Rubin model, demonstrat-
ing that in essence it corresponds with allowing for (statistical) dependence between the unit-specific
counterfactuals indexed by interventions on the total of N unit-specific exposures, allowing for the unit-
specific counterfactuals to be affected by the treatments of other units (i.e. causal interference between the
units), and that the treatment assigned to a unit are informed by other units in the population. This section
is succinct and is not necessary for understanding the remainder of the article.

Section 3: We present our structural causal model that models the data generating process for a population
of interconnected units, where changes of the connections over time (i.e. F;(t)) themselves are part of the
randomness. Specifically, it represents a model for the distribution of (0,U) = (0;,U; : i =1,...,N), where
0; denotes the observed data on unit i, and U; represents a vector of exogenous errors for the structural
equations for unit i. This structural causal model allows us to define stochastic interventions denoted with
g* on the collection of unit-specific treatment nodes (contained in 0;), and corresponding counterfactual
outcomes. The causal quantity, denoted with E (1/N Sy Y,-,g*), is defined in terms of the (possibly condi-
tional) expectation of the intervention-specific counterfactual outcomes Y;,-, and it represents a parameter
of the distribution of (0, U). Subsequently, we establish identifiability of the causal quantity from the data
distribution P, of data O = (Oy, ..., Oy) on the N units, commit to a statistical model M for the probability
distribution Py of O, define the statistical target parameter mapping ¥ : M — IR that defines the estimand
Y(Py), where the latter reduces to the causal quantity under the additional assumptions that were needed to
establish the identifiability. The statistical estimation problem is now defined by the data O~P, € M, the
statistical model M and target parameter ¥ : M — IR. The parameter ¥(P) only depends on P through a
parameter Q = Q(P). Therefore, we also use the notation ¥(Q) to denote this target parameter ¥(P).

Section 4: We discuss maximum likelihood estimation (MLE), unified loss-based cross-validation [29-31],
and likelihood based super-learning [32, 33] of the relevant factor of P, (which implies Qp). The resulting
smoothed/regularized maximum likelihood substitution estimators ¥(Qy) are not targeted and will thereby
be overly biased w.r.t. the target parameter ¥(Qo), and, as a consequence, generally not result in asympto-
tically normally distributed estimators of the statistical target parameter. Thus there is a need for targeted
learning (targeting the fit toward y) instead of MLE.

Section 5: We present heuristic arguments demonstrating that the log-likelihood of O will satisfy a local
asymptotic normality condition [34, 35] so that efficiency theory can be applied to pathwise differentiable
target parameters of the data distribution. As demonstrated in van der Vaart [35], under local asymptotic
normality the normal limit distribution of the MLE (ignoring all regularity conditions that would be needed
to establish the asymptotic normality of the MLE) is optimal in the sense of the convolution theorem [34]. In
this section, we demonstrate that the variance of the efficient influence curve (i.e. the canonical gradient of
the pathwise derivative of the target parameter) corresponds with the asymptotic variance of a maximum
likelihood estimator of the target parameter. From this, we learn that our goal should be to construct
estimators that are asymptotically normally distributed with variance equal to the standardized variance of
the efficient influence curve (and thus asymptotically equivalent with a MLE), while appropriately dealing
with the curse of dimensionality through super-learning and TMLE [6, 20].
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In the remainder of the article, we focus on the simpler single time-point longitudinal data structure in
which O; = (W;, 4;,Y;), where W; are baseline covariates, 4; is the subsequent treatment assigned to unit i,
and Y; is the final outcome of interest measured on unit i. This simplification allows us to present a TMLE in
closed form and formally analyze this TMLE, while much of what we learn can be generalized to general
longitudinal data structures.

Section 6: We derive the efficient influence curve, also called the canonical gradient of the pathwise
derivative of the statistical target parameter [34, 35]. We also establish that the expectation of the efficient
influence curve D*(Q, g) under misspecified parameters (Q, g) of the data distribution can be represented as
Y(Qo) — ¥(Q) plus a product of differences of Q and Q, and a specified h(Q,g) and h(Qo, 8o). This result
provides a fundamental ingredient in establishing a first-order expansion of the TMLE under conditions that
make these second-order terms negligible relative to the first-order term, while a separate analysis of the
first-order term (which is a sum of dependent random variables) establishes the asymptotic normality of the
TMLE.

Section 7: We present the TMLE for the causal effect of a single time-point intervention on an outcome,
controlling for the baseline covariates across the units. This TMLE generalizes the TMLE of the causal effect
of a single time-point intervention under causal and statistical independence of the units [6, 36-39]. It is
shown that the efficient influence curve satisfies a double robustness property, which implies the double
robustness of the TMLE. We also present an estimator defined as a solution of the efficient influence curve
based estimating equation: Robins and Rotnitzky [40] and van der Laan and Robins [3]. We propose
effective schemes for implementing the TMLE.

Section 8: We present a theorem establishing asymptotic normality of this TMLE for the causal effect of a
single time-point intervention and discuss statistical inference based on its normal limit distribution. The
theorem relies on modern advances in weak convergence of processes as presented in van der Vaart and
Wellner [41] and van der Vaart [35]. The proof of the theorem is deferred to the Appendix. The generalization
of the formal asymptotics results for this TMLE to the TMLE for general longitudinal data structures is also
discussed in the Appendix of our accompanying technical report.

Section 9: We present an analogue theorem for this TMLE as an estimator of the intervention-specific mean
outcome, conditional on all baseline covariates W = (W, ..., Wy). This result avoids making any indepen-
dence assumptions on the distribution of W, and the asymptotic variance of the TMLE is reduced.

Section 10: We conclude with a summary and some remarks.

We will address the actual implementation of the proposed TMLE and simulation studies in an article in the
near future. We refer to our accompanying technical report for various additional results such as weakening
of the sequential conditional independence assumption (still heavily restricting the amount of dependence,
but allowing that, even conditional on the observed past, a subject can be dependent on maximally K other
subjects), and only observing a random sample of the complete population of causally connected units,
among others.

2 Formulation of estimation problem in terms of Neyman—Rubin
model for counterfactuals

The estimation problem defined in the next section in terms of a semi-parametric structural equation model
corresponds with the following counterfactual missing data problem formulation also called the Neyman—
Rubin causal model [1, 42-46].

Let XI' = (Liq:a € A) be the full-data structure consisting of all static regimen-specific counter-
factuals L;, for unit i, where a = (ai,...,ay) represents the static regimens for all N units,
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Liqg = (Lia(0),Lia(1),...,Lig(r +1)) is a time-dependent process up till time 7 + 1, and L;4(t) only depends
on a through (a;(t — 1) = (¢;(0),...,a;(t —1)) : j =1,...,N). Note that counterfactuals L;, are indexed by a
and not just the treatment g; for unit i: we refer to Halloran and Struchiner [7], Hudgens and Halloran [8],
VanderWeele et al. [9], Tchetgen Tchetgen and VanderWeele [10], Aronow and Samii [28] for discussions of
counterfactuals under interference.

Let P be the probability distribution of X = (XF,..., Xk) and let M" be the full-data model, i.e. the
collection of possible distributions of XF. This full-data model will thus incorporate additional assumptions
such as that the counterfactuals of unit i only depend on the regimens of a subset of the N individuals and
conditional independence assumptions, as presented below. We observe the missing data
structure 0= (0;:i=1,...,N), 0;=(A,Li=L;s) on the full-data X =(XF:i=1,...,N). We view
0 = (04,...,0y) as a missing data structure on the full-data X* = (XF',... XE) with censoring variable A.
In other words, 0 = ®©(A, XF) for a specified function ®. We assume that the conditional density g, of
A= (Ay,...,Ay), given XF, satisfies

T

N
A|XF = HgO £ (Ai( )
t=0 i=1
where cf; is a function of (4;(t —1),L;(t) :j=1,...,N). Note that this corresponds with assuming that at
each time ¢, A;(t), i=1,...,N, are independent, conditional on the past of the N subjects (i.e. a sequential
randomization assumption (SRA). We remind the reader that one definition of coarsening at random [47-49]
is that the conditional density go(A|XF) of censoring variable A, given full-data XF, w.r.t. an appropriate
dominating measure, only depends on A, X' through the censored data structure O = ®(A, XF). Thus the
SRA implies that the missingness mechanism on the full-data X* satisfies coarsening at random: Note that
8o(A|XF) = hy(0) is a measurable function hy of O so that this assumption indeed implies the coarsening at
random assumption.
Due to this coarsening at random assumption, the likelihood of O factorizes in a full-data distribution
factor and the joint intervention mechanism gy:

Po(A=a,L=1)=Pp(Lig=l:i=1...,N) a:Ago(a|XF).

We use the notation L = (L;:i=1,...,N), Ly = (Lig:i=1,...,N), and L,(t) = (Lia(t) : i=1,...,N). Note
that the full-data distribution factor equals the likelihood of (Liz:i=1,...,N) at set regimen
a=(ai,...,ay) at value A = (Ay,...,Ay) and is thus identified by the full-data distribution P5. We could
model this full-data distribution factor of the likelihood as follows:

Ppr(Lig=l:i=1,..,N)| = 0 Per (La(t) = I(0)|La(t — 1) = I(t — 1))

= [1i26 Po(L(t) = lt)|L(t — 1) = [(t — 1),A(t — 1) = a(t — 1))

= [T 0 [T Po(Li(t) = K(O)IL(t — 1) = U(¢ — 1), A(¢ — 1) = a(t - 1))
o T Po(Li(t) = Li(t)lcg; (It - 1), a(t — 1))

= IT0 TT Qoe(k()lct; (Ut — 1), a(t - 1)),

where the second equality assumes coarsening at random, the third equality assumes that L;(t),i=1...,N
are conditionally independent, given L(t — 1), A(t — 1), the fourth equality assumes that L;(t) only depends
on the past through an i-specific fixed (in N) dimensional summary measure ct; of (L(t —1),A(t — 1)), and

the final equality assumes that each L;(t) is drawn from Qo (-|cf;(L(t —1),A(t —1))) for a common Qo (:[-).

These assumptions define the full-data model MF. Because of these assumptions, the full-data distribution
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factor of the distribution of O only depends on Pg through Q = (Oo,t :t=0,...,7+1), so that the data
distribution if parameterized by Q,g and could thus denoted with P,,. The statistical model M is now
defined as {Pqg : Q,g}, where Q, g are unspecified beyond the specifications presented above.

Our full-data target parameter is a parameter ¥ : M — R? defined on the full-data model. The
factorization of the likelihood of O due to coarsening at random establishes the identifiability of
wE = WF(PL) as a parameter of the distribution P, of O, under the assumption that ¥*(P5) only depends
on the full-data distribution Pg through Q. As a consequence, we can now define a statistical target
parameter ¥ : M — R9 so that yf§ = y, = ¥(Py). We need to construct an estimator yy of y, based on
this single draw of O~P, € M, and we need to establish a limit distribution of the standardized estimator:
VN(yy — wo) =a Z as N — oo for some limit distribution Z (e.g. N(0, X)).

Let g* be a conditional distribution of a random variable A,, given X, satisfying coarsening at random so
that g*(A.|X) = h*(A., Ly, ) for some function h*. We refer to this choice g* as a stochastic intervention which
can be used to define a modified version of the data distribution P by replacing g by g* resulting in the
probability distribution

s

=

PS (A, L)= T Qo.e(Lis (t) ety (Li(t = 1), At = 1)K (A., L)

T
=)
Il

—-

whose random variable is denoted with (A*,Lg*), where we will also use the notation L* for L8 . The latter
distribution P#" is the so-called G-computation formula for the post-intervention distribution of L under the
stochastic intervention g* [45] and is a parameter of P. Under the causal model including the SRA and a
positivity assumption, P§" would equal the post-intervention distribution P, of the (counterfactual) random
variable obtained by first drawing the counterfactuals XF = (L, : a), then drawing an A.~g*(:|X), and

reporting (A.,La,). A possible statistical target parameter is now given by W(Py) = EO%Z?L . Yl.g*, as

addressed in this article, which equals the full-data parameter W (P§) = EoﬁZfi 1 Yig- under the causal
model.

The fact that the counterfactual outcome of subject i can be a function of the treatments of other
subjects is referred to as interference in the causal inference literature. In addition, the above formulation
allows that treatment allocation for unit i depends on data collected on other units. The above formulation
also allows dependence between the counterfactuals between different units. The above formulation can
thus be viewed as the causal inference estimation problem when interference, adaptive treatment alloca-
tion, and dependence of the counterfactuals of different units is allowed. Our structural equation model
defined in next section implies such restrictions on the distribution of the counterfactuals and defines this
same particular full-data model MF.

3 Formulation of estimation problem using a structural
causal model

For a unit i, let O; = (L;(0),4;(0),...,Li(z),Ai(r),Y; = Li(r + 1)) be a time-ordered longitudinal observed
data structure, where L;(0) are baseline covariates, A;(t) denotes an action/treatment/exposure at time ¢,
which will play the role of intervention node in the structural equation model below, L;(t) denotes time-
dependent measurements on unit i, possibly including an outcome process Y;(t), and Y; denotes a final
outcome, realized after the final intervention node A;(z). Let F;(t) be a component of L;(t) that denotes the
set of friends individual i may receive input from at time ¢, t =0,...,7 + 1. Thus, Fi(t) C {1,...,N}.

If we define L(t) = (Li(t) :i=1,...,N), and similarly we define A(t) = (4;(t) :i=1,...,N), then the
observed data O = (0y,...,0,) can be represented by a single time-ordered data structure

0 = (L(0),A(0), ..., L(z),A(), Y = L(z + 1)).
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The latter ordering is the only causally relevant ordering, and the ordering of units within a time-point is

user supplied but inconsequential. We define Pa(A(t)) = (L(t),A(t — 1)) and Pa(L(t)) = (L(t — 1), A(t — 1)),
as the parents of A(t) and L(t), respectively, w.r.t. this ordering. The parents of A;(t), denoted with Pa(A;(t)),
are defined to be equal to Pa(A(t)), and the parents of L;(t), denoted with Pa(L;(t)), are also defined to be
equal to Pa(L(t)), t=0,...,7+1,i=1,...,N.

In order to define causal quantities, we assume that O is generated by a structural equation model of the
following type: first generate a collection of exogenous errors Uy = (U;:i=1,...,N) across the N units,
where the exogenous errors for unit i are given by

Ui = (ULi(O)v UA,-(O)? ceey ULi(T)7 UAi(‘r)a UY:)7 i= 1,... 7N7
and then generate O deterministically by evaluating functions as follows:

Li(t) = fu (Pa(Li(t)), Ury)

i=1,....N

Ai(t) = faye) (Pa(Ai(t)), Usye))
i=1,....N

t=0,...,7

Yi = fy,(Pa(Yi(r + 1)), Uy,r+1))
i=1.. N

These functions (fi,) :t=0,...,7+1), (fa :t=0,...,7) are unspecified at this point, but will be sub-
jected to modeling below.

Since Pa(Li(t)) = (A(t —1),L(t —1)) and Pa(A;(t)) = (A(t —1),L(t)), an alternative succinct way to
represent this structural equation model is

L
24 t)OZ faie)(Pa(A(t)), Uag))
Y = L(z+1) = £y (Pa(Y), Uy).

Recall that set of friends, F;i(t), is a component of L;(t) and is thus also a random variable defined by this
structural equation model, ¢ =1,...,7, although we decided to condition on F;(0) in our formal theorems
for the point-treatment data structure O; = (L;(0), 4;(0), ¥;) in our later sections, representing the case r = 0.

Counterfactuals and stochastic interventions: This structural equation model for

(L(0),A(0),...,L(x),A(r),Y =L(z + 1)),

allows us to define counterfactuals Y;(z + 1) corresponding with a dynamic intervention d on A [46,
50-53]. For example, one could define A;(t) at time ¢ as a particular deterministic function d;; of the
parents Pa(A;(t)) of subject i =1,...,N. Such an intervention corresponds with replacing the equations
for A(t) by this deterministic equation d;(Pa(A(t)), t =0,...,7. More generally, we can replace the
equations for A(t) that describe a degenerate distribution for drawing A(t), given U = u, and Pa(A(t)),
by a user-supplied conditional distribution of an A.(t), given Pa(A.(t)). Such a conditional distribution
defines a so-called stochastic intervention: Dawid and Didelez [54], Didelez et al. [55], and Diaz and van
der Laan [56].

Let g =(g; :t=0,...,7) denote our selection of a stochastic intervention identified by a set of
conditional distributions of A.(t), given Pa(A.(t)), t = 0,..., 7. For convenience, we represent the stochastic
intervention with equations A, (t) = fy () (Pa(A.(t)), Ua. () in terms of random errors Uy (. This implies the
following modified system of structural equations:
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L.(t) = f1(Pa(L.(1)), Ure))

A*(t) f A, (f) (Pa(A (t)),UA([))

t=0,...,7

Y. = *( +1) =fy(Pa(Y), Uy),
where Pa(L.(t)) is the same set of variables as Pa(L(t)), but with A, L replaced by A,,L,. Let Y;g., or short-
hand Y; ., denote the corresponding counterfactual outcome for unit i. A causal effect at the unit level could
now be defined as a contrast such as Y;g: — Yig: for two interventions g; and g;. Note that, for a given g,
Yigr = Yig (U¥) is a deterministic function of the error-term U*=(U, Uy, ) that are inputted in the structural
equations.

Post-intervention distribution, and SRA: We assume the SRA on U,
A(t)LL,-, conditional on Pa(A(t)) , 1)

and Uy, LU. Then, the probability distribution Pg of (A,, L) is given by the so-called G-computation
formula [45, 52, 53, 55, 57]

Py (A, L) =]] HPLiu) (Li«(t)[Pa(Li(t)))8; (Ai(8)|Pa(A; (1)),

where Py, is the conditional distribution of L;(t), given Pa(L;(t)), and Pa(L;.(t)) = (L.(t — 1), A.(t — 1)). We
will denote the distribution of L. with P,.. Thus, under this SRA, the post-intervention distribution P, is
identified from the observed data distribution of O generated by the structural equation model. The
distribution of Y;¢. corresponds now with a marginal distribution of Py, .

ACE: One might now define an ACE as the following target parameter of this distribution of P,-:

1d 1d
RO BERES o
i=1 i=1

Let Y =13, ¥, so that we can also write this causal effect as E(Yg; — Y;). Since the distribution P,. is
indexed by N, the parameter depends on N. In particular, the effect of stochastic intervention on a
population of N interconnected units will naturally depend on the size N of that population, and the
network information F: i.e. adding a unit will change the dynamics. As we will do in our point-treatment
sections, one might decide to replace these marginal expectations by conditional expectations conditioning
on F;(0), i=1,...,N, or even conditioning on (L;(0) :i=1,...,N). We will focus on the causal quantity
Wt = Ep,. Y. for a user-supplied stochastic intervention, and our results naturally generalize to causal
quantities that a Euclidean valued function of a collection of such intervention-specific means.

Iterative conditional expectation representation of ACE: The parameter EY,. can be represented as an
iterative conditional expectation w.r.t. the probability distribution P,- of (A,, Lg-) [58, 59]:

7‘[;1 = Eg (Q§+1,1|i(f)v;1(f -1))
@) = E(Q4L(z —1),A(x - 1))
Q@ =Eg (Q%|L(z—1),A(r - 2))
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where EY,. = Oﬁ*. Thus, this mapping involves iteratively integrating w.r.t. the observed data distribution of
L(t), given its parents, and the conditional intervention distribution g; of A.(t), given Pa(A.(t)), respec-
tively, starting at t =7+ 1, till t = 0.

Dimension reduction and exchangeability assumptions: The above-stated identifiability of y¥ is not of
interest since we cannot estimate the distribution of O based on a single observation. Therefore, we will
need to make much more stringent assumptions that will allow us to learn the distribution of O based on a
single draw. One could make such assumptions directly on the distribution of O, but below we present these
assumptions in terms of assumptions on the structural equations and exogenous errors.

Beyond the assumptions above, we will also assume that for each node A;(t) and L;(t), we can define
known functions, Pa(A;(t)) — cf;(Pa(A(t))) and Pa(Li(t)) — cf;(Pa(Li(t))), that map into a Euclidean set
with a dimension that does not 'depend on N, and corresponding common (in i) functions f;, fa), fr, SO
that

Li(t) = fro (cti(Pa(Li(t))), Upe) (2

Ai(t) = fag) (cti(Pa(Ai(t))), Une)

(As mentioned above, an interesting variation of this structural causal model treats L(0) as given and thus
removes that data generating equation.) Examples of such dimension reductions are cﬁi(Pa(Li(t))) =
((Li(t — 1), Ai(t — 1)), (Lj(t — 1),Aj(t = 1) : j € Fi(t — 1))), i.e. the observed past of unit i itself and the
observed past of its current friends, and, similarly, we can define c;(Pa(Ai(t))) = ((Li(t),Ai(t — 1)),
(Li(t),Aj(t — 1) : j € Fi(t — 1))). By augmenting these reductions to data on maximally K friends, filling up
the empty cells for units with fewer than K friends with a missing value, these dimension reductions have a
fixed dimension and include the information on the number of friends. This structural equation model
assumes that, across all units i, the data on unit i at the next time-point ¢t is a common function of its own
past and past of its friends. In our formal asymptotic results for the TMLE based on the point-treatment data
structure O; = (L;(0), A;(0), Y;(0)), we assume this particular type of summary measure of maximally K
friends in order to enforce enough independence to establish an asymptotic normal limit distribution, but
the sequel and the TMLE are defined for any summary measure, and in future work we hope to address the
analysis of the TMLE for more general summary measures.

Independence assumptions on exogenous errors: Beyond the SRA (1), we make the following (condi-
tional) independence assumptions on the exogenous errors. Firstly, we assume independence assumptions
on Uy, (and thereby L;(0), i =1,...,N) such as that Uy,), i =1,...,N, are independent (so that L;(0),
i=1,...,N, are independent), or that Uy, ) is independent of Uy, o) if F;(0) N F;(0) = 0. We will estimate the
joint distribution of L(0) with the empirical counterpart that puts mass 1 on the actual observed
L(0) = (L1(0),...,Ly(0)), and the resulting empirical expectation w.r.t. this empirical distribution in our
estimator, i.e. Q¥ (L(0)) in the iterative algorithm above, has to satisfy that v/N(Q¥ (L(0)) — EoQ (L(0)))
has to converge to a normal distribution. The key assumption for this convergence in distribution is that
L;(0) depends on at most K L;(0) for a universal K. So we will assume a model on the distribution of L(0)
that assumes the latter, at minimal.

In addition, for all ¢t =0,...,r, conditional on (A(t —1),L(t)), Us, i =1,...,N are independent and
identically distributed, and for all t =1,...,7 + 1, conditional on (A(t —1),L(t — 1)), Uy, i=1,...,N, are
independent and identically distributed. The important implication of the latter assumptions is that, given
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the observed past Pa(L(t)), for any two units i and j that have the same value for their summaries c%l = cﬁj
as functions of Pa(L(t)), we have that L;(t) and L;(t) are independent and identically distributed, and
similarly, we have this statement for the treatment nodes. This allows us to factorize the likelihood of the
observed data as done below, parameterized by common conditional distributions QO,L(Q and go, that can

actually be learned from a single (but growing) O when N — oc.

Identifiability: G-computation formula for stochastic intervention. For notational convenience, let
CE; = ck(Pa(Li(t))), and let Cﬁ;* be defined accordingly with A, L replaced by A.,L,. Due to the exchange-
ability and dimension reduction assumptions, the probability distribution P+ of Lg- = (Lig-:i=1,...,N)
now simplifies:

r+1

N
Py (L., A.) = Pyo)(L(0)) J T T Quioy (Lin(6)IC17))87 (Ave(6) Pa(Ai (1))

i=1t=0

=P (L, A, 3)

where Q) are the above defined conditional distributions of L;(t), given Pa(L;(t)), where, by our assump-
tions, these i-specific conditional densities are constant ini =1,...,N, as functions of Cﬁv t=1,...,7+1.
We will also use the notation Q) for the conditional distribution of L(t), given Pa(L(t)), which is thus
parameterized in terms of OL(,). Similarly, we use the notation g4, or g to denote the conditional
distribution of A(t), given Pa(A(t)), which is thus parameterized in terms of g;. We introduced the notation
Pg" for the right-hand side in eq. (3) which thus represents an expression in terms of the distribution of the
data under the assumption that the conditional densities of L;(t), given Pa(L;(t)), are constant in i as
functions of Ct,, indexed by the choice of stochastic intervention g*, while one needs the causal model and
randomization'assumption in order to have that the right-hand side actually models the counterfactual post-
intervention distribution P.. This shows that w5 = W(P,) for a mapping ¥ from the distribution P, of O to
the real line. Strictly speaking this does not establish a desired identifiability result yet, since we cannot
learn P, based on a single draw O. To start with, we need to realize that PY, «//g*N , and ng are indexed by N,
and we only observed one draw from P{;’ . Therefore, we still need to show that we can construct an estimator
based on a single draw OV that is consistent for ) as N — oco. For that purpose, we note that the
distribution P¢" is identified by the common conditional distributions QL(t), t=1,...,7+1, and Py o) with
L(0) = (L;(0): i=1,...,N). We can construct consistent estimators of these common conditional distribu-
tions OO,L(t) based on MLE that are consistent as N — oo, which follows from our presentation of estimators
and theory. This demonstrates the identifiability of Qg 1) as N — oo, t =1,...,7 + 1. In addition, our target
parameter involves an average Ej ) Qf (L(0)) w.r.t. Pyo) which can be consistently estimated by its
empirical counterpart under our independence assumptions, as discussed above. This demonstrates the
desired identifiability of (//g’N from the observed data as N — oc.

Likelihood and statistical model: Let Q; ) denote the distribution of L(0). By our assumptions, the
likelihood of the data
0 = (L(0),A(0),...,L(z),A(r),Y = L(r + 1)) is given by:

N +1

Pgg(0) = Qo) (L HH 1o (Li(6)|CE) g (Ai(t)|CL). (4)

We denoted the factors representing the conditional distributions of L;(t) with OL(O’ where these conditional
densities at L;(t), given Pa(L;(t)), are constant in i, as functions of L;(t) and CF;. Similarly, we modeled
the g-factor in terms of common conditional distributions (g:t=0,...,7). Let Q= (Qq), OL(,)

t=1,...,7+1) represent the collection of all these factors, and g = (g;: t =0, ...,7), so that the distribu-
tion of O is parameterized by (Q, g). The conditional distributions QL<t) (L(t)|CE) are unspecified functions of
L(t) and Cf, beyond that for each value of Cf it is a conditional density, and Qy o satisfies a particular
independence model discussed above. Similarly, the conditional distributions g; are unspecified conditional
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densities. This defines now a statistical parameterization of the distribution of O in terms of Q,g, and a
corresponding statistical model

M={Pys:Qe Q,g€eq}, (5)

where Q and G denote the parameter spaces for Q and g, respectively. Note that we derived the same
likelihood and statistical model based on the Neyman-Rubin model in Section 2: instead of making
assumptions on the structural equation model, we assumed coarsening at random, and made assumptions
on the full-data distribution factor of the likelihood.

Statistical target parameter: Let I8 denote a random variable with distribution P8" (eq. 3), defined as a
function of the data distribution P of O. We define our statistical target parameter as EY3 which is a
function of the intervention-specific distribution P¢’, so that it equals the causal quantity EY,. under the
above-stated causal assumptions. Thus

Ep,, Y¥ = ¥(Pog) = ¥(Q) (6)

Qg

depends on the distribution P of the data O through Q = (QL<0>,(_2L(,) :t=1,...,7+1). Note that Q is
determined by the distribution of L(0), and the conditional distributions of L;(t), given (A(t — 1),L(t — 1)),
which, by assumption, equal a common function Qg (Li(t)|CE;), t =1,...,7+ 1. As shown above, we can
represent this statistical target parameter also as an iterative conditional expectation involving the iterative

integration w.r.t. QL(O’ gjl(tfl), starting at ¢t = 7 + 1 and moving backward till the expectation over L(0):

QT+ZEY

QT+1,1 = EQ,H(QTHM(T%HT))
Qi = Eg. (Or+1,1 |A(T - 1)71_4(7))
Iterate, t =17,...,0

Qei11 = Eq,,, (QualA(t), L(1))
Qi1 = E;: (QeaalA(t — 1), L(t))
Qt—0 = Er0)Q

=EY*

This representation allows the effective evaluation of ¥(Q) by first evaluating a conditional expectation
w.r.t. conditional distribution of L(z + 1), and thus w.r.t. vail Qu(e+1)(Li(z + 1)|CE,, ;), then the conditional
mean of the previous conditional expectation w.r.t. conditional distribution of A;(r), and iterating this
process of taking a conditional expectation w.r.t. L(t) and A.(t — 1) till we end up with a conditional
expectation over A.(0), given L(0), and finally we take the marginal expectation w.r.t. the distribution of
L(0). Note that each conditional expectation involves an expectation over vector (L;(t):i=1,...,N) or
(Aj(t—1):i=1,...,N) w.rt. product measure of common conditional distributions Qg (Li(t)|cF;) or
At =1t t=1,... 141 i

One can also define an L(0)-conditional statistical target parameter as E(Y$ |L(0)), which can still be
effectively evaluated by the iterative conditional expectations presented above, but one simply removes the
final integration over the distribution of L(0).

Statistical estimation problem: We have now defined a statistical model M (eq. 5) for the distribution
(eq. 4) of O, and a statistical target parameter mapping ¥ : M — IR (eq. 6) for which ¥(Pqg) only depends
on Q. We will also denote this target parameter with W(Q), with some abuse of notation by letting ¥
represent these two mappings. Given a single draw O~Py, 4,, we want to estimate ¥(Qp). In addition, we
want to construct an asymptotically valid confidence interval. Recall that our notation suppressed the
dependence on N and F of the data distribution Pqg, statistical model M, and target parameter V. In the
conditional model for the conditional distribution of O, given L(0), we will make the dependence on L(0) of
the data distribution Péfg), MM and WO explicit.
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Summary: So we defined a structural causal model (eq. 2), including the stated independence (and i.i.
d.) assumptions on the exogenous errors, the dimension reduction assumptions, and the SRA (eq. 1). This
resulted in the likelihood (eq. 4) and corresponding statistical model M (eq. 5) for the distribution P, of O.
In addition, these assumptions allowed us to write the causal quantity w5 as a statistical estimand ¥(Qo)
(eq. 6): w5 =W¥(Qo), where Qo can be learned from a single draw O as N — occ. The pure statistical
estimation problem is now defined: O~P, € M, and we want to learn y, = ¥(P,) where ¥: M — RR.
Under the non-testable causal assumptions, beyond the statistical assumption Py € M, we can interpret vy,
as wg, but, even without these non-testable assumptions, one might interpret y, (and its contrasts) pure
statistically as an effect measure of interest controlling for the observed confounders.

3.1 Example

In order to provide the reader with some sense of the type of applications that can be addressed with our
model approach, we present a few examples.

Consider a study in which we wish to evaluate the effect of starting HIV treatment early after HIV-
infection on the rate of HIV-infection for the population of interest. For that purpose, the study tracks the
cohort of individuals for 5 years, and for each individual one obtains baseline characteristics L;(0), one
regularly tests for HIV-infection (Y;(t)), one measures when the individual starts treatment and one
measures if the person was lost to follow up (4;(t) = (Ay(t),Ax(t))), one regularly measures biomarkers
and other time-dependent characteristics of interest such as condom use (L;(¢)), and one regularly measures
the set Fi(t) C Li(t) of sexual partners. Let t =0, ...,7+ 1, where the 7 + 1th point represents end-point 5
years after baseline. Suppose one is interested in the effect of early HIV treatment (Ay;(t)) on the proportion
1/N Y, Yi(r + 1) of HIV-infections at 5 years. One knows that an HIV-infected person that is being treated is
much less infectious than a non-treated HIV-infected person, so that early treatment might have a strong
beneficial effect on the spread of HIV-infection. One might be interested to estimate the mean outcome
1/N Y ;EoYig (z + 1) under a stochastic intervention g* on A;(t), t =0, ..., 7. For example, the stochastic
intervention deterministically starts HIV-treatment after the first observed HIV-infection, and it enforces no-
right-censoring. This would be an example of a deterministic dynamic intervention. In our model, we may
assume that our conditional distributions of L;(t), Y;(t), and A;(t), given the past on all individuals only
depends on the individual pasts of the sexual partners of subject i, beyond the past of subject i itself. In
particular, it is clear that the HIV-infection at time ¢ for individual i is very much a function of the treatment
status of its sexual partners.

A simplified version of this example is the case that we only observe on individual i baseline covariates
L;(0) (including baseline HIV-infection status), treatment status A;(0), and subsequent HIV-infection ¥;(1), for
the N individuals. One might now assume that the treatment status of individual i is not only a function of its
own baseline characteristics, but also of the baseline characteristics of its sexual partners, and that its outcome
status is a function of the baseline characteristics and treatment status of its friends as well as its own.

Similarly, the treatment node could be defined as the indicator of condom use, so that the counter-
factual mean outcomes evaluates the effect of condom use on the spread of the HIV-epidemic. One could
also think about interventions on F;(t) itself, such as interventions that decrease the number |F;(¢)| of sexual
partners. This corresponds with specifying a conditional distribution of |F;(t)|, given the past, at each time ¢,
where such a conditional distribution might be a part of the actual distribution of the set F;(t), given
the past.

It is also of interest to note that a stochastic intervention could only target a random subset of the total
set of intervention nodes, (4;(t) : i,t), by focussing on a subset of individuals and a subset of the time-
points. That is, a stochastic intervention could be equal to the actual treatment mechanism that generated
the A;(t) at certain times and for certain individuals while it enforces an intervention elsewhere. For
example, resources might only allow one to carry out a limited number of interventions, and one wishes
to evaluate different strategies for selecting the nodes for which the intervention will be enforced.
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Another example of interest might be one in which taking an anti-depression drug or an intervention is
the treatment node, and a depression score at a final time-point is the outcome of interest. Consider a group
of individuals that are socially connected and for which a reasonable proportion is subjected to this
intervention or drug-treatment. One might expect that drug/intervention node of the friends of individual
i affects (indirectly) the psychological health and thereby outcome of individual i, so that this would be an
example of causal interference. In addition, one expects that drug/intervention node of individual i is
affected by the drug/intervention nodes of its friends and other features of its friends, so that this is also an
example of adaptive treatment allocation (i.e. treatment for individual i is affected by the past of the friends
of individual i, beyond the past of individual i itself). Thus, this would be an example where one naturally
needs to allow that both the treatment nodes and the outcome nodes of an individual are affected by the
observed past of its friends. Clearly, the causal effect of different stochastic interventions on the anti-
depression drug/intervention nodes for the individuals in the population will include the peer effects.

4 Maximum likelihood estimation, cross-validation,
super-learning, and targeted maximum likelihood
estimation

We could estimate the distribution of L(0) with the empirical distribution that puts mass 1 on
(Li(0) :i=1,...,N). This choice also corresponds with a TMLE of the intervention-specific mean outcome
E(Y$'|L(0)) that conditions on L(0), as we formally show in our later sections for the single time-point data
structure. If it is assumed that (L;(0) :i=1,...,N) are independent, then we estimate the distribution of
L(0) with the NPMLE that maximizes the log-likelihood };1og Qy,0)(Li(0)) over all possible distributions of
L(0) that the statistical model M allows. In particular, if it is known that L;(0) are i.i.d., then we would
estimate the common distribution Q, of L;(0) with the empirical distribution that puts mass 1/N on L;(0),
i=1,...,N.

Regarding estimation of Qo = Qo 1@ fort =1,...,7 4 1, we consider the log-likelihood loss function for Qs

N
Lt(Ot)E - Z log Ot(Li(t)|C1{ft)~

Note that EqL¢(Q;) is minimized in Q; by the true Qo,, since, conditional on (A(t —1),L(t — 1)), the true
distribution of L;(t) is given by Qo(:|C5,), i=1,...,N. In addition, this expectation EoL¢(Q;) is well
approximated by 15" log Q:(Li(t)|CE,), since, conditional on (A(t — 1), L(t — 1)), this is a sum of indepen-
dent random variables L;(t), i = 1,...,N. The latter allows us to prove convergence of the empirical mean
process to the true mean process uniformly in large parameter spaces for Q;, using similar techniques as we
use in the Appendix based on weak-convergence theory in van der Vaart and Wellner [41]. As a conse-
quence, one could pose a parametric model for Qo, say {Qg : 0}, and use standard MLE

Oy = arg mHinLt(Qm),

as if the observations (L;(t),Cf,), i=1,...,N, are independent and identically distributed and we are
targeting this common conditional density of L;(t) given CF,. More importantly, we can use loss-based
cross-validation and super-learning to fit this function OO,; of (I(t),ch), thereby allowing for adaptive
estimation of Qo;. Specifically, consider a collection of candidate estimators Q;; that maps a data set
{(Li(t),CL,) : i} into an estimate, k =1,...,K, and let P{, denote the empirical distribution that puts mass
1/N onto each Li(t), Cf;. Given a random split vector By € {0, 1}V, define Pf\fBN and Pf\;?BN as the empirical
distributions of the validation sample {i: B,(i) = 1} and training sample {i : By(i) = 0}, respectively. We
can now define the cross-validation selector k,, of k as
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k, = arg mkin EBNP]‘\;I,BNL,(QL’,((P][\’,?BN)

= argmin g, > 1og Qu(Pys, ) (Li(t)|CF).
i:By (D=1

If Li(t) is continuous, one could code L;(t) in terms of binary variables I(L;(t) = l) across the different
levels I of Li(t), and model the conditional distribution/hazard of I(L;(t) =1), given L;(t) >1 and
A(t —1),L(t — 1), as a function of C[Lj and [, as in van der Laan [60, 61]. One could now construct candidate
estimators of this conditional hazard, possibly smoothing in the level I, by utilizing estimators of predictors
of binary variables in the machine learning literature, including standard logistic regression software for
fitting parametric models. Similarly, this can be extended to multivariate L;(t) by first factorizing the
conditional distribution of L;(t) in univariate conditional distributions. In this manner, one obtains then
candidate estimators of Qo_m) based on a large variety of algorithms from the literature.

We could fit each Qo; separately for ¢t =1,...,7+1, but it is also possible to pool across t by
constructing estimators and using cross-validation based on the sum loss function

L(Q) =) Li(Q:).

Similarly, we can use the log-likelihood loss function for g;:

N
Lig) = — 3 logg(Ai(0)|Ch),
i=1

and use loss-based cross-validation and super-learning to fit g;, possibly pooling across time based on the
sum loss function

L(g) =D Li(g).

Given the resulting estimator Qy of Qo, one can evaluate ¥(Qy) as estimator of w, = ¥(Qop), according
to the iterative conditional expectation mapping presented earlier. Since Qy is optimized to fit Qy (i.e.
involving trading off bias and variance w.r.t. Qo, not y), such a data-adaptive plug-in estimator, although it
inherits the (e.g. minimax adaptive) rate of convergence at which Qy converges to Qo, it is overly biased for
W¥(Qo), so that W(Qy) will generally not converge to ¥(Q,) at rate 1/v/N.

TMLE: TMLE will involve modifying an initial estimator Q;y into a targeted version QjN, t=1,...,t+1,
through utilization of an estimator gy of go, a least-favorable submodel (w.r.t. target parameter )
{Qﬁ n(€.8n) : €} through a current fit Qf y at e =0, fitting e for each t and each step k with standard MLE
EN.tk» iterative updating Q’;}l = Qfy(enex), t =1,...,7+1, till convergence ink = 1,2,.... The resulting TMLE
of v, is defined accordingly as the substitution estimator Y(Qy)- Thus, a TMLE will also involve estimation of
the intervention mechanism go = (8o : t =0, ..., 7). To define such a TMLE, we need to determine the efficient
influence curve of the statistical target parameter, which will imply these least-favorable submodels. We refer to
our technical report van der Laan [62] for a derivation of the efficient influence curve, a study of its robustness,
and a detailed presentation of this general TMLE. (In the next section, we also showcase the formula for this
efficient influence curve.) Instead, in this article, we will focus on the single time-point longitudinal data
structure with 0; = (W; = L;(0), A; = A;(0), Y;) and present a complete self-contained analysis of the TMLE.

5 Characterizing the optimal asymptotic variance of the MLE in
terms of efficient influence curve

Due to our sequential conditional independence assumption, the log-likelihood of O, i.e. the log of the data-
density (eq. 4) of O, can be represented as a double sum over time-points ¢ and units i, and for each t, the
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sum over i consists of independent random variables, conditional on the past. As a consequence, under
regularity conditions, one can show that the log-likelihood is asymptotically normally distributed.
Therefore, we conjecture that we can establish so-called local asymptotic normality of our statistical
model, which involves establishing asymptotic normality of log-likelihood under sampling from fluctua-
tions/submodels P__,, i C M of a fixed data distribution P across all possible fluctuations. As shown in
van der Vaart [35], for models satisfying the local asymptotic normality condition, the normal limit
distribution of an MLE is an optimal limit distribution based on the convolution theorem [34]. In this
section, we informally demonstrate the importance of the efficient influence curve as the random variable
whose variance characterizes the normal limit distribution of an MLE of the target parameter for our semi-
parametric model for N — oo, and thereby characterizes the normal limit distribution of optimal estimators.
As part of this we use a template for establishing the normal limit distribution of the MLE, which can be
equally well applied to the TMLE.

Even though it is well known that a regular estimator based on sample of n i.i.d. observations is efficient
if and only if it is asymptotically linear with influence curve equal to the efficient influence curve, here we
are not interested in asymptotics when we observe n of our data structures that are indexed by this
parameter N (like observing an i.i.d. sample Oy, ..., 0, where each O; describes the data on N causally
connected units), but we are interested in the asymptotics in N based on a single draw of O. Therefore, we
think it is important to point out the asymptotic behavior of the MLE based on such a single OV when
N — oo, showing that the asymptotic variance of the MLE is still characterized by the efficient influence
curve. Our lesson is that our goal should still be to construct an estimator that is asymptotically normally
distributed with variance equal to the variance of the efficient influence curve, appropriately normalized,
and our proposed TMLE achieves this goal by using least-favorable submodels whose score span the
efficient influence curve.

Specifically, we show that, under appropriate regularity conditions required for an MLE to be valid (i.e.
all observables are discrete, so that MLE is well defined asymptotically), the asymptotic variance of a
standardized MLE v/N(yy — y,) of the target parameter equals the limit in N of NPO{D*(QO,gO)}Z, where
P(){D"‘(Qo,go)}2 is the variance of the efficient influence curve D*(Qo, go). The formal analysis of an MLE
requires understanding of an empirical process (Zy(Q) : Q) (specified below) uniformly in Q, which is
challenging due to the fact that, contrary to Zy(Qo), at misspecified Q, the time-specific components of
Zn(Q) cannot be represented as sums of independent random variables, conditional on the history at that
time. Since the TMLE is tailored to deal with the curse of dimensionality (and MLE is a special case of TMLE
by defining the initial estimator for the TMLE as the MLE, assuming this MLE is a well-defined estimator),
while a regularized MLE will not be asymptotically normally distributed when the observables are contin-
uous valued, the analysis of a TMLE is more important. Such a formal analysis is presented for the point-
treatment K = O case in a later section and much can be learned from that analysis for the purpose of
analyzing the TMLE or MLE for general K. Nonetheless, the template below can be used to establish the
asymptotic normality for both the MLE and also for the TMLE under the assumption that initial estimator
Qn, gn is consistent for Qq, go.

Let Qy be an MLE, assuming it is well defined for N large enough (i.e. all covariates are discrete). We
wish to analyze the plug-in MLE W(Qy) of y,. We can represent the efficient influence curve as
D*(Q,g) = D*(Q,h(Q,g),¥(Q)) for some parameter h(Q, g), as shown in our technical report. In our accom-
panying technical report we show that PoD*(Qn,h(go,Qn), ¥(Qn)) = (wo — ¥(Qn)) + Ry, where Ry is a
second-order term defined as sum of two terms Ry(Qn, Qo) and Ry((hn,ho), (Qn,Qo)). The first involves
square differences of Qy, Qo, while the second involves the product of differences h(go, Qn) — h(8o, Qo) and
Qn — Qo. We will assume that Ry = op(1/ VN ), which basically corresponds with assuming that relevant
parts of Qo are estimated by Qy at a rate faster than N~'/*. Since Qy is an MLE, and D*(Qu, h(o, Qn), ¥(Qx))
is a score at Pg, g,, we have that the MLE solves the efficient influence curve equation

D*(Qw, h(go,Qn),¥(Qn)) = 0.
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We also have PyD*(Qo,h, ) = O for any h, as explicitly shown in our technical report. This allows us to
establish a first-order expansion of the standardized MLE:

(¥(Qn) — wo) = — PoD*(Qn, h(go, Qn), ¥(Qn)) + Ry
=D"(Qn, h(go0,Qn), ¥(Qn)) — PoD*(Qn, h(go, Qn), ¥(Qn)) + Ry.

Thus under the assumption that Ry = op(1/ \/ITI), it follows that the asymptotic distribution of
VN(¥(Qy) — ¥(Qo)) equals the limit distribution of

Zn(Qu)=VN(D*(Qw, h(g0, Qn), ¥(Qx)) — PoD*(Qw, h(go, Qn), ¥(Qw))).

A non-trivial analysis as carried out for the case = 0, and using appropriate conditions, can be used to
establish that Zy(Qy) — Zn(Qo) = 0p(1), so that Zy(Qy) behaves as Zy(Qo) = vN(D*(Qo,ho,yq)—
PoD*(Qo, ho, yy)). Under these assumptions, it then remains to investigate weak convergence of Zy(Qo) as
N converges to infinity.

In our technical report, we establish the following representation of the efficient influence curve:

D*(Qo,8) = %;D};(o)(Q 0)(Li(0)) + NZZ Z i = (C5) zl:Dl,t,m(LI(t)v Cty);
where
Ditm = E(Y(D|Lm(t) = Li(t), Cr, = Ci) — E(Y(D[CE, = Cy),

R} (€) = Pgy g (Chy =€), hem(C) = Po,g,(Chyy =), and he =%, him. Here, we assumed that L;(0),
i=1,...,N, are independent. Thus, we can represent the efficient influence curve as

* l >k
where we defined

D;(Qo, 80)(Lj( NZ e (Cty) ZDltm Ctj)-

Note that D;(Qo,80) has conditional mean zero, given C[LJ. In order to claim that D;(Qo,g0) has finite
variance one needs that the summation over [ reduces essentially to a finite sum due to Ly(t) being
conditionally independent of Y (1), given Cﬁm, for most m.

This yields the following representation (suppressing the dependence of D* on Py):

= ﬁZDLI(())(Li ZD C%z
i

where D; is a function of L;(t) and Cf; with conditional mean zero, given Cf;. Due to factorization of the
likelihood in terms of [],; Q¢(Li(t)|CE;) and that D; is a score of Q;, it follows that Zy(Qo) is an orthogonal
sum over t,iin L3(Po), so that the variance of Zy(Qo) is given by

VARZy(Qo) = ZPODL (L ZPO{D* (1), C) ).

We have

Po{D; (Li(t), C1)}? = Lm 0,0 Qo0 (0.

Thus, the asymptotic variance of Zy(Qp) is given by limit of

7,=070) + Jim sz C(O{Di‘(l(t%C(t))}zéom(l(t)\C(t))ﬁt(C(t)%

N—oo
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where h; = %Zi h: i, and it can be expected that h; converges to a fixed function as N — oo. Here we defined

Fo = Jim 13" Puy o) (Li(0))”
1

Note that we also have that aé = limy_.o NPO{D*}2 equals N times the variance of the efficient influence

curve D* = D*(P,) for the target parameter ¥ at Py. This demonstrates that the asymptotic variance of

Zn(Qo) (and thus the asymptotic variance of the standardized MLE +/N(¥(Qy)—w,) is given by

0% = limy_., NPo{D*(Po)}°.

This does not demonstrate the asymptotic normality of the MLE yet. For that purpose, we note that
Zy(Qo) = Zroyn + D¢ Znt(Qo), where Zy(Qo) = I/JIVZiD;‘Yi(QO), with D;; = Df(Li(t),Cﬁi), is a sum of
independent random variables L;(t), conditional on A(t —1),L(¢t — 1). As a consequence of the latter, it
follows that EZy, (Qo)Zns,(Qo) = O for t;<t, (i.e. just condition on A(t, — 1), L(t, — 1), making Zy,-fixed,
and use that E(Zy,(Qo)|A(t, — 1),L(t, — 1)) = 0). Using CLTs, we can therefore establish that for each
t=0,...,7+1, Zy(Qo) converges weakly to a normal distribution Z;(Qo). Under weak regularity condi-
tions, this also implies that E(Z; (Qo)Z,(Qo)) = O for ¢;<t, and thus that these t-specific limit normally
distributed random variables Z;(Qo) are pairwise independent. As a consequence, the sum across t con-
verges to a normal distribution with variance equal to the sum of the t-specific variances, and thus o3 as
defined above. To conclude, under appropriate regularity conditions, we will have that
VN(¥(Qn) — vo) ~ Zn(Qo) converges weakly to N(0,d3)

This demonstrates that the efficient influence curve characterizes the limit distribution of the maximum
likelihood estimator, and thus indeed characterizes an asymptotically optimal mean zero normal limit distribution
with variance equal to the asymptotic variance of the “efficient influence curve empirical process” Zy(Qo).

6 The TMLE of causal effect of single time-point intervention

We will present the TMLE for the point-treatment intervention case (i.e. ¢ = 0). This case is of great interest
itself, extends estimation of a causal effect of a single time-point intervention to dependent data of the form
studied in this article, and thereby covers important applications. In the next section, we will formally
analyze this TMLE. The tools of the proof will be generalizable to the general r case. In addition, the single
time-point case allows for a TMLE that is actually double robust in the sense that it remains consistent if
either Qp or a hy(Qo, 8o) is consistently estimated, while the efficient influence curve for the general case
with 7>0 appears to not satisfy such a double robustness result as is evident from the efficient influence
curve representation provided in our technical report van der Laan [62].

6.1 Structural equation model

Using notation W; for the baseline covariate L;(0), and A; for A4;(0), the structural equation model for the
7 = 0 case reduces now to

W; = Li(0) = fw,(Uw,)
A; = Ai(0) = fa(c} (W), Uy,)
Yi = Li(1) = fr(c/ (W, A), Uy,

i=1,...,N,

where the fixed-dimensional summary measures c/(W) and c! (W, A) are determined by W = (Wi, ..., Wy)
and (W,A) with A = (4,,...,Ay), respectively. We assume throughout that A is discrete valued, so that
conditional densities of A, given W, are just conditional probability distributions: this is by no means a
necessary condition, but simplifies presentation. The “friends” F; of subject i may be included in
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Wi: F; C W;. The function ¢!(W) includes W;, beyond summary measures of (Wj:j € F;) and might be
defined as c(W) = (W;, (W; :j € F;)), assuming that |F;| <K< oo for some fixed K, so that c}(W) can
indeed be defined as a fixed multivariate dimensional function not depending on N. Similarly, the function
c/(W,A) includes (W;,A;) beyond summary measures of ((Wj,4;):j€F;) and might be defined as
(W, A) = (W;, A, (W, 4)) : j € F;)). We also use the short-hand notation C} = ¢/ (A, W) and C/ = c(W).
The above structural equation model assumes that A; and Y; are the same function of this dimension
reduction (W;, (W : j € F;)) and (W;, 4;, (W}, 4; : j € F)), respectively, for each i, so that two units with the
same number of friends who have the same individual covariate and treatment values, and also have the
same values for the covariates and treatments of their friends, will be subjected to the same conditional
distribution for drawing their treatment and outcome. In our asymptotics theorem in the next section, we
treat F;, i=1,...,N, as fixed, so that also the probability distribution of O and the target parameter y,, are
indexed by the flxed value of (F;:i=1,...,N).

In addition, we assume that cond1t10nal on W, (1) (Uy, Uy,),i=1,...,N, are ii.d. and (2) for each i, Uy, is
independent of Uy,. In one model, we assume that Uy,,i = 1, ..., N, arei.i.d.: note that (since fy, is allowed to be
different for each i) this corresponds with assuming that Wi, ..., Wy are independent, but not necessarily
identically distributed. We will highlight the case that this latter assumption is considerably weakened, which
will be made explicit in our theorem. These independence assumptions on the U;’s imply that (1) Wy, ..., Wy are
independent (or more generally, their dependence is weak enough), (2) conditional on W = (W,..., Wy),
Ay, ..., Ay are independent, and (3) conditional on (W,A), Y;,..., Yy are independent. Thus, all the depen-
dence between units is explained by the observed pasts of the units themselves and of their friends.

Causal quantity: Let g* be a user-supplied conditional distribution of A, given W, and let us denote the
random variable with this distribution with A, = (Ay., ..., Ay.). For simplicity, let us assume that under this
g*A;, are conditionally independent, given W, and that g (4;.|W) = g* (Ai,*|CiA’*) for a common conditional
density g* and summary measure Cf’* = cf’*(W). Our goal is to estimate the mean of the counterfactual
outcome of ¥ =1/NY Y, Y; under the stochastic intervention g*. Let Y = (Yg;:i=1,...,N) be the
counterfactual indexed by a stochastic intervention g* on A and Y- = 1/N YV, Y,.;. The causal quantity
of interest is defined as ¥¥ (Pyway) = Epy ., Ye'» Which is a parameter of the distribution of (U, W,A,Y)
modeled by the above structural equation model. In this expectation defining ¥¥, we actually condition on
the vector F = (Fy, ..., Fy) of sets of friends.

Identifiability from observed data distribution: We observe O = (0, ..., Oy), where O; = (W;, 4;, Y;). Due
to the above assumptions, the probability distribution of O is given by:

N
H (AilchHar(vich), (7)

where g(-|c*) is a common (in i) density for A; for each value c#, and Qy(-|c¥) is a common density for ¥; for
each value c?. Our model also implies a model Qy on the distribution Qw of W, such as the model that
assumes that all W; are independent.

Since our assumptions imply the randomization assumption stating that A = (4, ...,Ay) is indepen-
dent of Uy = (Uy, :i=1,...,N), given W = (W;,..., Wy), the post-intervention probability distribution P,
of (W,Yg) = (W;,Yie- :1=1,...,N) is identified by the following G-computation formula applied to the
probability distribution P of O:

N
Py (W.A.,Y) w) [T Qr(viIC)g (A |C) (8)

i=1
=Ps' (W,A,,Y),
where Qy(-|C/*) is defined as the conditional distribution of Y;, given c!(A., W) with A in the parents

¢/ (A, W) replaced by A.. We denoted the probability distribution of on the right-hand side with P¢", which is
thus always defined as a parameter of the data distribution P of O for a P in the statistical model for
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P = P(Py ) implied by our causal model for the underlying distribution Py . The random variable with
distribution P#" is denoted with (W, A,, Y8").

Statistical model, statistical target parameter, and statistical estimation problem: Let M be the
statistical model for the data distribution P of O defined by (eq. 7) in which Qy € Qw for a specified
model Qy, and the common g € G for some model G, while Qy is unspecified. Thus, the density of O
factorizes in three factors:

=

N
P(0) = Qw(W) [ [ Qv(vilC) [ [ &cailch),
i=1 i=1
where Qy € Qw, Qy is unspecified, and g € G. This defines the statistical model M.

Let the statistical target parameter mapping ¥ : M — R be defined as W(P) = Eps Y8'. Under the stated
causal model and identifiability assumptions under which P = Pp,,,,, we have ¥(P) = pF (Puway), SO
that in that case W(P) can be interpreted as the desired causal quantity. Our goal is to construct an estimator
of w, = ¥(Py) based on O = (Oq,...,0n)~Py € M, which defines the statistical estimation problem.

Let Q(CY) = [yQy(y|C¥)du(y) be the conditional mean under Qy. Note that E(Y;|A, W) = Q(CY). The
target parameter ¥(P) only depends on P through Qy, and Q:

Yo = Eo Ygx

=¥ (Qo, Qw,)
1 _
ENZJ QO(CJY((LW))g*(a ‘ W)QW,O(dW), (9)
=1 Jaw

where Qwo(dw) = Qwo(w)duy (w) denotes integration w.r.t. measure implied by density Qwo w.r.t. some
dominating measure ;. If we want to emphasize that W(P) only depends on P through Q(P) = (Qw, Q), then
we will also use (and abuse) the notation ¥(Q) to indicate the mapping from Q into the desired estimand.

6.2 Efficient influence curve

In our technical report van der Laan [62] we established a general representation of the efficient influence
curve of E Yg* for the longitudinal data structure and the model 9y that assumes that the baseline covariates
L1(0),...,Ly(0) are independent, and it is given by:

N
g = Z{Eam 11/(0)) — Eag V)

e i () { Bo (ViLn(6) = Lj0),Chy =€) ~ Eo (¥ICh, = €y -

t=1jm

For a different model for the covariate distribution of L(0), only the first component would be different. In
our case, we have r = 0, giving the following two terms:

N
g = Z{EQ,g’(ﬂLj(O)) —Eqg¢ Y}

=1

N N h )
+Z ; Z ) {EQg (Y[Ym = ¥, Gy = CJ'Y) — Eqg (Y|Cy, = CJ'Y)}7

j=1 m:l h

where I, (c) = Pog (CY = ¢), hm(c) = Pog(CY =c), and h =437 hy(c) are densities w.r.t. some appro-
priate dominating measure x. We have, using short-hand notation E, for Eq-,
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Eog (Y|Ym,CY NZE (Y;|Ym, CY) +1/NYp,
j#Fm
:—ZE (Y| Yo, W, A)| Y, CY) +1/NYyp
ﬁﬁm

- —ZE E.(Yj|W,A)|Ym, CY) + 1/NY,,
]¢m
:—ZE Q(C/ (W, A))|Yn, CY) +1/NYp,
j#m
and
P(W,A,Yy)
(Ym7C )
Ym|W,A)P(W,A))
P(Ym|CF)P(CY)

P(W,A|Yy, CY) =I(ck (W,A) = CY)

— (et w,4) = ciy P

:I(C%(W,A):CY) (Y ‘CY) ( ) ))

™ P(Ym|CR)P(CR)
= P(W,A[Cy),
and thereby
E*(Y|Ym, CY) = ZE* cf (W,A))|CY) +1/NYp,.
)sﬁm
Thus,
E*(Y|CY) = ZE Y(W,A))|CY) +1/NQ(CY).
]#m
Therefore,

{Eag (YIY(m) = Y(),CL, =€) — Eag (¥IC, =€) } = 4% — Q(C))},

which does thus not depend on m.
This proves the following representation of the efficient influence curve in the case r = 0O:

) =", [{Eog (YIL(0)) — Eqg Y}
1 h* -
e Eh{y-aehy.

We will state this result and the double robustness of the efficient influence curve in the following theorem.

Theorem 1 Consider the model M in which Wy, ..., Wy are assumed to be independent. The efficient influence
curve D*(P) at P € M of target parameter ¥ : M — R is given by
1 h(g*,Qw)(CY) AlpY
Dy, , == L2(Y; — Q(C)),
Z (Qw,Q Zz 1Nthw)( )(’ Q(C))

= Djy (P) + Dy (P)

where o
Dy, (Qw, Q)(W;) = Eqg- (Y|W;) — Eqg-(Y)

NZJ g (aw_i, W )é( (a,w_i, W;)) HQm w) —

) 1 Jaw—i 1#i

= NZ{E(ng"WVI) —EmE(ng*|W,~)}7
j=1
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N
hi(g, Qw)(c)= J ) g(aw) [ ] Qw(dw)) = Ewgi(c|W),
i1

aw,c! (aw)=c

and gi(c|W = w) = Po(c/ (A, W) = c|W = w) is the conditional probability that cf(A,W) equals c, given
W =w, which is a probability determined by g(A|W). In addition, h =43 h; and h* =13k with
hi = hi(g*, Qw) are densities defined w.r.t. a dominating measure u and it is assumed that h* /h is uniformly
bounded on a set that contains with probability 1 C! for all i.

Double robustness of efficient influence curve: Represent the efficient influence curve as D*(Q,Qw,g) =
D%(QW7 Q) + D?{(QW7 Qvg)' We have

PoDjy(Qw,Q) = 0,

PoDy(Q, Qw.0,80) = wo — ¥(Q, Qwyo),
so that
PoD*(Q, Qw.0,80) = wo — ¥(Q, Qw o).

Since the efficient influence curve at P, depends on g, only through h(go,Qwo), we have that if
h(g,Qw,o) = h(go, Qw,), then

PoDy(Q, Qw,0,80) = wo — ¥(Q,Quw.o),
and thus
PoD*(Q,Qw,0,8) = wo — ¥(Q, Qwyo).

Let PY denote the conditional distribution of O, given W, and let Qw n be the degenerate distribution of W that
puts mass 1 on W. We also note that

Py'Dy(Q,Qw;80) = ¥(Qo, Qwn) — ¥(Q, Qw ). (10)
We also have that for all g,
PoDy(Qo,Qw.8) =0

Explicit proof of double robustness: Even though our general theorem in the technical report can be
applied to this single time-point case and this double robustness result follows by noting that the second-
order term R(Q, Qo) in that theorem equals O, here we provide an explicit proof of the stated double
robustness for this single time-point case. Firstly, we have

EoDW (Qw,0,Q)(Wy) NZJ *(alw)Q (a w))Qw o(dw) — ¥(Q,Qwo)

We also have

EOZD (Q,Qw,,80)= NZ 07 CY) - Q(¢))

1 ns(c) ~

_ Jﬁ;;(c)(éo — Q)(0)dul(c)

=y, — ‘P(Q, Qwo)-
This derivation with P, replaced by P}/ also establishes (eq. 10).
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This proves that with D; = Dy, + Dy, D* =}, D}, we have
Eo Y D;(Qw.0,Q,80) = 0+ wo — ¥(Q, Qw.o).-
i

This proves the robustness w.r.t. misspecification of Q. In addition, it follows trivially that
EoD*(Qo, Qw.o,8) = O for any choice g.

6.3 Double robustness for an inefficient influence curve

In the following lemma, we present an inefficient influence curve and establish its double robustness. This
could be used to construct an inefficient TMLE analogue to the efficient TMLE presented below.

Lemma 1 Suppose CY(A, W) only depends on A, W through (A;, W;), ((4;, W) : j € F;). For notational conve-
nience, in this lemma let F; include i itself: i€ F.. Define the conditional probability densities
g4 :jeFi|W;:jeF;) and gio(4; : j € Fi|W; : j € F;), and define

(@ 1810(CY)
Dia(@ Qwo o) = . e
? 1

(Yi—Q(c)).

Let Dj; = Dy, + Dy, and D} =3, D;,. We have
EoD; (Qw o, Q,go) =VYo— ‘F(Q Qw.o)-
We also have EoD;(Qw 0, Qo,8) = O for all g.

Proof: We have

.= 1 gifo(ciy) = Y A Y
Eo ZDy,.(Q, Qw,0,80)= NZEO 2o(CT) (Q(C) —Q(C))

1 J gol@:jeFR|W:jeFR)
N .

N E ; : Q — Q)(aj,W;:jeF;
zi: ° :jeFigi,O(ajI]€F1'|VV]~:)€F1.)( o —Q)(a;, W :j € F)
gio(aj:jEF|W;:jEF)
1 . ) ) ~ ~ ‘
:NZEOJ gi,o(aj :jEeF|W;:jeF)(Qo—Q)(a;,W;:jeF)
i

aj:jeF;

=wo — ¥(Q,Qwyo). O

6.4 Estimating equation approach

Consider the efficient influence curve and let us represent it as an estimating function in :

N

D*(Q.8.p) = S (D (Q) — v) + Dy, (Q. 80),

i=1

where now Dy, = Eo(Y$'|W;). We will represent it as D*(Q, h, ) to stress that it only relies on (Q,g) through
(Q,h(Q,g)). We have EoD*(Q, ho, w) = w, — w, so that D* is a targeted estimating function for fitting y,. Given
an estimator hy and Qy of ho and Q, respectively, based on the data O, we can estimate y with the solution of

0 = D*(Qn, hy, w)(0).
Since D*(Q, h, ) = D*(Q, h) — Ny, this solution is given by
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1Y B
YN = NZ{D* (Qu) + Dy, (Qn, hy)}-
p

This estimator, as the TMLE presented below, is double robust w.r.t. misspecification of (ho, Qo) and is
asymptotically efficient if both are estimated consistently, assuming the required regularity conditions hold
(as presented in our theorem below). Since it is not a substitution estimator, it will be more sensitive to
practical violations of the positivity assumptions due to ﬁ,*v /hy being large.

Remark regarding the balance of the two contributions in the efficient influence curve: The factor 1/N
in Dy might come as a surprise in relation to Dj,. Let us consider the case that g*(a|lw) = [T, 8f (ailwy). To
intuitively understand that this efficient influence curve does indeed represent a balance between these two
contributions, we note the following:

> Dy, = {Eq(Y¢ W,
T
_Z{NZEQY*W) (Q)}

i=1 j=1

-¥(Q}

N N
NX;Z{I i € F)(Eq(Y; W) — %(Q) },
=
where ¥(Q) = 1/N >, ¥;(Q), and ¥;(Q) = EoY;". Thus, indeed the contribution }; Dy, is of the same size as
function of N as ZiD*{,i, under the assumption that |F;| < K< oo for some K< oo, which is indeed an
assumption we made to establish v/N-asymptotics.

6.5 TMLE

Recall the target parameter representation ¥(Qy, Q) defined by (eq. 9).
Let Qu be an estimator of Qy, where Qo(c) = Eo(Yi|C! = c). Suppose Y; € {0,1} or that ¥; is continuous
with values in (0,1). This estimator Qy could be based on the log-likelihood loss function

~L(Q)(0 Zlog{ —aeh)
. Then we can

For example, suppose that we assume a logistic regression model Qy(c) = W
estimate 8 with the standard maximum likelihood based logistic regression estimator:

N
on = argmax 3 Slog{Qi(C1)" (1 - Qu(C) .

More generally, one can also use cross-validation based on this loss function and thereby estimate Qo with
an L(Q)-based super-learner. The super-learner takes as input a library of candidate logistic regression
estimators (including machine learning algorithms) and uses cross-validation to select the optimal
weighted-combination of this library of estimators, where the weight is obtained by minimizing the cross-
validated risk based on this loss function. Thus, if one uses V-fold cross-validation, then one divides up the
sample (Y;,CY), i=1,...,N, in V-subgroups, one defines one of the subgroups as validation sample, and
the remainder as training sample. One then trains the jth algorithm on the vth training sample, and one

evaluates the v-specific cross-validated risk — 3y, 108 Qu.1v(n)§(CY - Qu. 170§ (CY N for this jth
algorithm. This is done for each choice of sample split v € {1,...,V}, and the V cross-validated risks are
averaged, giving a single cross-validated risk for the jth algorithm. One could now select the best choice jy
by selecting the algorithm that has the smallest cross-validated risk. The estimator Qy, is referred to as the
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discrete super-learner. Similarly, one can define a candidate algorithm Qy, = )Y 0;jQn; for a vector of

weights o and select the optimal choice ay that minimizes the cross-validated risk of QN,H over the choice a.
This estimator Qy ,, is referred to as the super-learner. The estimator could also be based on a squared error
loss function
N
L(Q)(0) = > (Yi - Q(C]))*
i=1

Let Qw y be a nonparametric maximum likelihood estimator of Qy € Qy, thus respecting the model Qy
for the joint distribution of Wy, ..., Wy. For example, if W; are i.i.d., then we would estimate this marginal
distribution of W; with the empirical distribution of (Wy,...,Wy). If Wy,..., Wy are only known to be
independent, then we would estimate each marginal distribution of W; with the discrete distribution that
puts mass 1 on the singleton W;, i = 1,..., N: note that this empirical distribution is equivalent with the joint
distribution that puts mass 1 on (Wy,. .., Wy). If the model Qy is larger than the independence model, then
we would still estimate Qw with this degenerate distribution Qw y.

Given the estimator Qy and Qwny of Qo and Qw 0, one could now define a corresponding plug-in
estimator ‘P(ON, Qw ). However, the TMLE differs from this estimator using a targeted version (_2}(, of Qy
instead.

Let gy be an estimator of gy, and let gy be the corresponding estimator of the conditional distribution go
of A, given W. Given the model assumption g(A|W) = [[;8(Ai|c?(W)) for a common conditional density g,
this estimator can be based on the log-likelihood loss:

N
L(g)(0) = - > logg(AilCc).

i=1

As explained above, this could be a simple logistic regression estimator or a super-learner based on this loss
function based on the sample (4;,C} = c}(W)), i=1,...,N.
Given gy, Qw., and Qy, let {Qn(e) : €} be a target-parameter-specific submodel through Qy defined by

LA - B(g*aaWN)
LogitQ = LogitQy + em—"——+,
gitQn(e) gitQy + e (e Qwa)

where hy(c) = £ 3N, hin(c), with hiy(c) = Po, g, (cf (A, W) =), and, similarly, hy(c) =% 5%, hiy(c),
with ki y(c) = Poy e (cf (A.,W) = c), all defined as densities w.r.t. a dominating measure .
Let

&' = arg meinL(ON(e))(O)

be the maximum likelihood estimator, which simply involves running univariate logistic regression on a
pooled data set with outcomes Y; and covariate % (Ciy ), using as off-set Logit Qy. This defines now an

update Qi = Qn(€Y).
The TMLE of v, is defined as the corresponding plug-in estimator

yy = ¥(Qy, Qw.)
We note that this TMLE solves the efficient influence curve equation
D* (Q?Vy QW,N7 8N, l/’;])(o) = 07

which is a key ingredient in our proof of asymptotic normality of yjy. Or, using the notation
hy = h(Qw.n,gn), and D*(Q, Qw, h, w), we can write this as

D*(Qy. Qw. b, yy) = 0.
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Specifically, being a substitution estimator ¥(Qy) and using an NPMLE of Qw,o, we have
> i Diy.(Qy) = 0, while the targeted update Qj of Qy guarantees that

ZD;@XH h(Qwn,gn)) = 0.

6.6 The clever covariate

Computation of the above TMLE requires the construction of an estimator hj/hy of the clever covariate
fzg /ho (density ratio). This estimator needs to be evaluated at C! foreachi=1,...,N, in order to compute
the TMLE update Qj. In addition, since ¥(Qw v, Q}) involves integration of Qj (CY (a*,w)) over any point in
support of W, A, w.r.t. product measure Qw y x g*, we also need to evaluate fzj(, /hy at any such point. One
possible estimator is a plug-in estimator
hy
hy

_ Zi Poyye (CiY(A’ W) = C)
Zi PQW.N~gN (CIY(A*’ W) = C) 7

obtained by plugging in our empirical counterpart Qw n for Qw o, and an estimator gy of go. Let us consider
the case that Qw y puts mass 1 on W. In that case, this simplifies to

i Jo 1 (@, W) = c)g* (a|W)
3o Jo 1(cf (ar, W) = c)gn (@l W)

In addition, one can use that ¢} (a,w) = (aj,w; : j € F;) so that for each i, the integral only integrates over
(aj : j € F;), where we used the convention that i € F;. Nonetheless, this type of implementation can easily
be quite computationally overwhelming.

Therefore, we use this subsection to formulate insights about the clever covariate that will allow a much
easier implementation of an estimator of this clever covariate. The basic idea is that we will directly estimate
ho instead of indirectly through plugging in estimators of Qy and go. These insights are formulated in the
following lemma, where we consider the case that C/ = (W}, 4; : j € F;) with i € F;.

()

Lemma 2 We note that hy = 1/N > hio is a mixture of densities h;o of C! (living in a single space Cy common
in i) and thus represents a density of a random variable which we will denote with CY € Cy. Suppose

CY = (WJF ,A]? :j=1,...,k) for some k, representing covariates and treatment values of the subject and its
friends.
e We have
N
hy = arg mf?XEO > logh(cy), (11)
i=1

where we maximize over a set of densities of CY that contains the true hy.
e The density hy can be factorized as

ho(Wi,AS :j=1,.... k) = 8§ (A« jIWF : ) Q5 (W ),

where g¢ is the conditional density of (4; : j), given (W : j), and Q% is the marginal density of (Wf :j), under
the joint density hy.
e We also have
N
g5 =argmaxEo Y logg®(4;:j € FilW;:j € F), (12)
& i1

where we maximize over a set of conditional densities of (A5 : j), given (W : j), that contains the true g, and,
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N
Qiy o = argmaxEy > log Qjy(Wj:j € F). (13)

w i=1

* By the same arguments, hy = gi°Qjy o, Where iy is a density of random variable C'* = (W;™", A7 : j),

h = arg m;?XEPQo-g* Zlog h(C{™), 14)

N
i=1
g:° is the conditional density of (A" : j), given (W;™" : j), and Qf, , is the marginal of (W™ : j), under the joint
density hy. The latter equals the Qj, , defined above as the marginal density under hy.

e As a consequence, we can conclude that

ho vy _ 85 oy
(€= (15)

Thus, the take home point of this lemma is (eq. 15) teaching us that we only need to estimate g;° and g§,
where g§ can be fitted as if we are estimating a conditional density of (AJ? :J), given (Wy : j), based on data
Ai,(4:jeF)), (W;,(W;:jeF;),i=1,...,N, as if these N observations are i.i.d. That is, an important
practical implementation is to fit g5 with maximum likelihood based estimation, treating C! asi.i.d., as if we
are fitting the common conditional distribution of (4;:j € F;), given (W :j € F;). For example, if 4; is
binary, |F;| = k, then such a conditional distribution could be factorized in terms of a product of k binary
conditional distributions. Each of these binary conditional distributions can be fitted with logistic regres-
sion, possibly incorporating adaptive estimation. The asymptotic consistency of such a maximum likelihood
based estimator, and the validity of cross-validation ignoring the dependence, would rely on C} only being
dependent on CjY for a finite (universal in N) number of j#i. Such an estimator yields an actual fitted
function gf, that is easily evaluated at any required value.

Suppose now that gy is known, as in an RCT. The above-mentioned approach would ignore the
knowledge on gy and is thus not necessarily appropriate. If gy is very simple, as if often the case in an
RCT, then one might simply be able to show that g§ is known (e.g. if the randomization probability for A;
does not depend on covariates) in which case there is no need to estimate g§. In such cases, one could also
use a simple marginal empirical distribution for this conditional density g§ in the estimation procedure
outlined in previous paragraph. Consider now the case that g, is known, but that it is a quite complex
function. In that case, one could decide to simulate a very large number of (W, A) from (Qw n,80) and use
an adaptive maximum likelihood based estimator of g based on this large sample using the method
presented in previous paragraph. This maximum likelihood based estimator would obviously utilize that
it is known that gy only depends on certain covariates, so that the estimator can be simplified as much as
possible. That is, we use the above-described estimation procedure for estimation of g§, but now applied to
a very large data set simulated from the distribution of (W, A) under Qw n x go. In this manner, one can still
obtain excellent approximation of the true g§ that fully utilizes that we know the true go.

Let us now discuss estimation of gj°. Given that we know g*, as above for the case that g is known, one
might either be able to determine gi¢ (e.g. if the randomization probabilities of A;. do not depend on
covariates), and for complex g*, we can simulate a very large number (W, A,) from (Qwn,8*), and use an
adaptive maximum likelihood based estimator of g;° based on this large sample using the above-described
estimation procedure.

In this manner, we obtain a functional form that approximates g§ and g;¢ well (by utilization of g, g*
being known), and that one can evaluate for any C¥. The TMLE (_QI*V can now be computed, and the target
parameter evaluation ‘I’(O}*\,, Qw) as well.

Suppose now that C} = (4;, A, (W : j € F;)), where A€ is a summary measure of the treatment nodes
(4j : j € F;) of the friends of subject i. In this case, by a simple generalization of the lemma above, it follows
that g5 only involves fitting the conditional density of (4;, AY), given (W : j € F;), treating these i-specific
data points as i.i.d., as above. Thus, a reduction of the dependence of C,-y on the treatment nodes (i.e. a
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model assumption in our model) would result in a significantly less variable estimated clever covariate
fz(*) /ho, and the above method can still be applied. For example, one might feel that it is a reasonable
assumption to assume that the mean outcome for unit i depends on A, W only through the treatment
node for subject i and the proportion of treated among the friends of i, beyond dependence on all the
covariates.

7 Asymptotic normality of TMLE of counterfactual mean of
single time-point stochastic intervention

In this section, we state a theorem establishing the asymptotics of the TMLE of y, under conditions.
Subsequently, we discuss the implications of this theorem regarding statistical inference in terms of
confidence intervals. The proof is deferred to the Appendix. In the Appendix of our technical report, we
demonstrate that our proof is generalizable to the general longitudinal data structures. In this section, we
define F; to include i itself: i.e. i € F;.

Theorem 2 Consider the statistical formulation of data O = (0Oy,...,0n)~Py € M, 0; = (W}, A;, Y3), statistical
model M, and statistical target parameter ¥ : M — IR, all defined conditionally on the network-profile
F = (F,...,Fy). Recall that this network-profile F implies that Y; only depends on (W,A) through
(W;,4; - j € F;) and that A; depends on W through (W : j € F;). Suppose 8o € G, and that Qw o € Qw satisfies
an independence assumption specified below, and Qy o is unspecified. A probability distribution of O is thus
parameterized by Qw, g, Qy as follows:

lN_[ (A cHa(y:|ch), (16)
i=1

where C! = c/(A,W) € C¥ ¢ R%, CA = cA(W) € C* ¢ R®%, Qy(-|c) is a density for Y for each possible c € C¥,
but is otherwise unspecified, g(-|c) is a density for A for each possible c € C4, and Qw € Qy. This defines the
statistical model M for the probability distribution of O.

For a specified stochastic intervention g*, the target parameter ¥ : M — R is defined by

W(Py)= Ep, Y = ¥(Qo,Qwo)

1 N N Y *
-3 j Qolc! (a,w))g" (alw)Quw o(dw),
where Quo(w) =Po(W =w) (defined as density w.rt. some dominating measure), Quo(dw)=
Qw, o( Yduy (W) denotes integration w.r.t. the measure implied by Qw o, Qo( Y(A,W)) = Eo(Yj|A, W), and
Qo(c j yQy(dy|c) is the mean under density Qy(-|c).

Let D*(Q Qw, 80)(0) be the efficient mﬂuence curve of ¥ as defined in Theorem 1:

D*(Q,Qw,8) = Z{D* (Qw, Q)(W:) + Dy,(Q. Qw, 8)},

where

1h(g",Qw)(C))
N h(g,Qw)(CY)
and Dy, = E(Y®'|W;) — ¥(P). We will also denote these functions with D*(Q,Qw,h) and Dy (Q,Qw,h) to
emphasize that they only depend on g through h. We use the definitions of ho(c) :ﬁzl{i 1hoi(c),
Ry = %50 1y i hoi(€) = Pgy e (€ (A, W) =€), g (c) = Py gy, (¢l (A, W) = ), defined as densities w.r.t. a
dominating measure u, and let ho = h;g /ho. '

Dy(Q,Qw.8) = (Y; — Q(¢))),
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Let Qwn be the distribution that puts mass 1 on (W,...,Wy). Consider the TMLE
vy = ¥Y(Qy) = ¥(Qy, Qwn) defined above using gy in hy = h(gy, Qwn). As shown above, this TMLE solves
D*(Qy, Qww, hy)(0) = 0.

Note that le is a plug-in estimator of ﬁo implied by gy € G and Qw y.

We make the following assumptions:

Entropy condition: Consider a class Fy of functions ¢¥ — Q(c") on a set in C¥ CIR? that contains c¥ (A, w)
with probability 1. Assume that Qj; € Fy with probability 1. Consider a class F, of functions ¢! — h(cY) on
cY cRY. Assume that flji, € Fp, with probability 1. Define the dissimilarity measure on the Cartesian product of
F = .7'—y X .7:}7 X G:

cec¥ cec¥ cec?

d((h1,Q1,8), (h,Q,8)) = maX(Suphl —Hl, sup|Q — Q| sup|g: — §|>.

Assume that there exists some n>0, so that [ \/log(N(e, F,d))de< oo, where N(e, F,d) is the number of
balls of size ¢ w.r.t. metric d needed to cover F.

In particular, this assumption holds if supyer, || 0 ||, <00, supser, || 0 |l; <00, supges || & Il; < oo,
where || 0 || is the uniform sectional variation norm as defined in Gill et al. [41] and van der Laan [63].

Universal bound: Assume supr ¢ |f|(0) < oo, where the supremum of O is over a set that contains O with
probability 1. This assumption will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Uniform consistency and rate condition: Assume d(hy, Qj,8x), (ho, Q*,80)) — O in probability as N — oo,

Rvi=- | (Z—N - Z—) (@ — 0)(©ho(0)du(c) = 0p(1/V/A)

and

Rua = [ {7 - 2b L e — (@0 — @) @hadtc) = on ).

Asymbiotic linearity condition on gy:

LZZM( - Q)©ho(e)du(o)

ZfAl JrOp 1/\/_)

where f; ;(0) only depends on O through (A;, (W; : j € Fi)), and Eo(f; ;(0)|W) = 0.
Positivity condition: Assume

sup (8" Qwo) ()

cec” h(8o,Qw o)
Universal bound on connectivity between units: Assume that there exists a K < co so that sup; |Fi|< K for
alli=1,..., as.

Universal bound on dependence of W-distribution, and stochastic intervention: Assume that
there exists a K< oo, so that g*(A;j:j € F;|W) only depends on (W;:j € R;) with max; |Rj|<K, and, for
each i, W; is independent of (W;:je S5) with max;|S;| <K, where Sf={j:j¢S;}, and K does not
depend on N.
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First-order approximation: Then,
Vi~ Vo = fviXNlj{ﬁw) — Pofi} +0p(1/VN),
where
fi=Dy(Q",Qw.0,80) + fa; + fivi + fir

fly (W) = J Q' (¢! (a, W))g* (alW)

2 hiy R s
fwi(W) = { W ;‘l—zhi(go’ QW,N)}(C)(QO — Q")(c)ho(c)du(c)
c 0 0

hin(c) = | I(c{ (a,W) = c)g" (a|W) = g; (c|W)

a

hi(go, Qu)(c) = | I(c](a, W) = c)go(alW) = goa(c|W).

a

Weak convergence of first-order approximation: We can orthogonally decompose

fi(0) — Pofi = fri(0) + fai(0) + fwi(0),
where

fri=Dy; — Eo(Dy;|A, W)

:E_S(cmyi —Qo(c)))
0

fai = Eo(Dy|A, W) — Eo(Dy W) +fy;

= e - e

0
- j H—f(c)(éo Q) (©)goslclW) + £,
* ﬁg N N*
Eo(Djy [ W) = Lﬁ—owo —0)(C)goslcW)

fwi = firi + firi + Eo(Dy W) = Po{fyy; + fiy; + Eo(Dy W)}

_ j Qolc! (@, W))g" (a|W) — J Qo(cY (a, W))g" (alw) Qw o(dw)

a,w

~ | Qo(crgi(cw) - |

C.

Qo(c)g; (c|w)Quw o(dw).
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For (i,j) € {1,... 7N}2, let Ry (i,]) be the indicator that fw; and fw ; are dependent, Ry (i,j) = I(F; " F;#0), and
Ry(i,j) = I(Ra(i,j) =1 or Rw(i,j) = 1). For example, if W1, ..., Wy are independent, then Ry (i,j) = I(R; "\ R;#0).
We have

1
TNZ{fi(O) — Pofi} =4 N(0,0%), where o® = 0% + 0% + o,
1

and

:Nl NZPOfY’

o4 = 11m NZRA i1, 2)Pofaifa.i,

11,12

oy = hm NZRW it, L) Pofw i fw.i,,

11,12

assuming these limits exist, and Pof denotes the marginal expectation of f(0), given F. As a consequence,
VN(vi — wo) =a N(0, 7).

Alternative expression of asymptotic variance: One can also represent ¢° as

= lim — ZRz i1, L) Pofy.fi,-

N—oo N
il

To provide the reader with a general understanding of the asymptotic normality of the TMLE we note
the following. In the Appendix, we provide general conditions under which a process Zy = (Zy(0) : 0 € F),
where Zy(0) = 1/v/N Y, £(60)(0), converges weakly to a Gaussian process Z = (Z(6) : 6 € F) as random
functionals in the Banach space ¢ (F) of real valued functionals on a family F of functions, endowed with
the supremum norm [41], where the dependence between the f;(6)s is restricted by assuming that f;(9)(0)
can only depend on a set of maximally K f;(¢)(0)s, where the integer bound K does not depend on N. For
completeness, we provide here the general theorem that is a corollary from the results established in the
Appendix and provides the key building block for the probabilistic component of our proofs:

Theorem 3 Consider a process Zy = (Zy(0):0¢€ F), with Zy(0)= 1/\/1VZfV:1f,-(9)(O), where
Eofi(0)(0) =0, for each i, fi(f) is independent of {f;(6):je S} for a set S;C {1,...,N} with
max; |Si| <K for a universal K, where S{ = {j:j ¢ S;}, and F is a set of multivariate uniformly bounded
real valued functions 6 : R — R. Let R(i,j) be the indicator that f(0) and f;(0) are dependent. We make
the following additional assumptions:

e For all integers p>0, {Eofi(e)(O)p}l/” <C||0|lx for supremum norm || 0| on F, and
universal C< co.

* There exists an >0 so that the entropy integral [ \/l1ogN(e,F,|| - [[o)de< oo for F w.r.t. norm | - ||
is finite.

e The marginal distributions Zy(0) converge to a normal distribution Z(6) for all 6 € F.

Then Zy converges weakly to a Gaussian process Z identified by the covariance operator ¥.(0,,0,) defined by
1
%(61,6) = lim NZZR i,1)Eofi(61)f;(62)-
i=1 j=1

In particular, Zy is asymptotically equicontinuous in the sense that if 61y — 6,y — 0 w.r.t. supremum norm,
where 01y, 0,y € F, then Zy(01n) — Zy(0n) converges to zero in probability.
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7.1 Statistical inference

One can estimate ¢® by plugging in estimators Qw v, Q}*V,EN in the expressions for fy;,fw, fa;. Given an
estimator of 012\,, one can then construct a confidence interval y} + 1.960y/ V/N. If oy is consistent for o, then
this will be an asymptotically valid 0.95-confidence interval. The expression for 2 suggests that a consistent
estimator of ¢? relies on consistent estimation of Q, even though the consistency of y} only relies on a
consistent estimator of hy and thus the relevant part of gy (since the expectation w.r.t. W is consistently
estimated). Even if y} relied on a less nonparametric estimator of Qo, this suggests using a super-learner
using flexible machine learning algorithms when estimating this asymptotic variance o2. However, below,
we provide alternative estimators of the asymptotic variance that appear to avoid having to estimate Q.

Ignoring contribution of gy: We claim that if g, is unknown, and one uses an MLE gy according to some
model, then ignoring the contribution f} ; in fy; due to estimation of go will result in an upper bound o,z\,‘u for
the actual asymptotic variance ¢ of the TMLE, based on a generalization of the result in van der Laan and
Robins [3]. This result relies on the fact that gy is an orthogonal nuisance parameter w.r.t. y,. Such a result
would then allow us to use this simplified plug-in estimator o3, , (using gy for go) in the statistical model M
in which g, is not known but a correctly specified model for g '(i.e. 8o) is available. Again, such a result will
need to be formally established in future research.

In the sequel of this subsection, we suggest the following practical proposals for variance estimation.

Assuming a consistent QI*V: Suppose that one is willing to assume that Q};, is consistent for Qp. In that case,
ignoring the fji contribution by the argument above, it follows that f4; = 0, so that we can estimate ¢* with

2

N T
A=y e - G | )

1 _ _
+ N iijW,i(QXu Qw)fwj(Qy, Qwn),

where

fwi(Q,Qw) = [

a

Q(c{ (A, W))g*(a|W) — L Q(c{ (a, W))g" (alw)Qu (dw).
W

Assuming rare outcome: suppose now that one is not willing to assume that Q} is consistent but it is
known that Q is close to zero (e.g. rare outcome). In addition, assume that Q* ~ 0 as well, which can be
guaranteed by incorporating such a constraint in the logistic regressions submodel of the TMLE as in Balzer
and van der Laan [64]. In that case it follows that the contributions to the variance of f; ; and fi; are second-
order relative to the contributions of fy; w.r.t. Qo ~0. As a consequence, in that case, it would be
appropriate to still use this estimate o% (eq. 17), and the inconsistency of Qj will only make the estimate
of a%, conservative. In fact, by this argument one could even drop the af,v contribution, but for the sake of
being conservative, we would recommend including this term.

A generally appropriate variance estimator: We now proceed with deriving a more general variance
estimator under reasonable assumptions. Firstly, we will ignore the contribution f/}j due to estimation of g,
and as mentioned above we conjecture (based on i.i.d. theory) that this will 'only make the variance
estimator conservative. Secondly, we note that (recall f; = fW_,l-(Qo, Qwpo))

fi=fri+fai+fwi

ho(CH)(Yi — Q*(CY)) + fws

ho(CH) (Y — Q*(CY)) + fwi(Q", Qwo) + {fwi(Qj, Qwo) — fwi(Q", Qwo)},
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where fii(Q",Qwo) = [, Q"(c)g; (c|W) — [.,, Q*(c)g; (c|w)Qw o(dw). We now note that

%Zf;{fw,i@gy Qwo) — fwi(Q*,Qwo)} NZI 1J )(€)g; (c|W)

~Eoyuy Yo L(Oo - Q)(©)g; (W)

=¥(Qo,Qwn) — ¥(Q*,Qwn) — Ew{¥(Qo, Qwn) — ¥(Q*,Qwn),

where in this last expression Qw y denotes the empirical distribution that puts mass 1 on W. As shown in the
next section, it follows that N (‘P(O}*\,, Qwn) — ¥(Qo, Qw,n) converges to a normal distribution, and there-
fore one expects that the conditional bias vN(¥(Q*,Qwn) — ¥(Qo, Qwn)) = 0p(1). We will assume that
indeed  VN(¥(Q*,Qwn) — ¥(Qo,Qwn) = 0p(1). Under this assumption, we have that
AV {fwi(Qy, Qwo) — fwi(Q", Qwo)} = 0p(1/V/N). As a consequence,

i iﬁ chHv: - Q (cl))

i=1

3\

ZNI{ i (cW) ~ | @ (@i (ewiomoldn) .

1

In addition, the first sum on the right-hand side already has conditional mean zero, given W, so that the
asymptotic variance of the left-hand side equals the variance of the first sum plus the variance of the second
sum. The second variance can be consistently estimated with

GWN = _ZRW i1, )fwi, (Qy, Qw N )fw.i, (Qx, Qw n).-

i,

The variance of the first sum can be represented as:
PoNZRA i,1)ho(C)(Yi — Q*(CY))ho(C) ) (Y; — Q°(C)))
__ZRA i,j)Poho(CY ) (Yi — Q*(CY))Poho(C} ) (Y; — Q*(C))).

If one is willing to assume that

lim — ZRAz (i.))Poho(CY) (Y — Q' (C)))Poho(C) ) (Y — Q(C))) =

N—oo N
then a conservative estimate of the first variance is defined as:

1 N AT A* 1. * A 1
oy N = NZRA(H)DYJ(QN, Qw ., ho)Dy ;(Qy, Qw.n, ho).
ij

Till what degree this is a reasonable assumption will need to be further studied. Under this assumption, the
proposed estimator of the asymptotic variance ¢? is given by

_ 2 2
’712\1,1 =0ynN T OynN-

8 TMLE of intervention-specific mean, conditional on W

In our target parameter, we conditioned on the network information F = (Fy,. .., Fy), but marginalized over
W, given F. As a consequence, in order to establish asymptotic normality of the TMLE we had to rely on an
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independence assumption on the joint distribution of W (given F), such as that all Wy,..., Wy are
independent, or only that each W; only depends on maximally K W;’s. In this section, we define the target
parameter conditional on all of W, which happens to equal ¥(Qo, Qw ), where Qwy is the empirical
distribution that puts mass 1 on W. Our target parameter is now a parameter of the conditional distribution
PY of O, given W, modeled in same way as above (but without need to model a distribution of W). Its
efficient influence curve is now just the D} (Qo, Qw ., h(go, Qw.x))-component, where for the sake of nota-
tional convenience we will still denote h(go, Qw ) with ho (just in this section and in proof of next theorem
in the Appendix). We will use the same TMLE as presented in the previous sections. In the Appendix, we
show how our template for analyzing the TMLE can be modified to analyze the TMLE with respect to this
conditional W-specific target parameter, and that essentially the terms due to estimation of Qy o now drop
while the other terms are essentially the same. As a consequence, there is no need to redo all the technical
proofs. Our proof now relies on the identity PY D}(Q, Qwn, ho) = ¥(Qo, Qwn) — ¥(Q, Qwn), as established
by (eq. 10). This results in the following Theorem 4. This theorem differs from Theorem 2 in that it dropped
the independence assumption on the distribution of W and that the asymptotic variance of the TMLE (w.r.t.
\I’(Qo, Qw ) instead of \P(Qo, Qw.,)) does not include the a%,v-term anymore. Thus, by changing our target
parameter to this conditional version, we removed a restrictive assumption and we reduced the asymptotic
variance of the TMLE w.r.t. this conditional target parameter.

Theorem 4 The conditional probability distribution of O, given W, is parameterized by g, Qy as follows:

N
PY(0) = [ [ s4ilchHav(vich), (18)
i=1
where C! = c/ (A, W) € ¥ C R%, C4 = cA(W) € C* € R®, Qy(-|c) is a density for Y for each possible c € C¥,
but is otherwise unspecified, g(-|c) is a density for A for each possible ¢ € C*, and g € G. This defines the
statistical model M" for the conditional probability distribution PY of O, given W. Let Qwy denote the
probability distribution of W that puts mass 1 on the observed W = (Wy, ..., Wy).
For a specified stochastic intervention g*, the target parameter ¥ : M" — R is defined by

‘I’W(PW) ¥(Q, QWN)
j £ (alw) Q. (dw)

j=1

Zj g (aw),

j=1

Zl'—‘
=

ZI’—'

where Q(c! (A, W)) = Ep(Yj|A, W). Since W™ (P") only depends on P" through Q, we will also denote this
parameter with ¥V (Q).
The efficient influence curve of ¥V at PV is given by:

D*(Q Qwn, ) Zl 1Dy, (Q,Qw, )
where

Dy ;(Q,Qwa, h) =

Consider the TMLE v =¥ (Qy) = ¥(Qi, Qwn) defined above using gy in hy = h(gn, Qwx). As shown
above, this TMLE solves

D;,(Qy, Qw.n, hw)(0) = 0.

We use the definitions h(c) =4S hi(c), hy =%V Ry, hi(c) = Pygy(c) (A, W) =c), hiy(c)=
Pg- gy (c (A, W) c), defined as densities w.r.t. a dominating measure y, and let h = i /h, ho = i/ ho,
where hg = (gO,QW ~). Note that hN —hj(,/hN is a plug-in estimator of ho = N/ho implied by gy € G
and QW.N-
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We make the following assumptions:

Entropy condition: Consider a class Fy of functions ¢ — Q(c¥) on a set in C¥ ¢ IR? that contains c¥ (A4, W)
with probability 1. Assume that Q}, € Fy with probability 1. Consider a class F of functions ¢! — h(c¥) on
C¥ c R% Assume that hy € F}, with probability 1. Define the dissimilarity measure on the Cartesian product
Of]'—:]:y X]:h Xg:

d((, 01,21, (7, Q. 2)) = max(sup lhy — i, sup Qs — Ql,sup |g: —§|).

cecY cecY ceCA

Assume that there exists some >0, so that [ \/10g(N(e, 7, d))de < oo, where N(e, F, d) is the number of balls
of size € w.r.t. metric d needed to cover F.

In particular, this assumption holds if supy. r, max(|| h 151 QIIZ, |1 8 |IF) < oo, where || - ||% is the uni-
form sectional variation norm as defined in Gill et al. [65] and van der Laan [63].

Universal bound: Assume sup,. r ¢ |f|(0) < oo, where the supremum of O is over a set that contains O with
probability 1. This assumption will typically be a consequence of the entropy condition, such as it is a
consequence of the uniform sectional variation norm condition above.

Uniform consistency and rate condition: Assume d (}~1N, Qy,3n), (fzo, Q*,80)) — O in probability as N — oo,

Rvi=- | (% - ’;—N) (@4 — @ Yho(C)du(c) = op(1/VN)

and

Asymptotic linearity condition on gy:

J’;_Nw (@ - Qo) (©)ho(c)du(c)

N
_ %Z £1:(0) + 0p(1/VN),

where f; ;(0) only depends on O through (A;,(W; : j € F;)), and Eo(f; ;(0)|W) = 0.
Positivity condition:

h*(g*,Qwn)

- < 0.
cec? h(go, Qw ) (€)< oo

Universal bound on connectivity: Assume that there exists a K < oo so that sup; |F;|<K foralli=1,..., as.

Restriction on stochastic intervention: Assume g*(4; : j € F;|W) only depends on W through (W; :j € R;)
with max; |Ri| < K for some universal K < cc.

First-order approximation: Then,
1 N
viv = vy =5 2_UR(0) = PR} + op(1/VN),
i=1

where
£ =Dy(Q",Qwn, ho) + f -

Weak convergence of first-order approximation: We can orthogonally decompose
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fY(0) — PYf: = fri(0) + £1.4(0),
where

fri=Dy; — Eo(Dy,|A, W)

=P () v ol
0

fai =Eo(Dy;|A, W) — Eo(Dy | W) + f3;

Wy vom A
= 2@ - (e

Lok

For (i,j) € {1,..., N}, let Ra(i,j) = I(F; " F;#0). We have

(€)(Qo = Q) (©)8o,(cIW) + f ;-

:-\‘2*\

1
T 2 (0) = P = N(O,6*Y), where o =} + o},
i

and

oy = lim = ZPWle

o4 = hm ZRA i1, )Py faifai

il

assuming these limits exist, and PY f denotes the conditional expectation of f(0), given W. As a consequence,
VN(yy — vg) =a N(0,6”").

Alternative expression of asymptotic variance: One can also represent ¢>" as

2

o = lim = ZRA i1, b)PY fifs,-

il

8.1 Variance estimation

Known g, and consistent Qj: Let us consider an RCT so that gy = go and the term f} ; = 0. If one is willing
to assume that O]*V is consistent for Qq, then f4; = fj’i = 0. Therefore, in this case, the asymptotic variance
can be estimated as

N 2
VS {Benm-auen ) 19)
i-1
Known g, rare outcome: Suppose now that we still have an RCT, but we are not willing to assume Qj is
consistent, but Qy is close to zero (e.g. rare outcome). In addition, assume Q* ~ 0: i.e. one might incorporate
this constraint on Qq in the submodel of the TMLE, as in Balzer and van der Laan [64]. It follows that a first-
order (w.r.t. Qo approximating zero) approximation of the asymptotic variance ¢*" can still ignore the
fa,i-contribution. As a consequence, in that case an appropriate approximation of the asymptotic variance is
given by o3 = limy_. &3}, PY/f2,. That is, this asymptotic variance o} is approximated by

N 2

P eh - e
i=1



50 —— M. ). van der Laan: Population of Causally Connected Units DE GRUYTER

However, the latter is conservatively estimated by using a possibly inconsistent Qj, showing that we can
still use (eq. 19) as the estimator of the asymptotic variance.

Ignoring contribution of gy is conservative: Even when g, is estimated with gy, as argued before, we
suggest that the contribution iji only reduces the asymptotic variance, so that ignoring this contribution
will be fine for the sake of reliable statistical inference. Thus, our overall conclusion is that (eq. 19) is an
appropriate (possibly conservative) estimator for the asymptotic variance when either Q} is consistent or if
Qo ~ 0.

A general variance estimator: Assume that

¥(Qo, Qwy) — ¥(Q",Qwn) = 0p(1/VN).

Since this represents the bias term of the TMLE \P(Qj{,, Qwy), and we have asymptotic normality of
VN(¥(Qf, Qwn) — ¥(Qo, Qw), and Qj; is consistent for Q, this should be true under the assumptions of
the previous theorem. However, under this assumption we have that, ignoring f; ;,

fai= (CY)(QO —Q)(C]) +0p(1/VN),

and, as a consequence,

o= E—N(CY)(Y Q'(C)) = Dy(ho, Q).

Note that indeed

Py NZhngWN)( (Y; = Q'(Cl)) =¥(Qo, Qu) — ¥(Q", Qu)
=op(1/VN).

Thus, under the assumptions of the Theorem, and ignoring the iji contribution from gy, we have

VN(yy = wo) Zh g0, Qwn)(Yi — Q°(C})) + 0p(1),

=5

where the linear term has conditional mean zero w.r.t. P/. The conditional variance of the linear term on
the right-hand side is thus given by the following expression:

1 ..
= 5> Rali ]){ngﬁWf,.W — PWfwpW f,.W}.
ij
Suppose that

: 1 s . x () 1 * (Y 1
lim NZRA(z,J)PSVD;,i(Q , Q. ho)P§ Dy (Q°, Qw.n, ho) > O
ij

N—oo

Then a conservative estimate of the last expression ¢?" is defined as:
1 N AT A% 1 * A 1
UJZVW =N Z Ra(i,j)Dy;(Qy, Qwn, hO)DY,j(QNa Qw.n, ho).
]

Note that if Qj; is consistent for Qo, then this estimator is asymptotically equivalent with (eq. 19), but we
expect the latter to be significantly larger for finite samples when Qj is not a good approximation of Qo. If
go is not known, then hj is replaced by its estimator hy.
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9 Summary and concluding remarks

We formulated a general causal model for the longitudinal data structure generated by a finite population of
causally connected units. This allows us to define counterfactuals indexed by interventions on the treatment
nodes of the units, and corresponding causal contrasts. We established identifiability of the causal
quantities from the data observed on the units when observing all units or a random sample of the units,
assuming that the size of the population converges to infinity, under appropriate assumptions. Our causal
assumptions implied conditional independence across units at time ¢, conditional on the past of all units,
resulting in a factorized likelihood of the observed data (even though the observed data is generated by a
single experiment, not by a repetition of independent experiments). To deal with the curse of dimensionality
we assumed that a unit’s dependence on the past of other units can be summarized by a finite dimensional
measure and that this dependence is described by a common function across the units. This describes now
the statistical model for the data distribution and the statistical target parameter, and thereby the statistical
estimation problem. We demonstrated that we can use cross-validation and super-learning to estimate the
different factors of the likelihood. Given the statistical model and statistical target parameter that identifies
the counterfactual mean under an intervention, we derived the efficient influence curve of the target
parameter. We showed that this efficient influence curve characterizes the normal limit distribution of a
maximum likelihood estimator and thus still represents an optimal asymptotic variance among estimators of
the target parameter. However, due to the curse of dimensionality, maximum likelihood estimators will be
ill-defined for finite samples, and smoothing will be needed.

Such smoothed/regularized maximum likelihood estimators are not targeted and will thereby be overly
biased w.r.t. the target parameter, and, as a consequence, generally not result in asymptotically normally
distributed estimators of the statistical target parameter. Therefore, we formulated targeted maximum
likelihood estimators of this estimand and showed that the robustness of the efficient influence curve
implies that the bias of the TMLE will be a second-order term involving squared differences h, — hy and
Q. — Qo for two nuisance parameters hy = l_z(go, Qo) and the relevant factor of likelihood Qp. Subsequently,
as showcased in this article, we focussed on defining and analyzing the TMLE of causal effects of an
intervention on a single treatment node on a future outcome. In this special case, we showed that the
efficient influence curve is double robust w.r.t. these two nuisance parameters hg, Qy, where hy depends on
the intervention mechanism and the distribution of the covariates, and Qg is a common conditional mean
function for the outcome. We established two formal asymptotic normality theorems for the TMLE under the
assumption that each unit is only connected to fewer than K other units for a universal K.

In future work, it will be of interest to extend our asymptotics theorem to the case that a unit can
depend on a fixed (in N)-dimensional summary measure that can depend on a number of units that can
converge to infinity with sample size. We can also be less-restrictive and allow that these summary
measures have a dimension K that increases with N, and then establishes rates of convergence that are
slower than 1/ VN and establishes corresponding (e.g. normal) limit distributions. In addition, in future
work, the finite sample behavior of these estimators and confidence intervals will need to be evaluated
through simulation studies. We will also generalize our TMLE to the TMLE of parameters defined by
marginal structural working models for the causal dose-response curve for a collection of stochastic
interventions. We also plan to investigate if there are other causal models for causally connected
units that might allow the formulation of TMLE for the general longitudinal data structure in terms of
sequential regressions, as in the double robust estimating equation based estimators for i.i.d. data
presented in Bang and Robins [58] and subsequent analogue TMLE in van der Laan and Gruber [59] and
Petersen et al. [66].

Overall, we believe that the statistical study of these causal models for dynamic networks of units
provides a fascinating and important area of future research, relying on deep advances in empirical process
and statistical estimation theory, while raising new challenges. In the mean time, these advances will be
needed to move forward statistical practice.
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Appendix

Introduction to Appendix

We start out with presenting a general template of our proof of Theorem 2 which establishes the asymptotics
of the TMLE for the case r = 0. In this template, we define the remaining ingredients (eq. Al), (eq. A2), and
(eq. A3) that will need to be established in the remainder of the proof. Each of these three ingredients is
carried out in a separate section. These sections are themselves organized by special tasks that need to be
carried out. We conclude with a similar template of the proof of Theorem 4, demonstrating that the
technical components are the same as needed for Theorem 2. At the end of the Appendix, we provide a
notation index that will be helpful to read through the article as well as through the Appendix.

General template of proof of Theorem 2

Recall that D* =1/N Zjli 1D;(0) is a sum over the units j. We will use the notation PyD* = D*(0) =
1/N Z].AL 1D; (0), while PoD* =1/N 3 ; Ep,D; (0) is its expectation w.r.t. distribution P. Due to Theorem 1,
we have D* =Dj, + D}, PoDyy(Qy, Qwo) =0, PoDy(Q, Qwo,ho) = o — ¥(Qy, Qwo), and PyDi,(Qy,
Qw.w) = PyDi(Qk, Qw, hy) = 0. In particular, this yields

PoD*(Qy, Qw.0, ho) = wo — ¥(Qy, Qw.o)-

We now proceed as follows:
¥(Qy, Qw.y) — wo = ¥(Qy, Qww) — ¥(Qy, Qwo) + ¥ (Qy, Qwo) — vo
= ¥(Qy, Qw.xn) — ¥(Qy, Qwo) — PoDy (Qy, Qw.o, ho)
=¥ (Qy, Qwn) — ¥(Qy, Qwo) + (Py — Po)Dy(Qy, Qw.o, ho)
+Py{Dy(Qy, Qw.n. hy) — Dy (Qyy, Quwo. ho)}
= ¥(Qy, Qw) — ¥(Qy, Qwo) + (Pv — Po)Dy(Qy, Qw o, ho)
+(Py = Po){Dy(Qy, Qw, hv) — Dy (Qy. Qw.o, ho)}
+Po{Dy(Qy, Qw ., hv) — Dy (Qy, Qw.o0, ho)}-
We note that

{D%(Q}, Qw, hy) — Dy (Qy, Qwo, ho)}

CAN~ (Y oy et
=52 (- 1) o - aae)
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where hj; = h(g*, Qwn), h§ = h(g*, Qw,), and hy = h(go, Qw ). From this, it follows that

Po{D;(Qy, Qw.n, hn) — Dy (Qyy, Qw.o, ho)}

fj(hNho) Q)

i e o

:J (% Z)@ — Q)ho(c)du(c) + Ruy,

where we used that for a given function f Py + N SR f(Eh) = = [.f(c) lu(c). We assumed that the second-
order term Ry; = op(1/+v/N). In addition, we define

Ry = (Py — Po){D}(Qy, Qwn, hy) — Dy(Qy, Qw.o, ho)}
Z{( i ) (¥ - Qy(c)) - (’-’—* ”‘)(Y A -
N hy R N hy  ho N
We also note that
¥(Qy, Qwy) — ¥(Qy, Qwo)

1 - _

=] Gutel @ wg @) - [ (el (a.w)e(aiawolan) |
1 N

- NZ{fT}VI(W) — Pofy i} + R,

where

flyi = J Q'(cl (. W))g'(@W) = | Q(e)g; (W)

and
Ryo = —Z{j (@ - @)@ W) - [(@5 - @)(0)s; <c|w>owﬁo<dw>}-

We used here that [ Q(c!(a,W))g*(alW) = [, Q(c)g;(c|W). Define the process Zj, y(Q) = fZ' .
{fiv:(Q) — Pofyy;(Q)} indexed by Q. Note that v/NRyo = Zj; y(Qy — Q*). As a consequence, showing that
Ry = 0p(1/V/N) corresponds with proving that Z}, ~(en) = op(1) for a sequence ey that converges to zero w.

r.t. supremum norm. Therefore, our proof will involve studying this empirical process Z}, y; and establishing
the required asymptotic equicontinuity. In this manner, we will establish

Ryo = 0p(1/VN) (A2)
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Thus, we have obtained the following expansion:

N
i = o = g D {Fs(W) = Pofirs} + (P = Po)Dy(y Qo )
kg o
< (@ - 170) (@0 — Q') (©)ho(c)du(c) + Rys + Ruz + 0p(1/ V).

We have

(Py — Po)Dy(Qy, Qw.o, ho) = (P — Po)Dy(Q*, Qw o, ho)
+(Py — Po){D}(Qy, Qw.0, ho) — Dy (Q", Qwo, ho)}
=(Py — Po)D;(Q",Qw o, ho) + Ry 3.

We will show that

Ry, = 0p(1/V/N) and Ry s = op(1/V/N) (A3)

To understand these last two terms, define the process

Z4(h,Q) = Z{h(cY> (¥ = Q(e]) ~ Poh(C])(¥i — Q) }.

which is a sum of the form Zy(h, Q) = \/—Z £:(Q,h)(0;) indexed by (h, Q), where h plays role of h*/h. Note
that Ry, = Zy(hy — ho,Q};), while Rys = Zy(ho,Q} — Q*). Thus, showing that Ry, = op(1/v/N) and
Ry3 = 0p(1//N) comes down to showing that Zy(ey) = op(1/V/N) for ey converging to zero w.r.t. supre-
mum norm. Therefore, our proof will involve studying this process Zy() and establishing the required
asymptotic equicontinuity. Specifically, we will decompose this process in three orthogonal processes that
can be represented as sums over functions of conditionally independent random variables identified by the
sets F; (analogue to orthogonal decomposition below of the first-order approximation) and establish this
asymptotic equicontinuity for each of the three orthogonal processes.
Consider now the term

(- Z:)mo—o*)ho() L(c). (20)

This term equals

where
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We assumed that Rys = op(1/v/N). Using that ho =13 hi(go,Qwo), hyv =3 N, hi(gn,Qwn), and
hy = x> ;hi(g*, Qw), it follows that (eq. 20) reduces to

N (o « - B B
%Z L{h’(‘g;—l—fwm( ) = Z—zh (gv, Qwn) } (Qo — Q*)(c)ho(c)du(c)+0p(1/VN)

N ok B B )
= %Z Jc{h’(g;lfwm( ) — hS hi(8o, QWN)}(QO — Q") (c)ho(c)du(c)

25 hi(gn — 8o, Qw.n)(Qo — Q°)(€)ho(€)duu(c) + 0p(1/VN)

1 NJh
N2 )i e

1 N

-~ J %hi(gN — 80,Qw)(Qo — Q°)(c)ho(c)du(c) + op(1/VN)
i=1 7’0

=Ziy /YN - NZJ "5 (g — 80, Qo) (@0 — Q") (©)ho(c)du(c)

zlc

-3 | o 80, Qi — 0w Qo ~ Q) hId(e) + 01/ V)
i=1 J¢

R h(gy — 80, Qwo) Aae A /13

=2 N/ VN + [ E—gw (Q = Qo)(©)o(C)du(c)~Rus + 0p(1/VN),
Jc ity

where we note that Pofy;; = 0, and we defined

Rus =3[ B 2y 80, Qv — Qo) (@~ @)(eIho(c)a()

i=1

- 32| @ - @ @mtedue{ law) = o ey - soaw

gik

N
:%Z Jh_ (Qo — Q)(c! (a, W))(gn — &o)(alW)

i=1

—

¢ (@w) = o) g —go><a|w>ow,o<dw>}

*

O

1 N

N71

N
Z{fwl ~ fui(80) }(W)

=1
=Z3y n(&n)/VN = Z3; v (80) /YN,

‘

J 55 (G0 — @)(c¥ (a, ) (g — o) (alw)Quwoldw)

N
where we defined the process Z3, (8) = %NZ{fa,_i(g)(W) — Pof,:(8)} with

RulE9) = | (@0 - @)l (0. Wtalw).
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The term Zj, y = 1/ VN Z{fw i(W) — Pofy;;} is included in the first-order expansion and thus partly char-
acterizes the normal limit didtribution of wy» o that its analysis will be part of the analysis of the first-order
approximation. Since h;(g, Qwy) only depends on (W,..., Wy) through (W; : j € F;), where we condition on
Fy, ..., Fy, we will indeed be able to show that a term Zﬁv_, w is nicely behaved empirical process (converging to a
normal distribution), even though each i-specific term is correlated with the j-specific terms when F; () F;#0.

Showing that Zj, y(8v) — Z y(80) = 0p(1) comes down to showing that (Z, y(8) : § € G) is an asymp-
totic equicontinuous process w.r.t. supremum norm, and that gy — go converges to zero w.r.t. the supremum
norm. In this manner, we show that

Rys = op(1/ V) (A4)
We assumed that

J ij(@* — Qo)(c)ho(c)du(c)

ch2 N
ZfA, )+ 0p(1/VN),

where f;;(0) only depends on O through (4;, (W; :j € F;)), and Eo(f; ;(0)|W) =
Thus, if we prove (eq. A2), (eq. A3), and (eq. A4), then we have obtained the following first-order
expansion:

N
Vi = v = 3 O Fha(W) = Poflh + 1 S {f(W) — Pofi )
i=1 i
+ (Py — Po)Dy(Q*, Qw.o0, ho)
NZfAl + op( 1/\/‘)

Analysis of first-order approximation: Let fiy; = fl}vﬁi + fﬁ,ﬁi. The first-order approximation equals

1/N 3{D;4(Q", Qw.0,ho)(0i) + fuw i(W) + f3,(0) — Po{Dy; + fwi}}

1
=1/N Y £,(0).
1

It remains to prove that this first-order expansion converges to a normal limit distribution. This proof has its
own outline. Firstly, we decompose 1/N>;fi(O) by f; = fw;+ fai+fri» where fw; = Eo(filW) — Eof;,
fai = Eo(fi|A, W) — Eo(fiiW), and fy; = f; — Eo(fi]A, W). We can represent >.£i(0) as Zyy/VN + Zya/
\/N +ZNw/\/N, where Zyw = 1/\/Nzifwj, Zna = 1/\/NzifA,i’ and Zyy = 1/\/Nzify,i' It follows that

fw i simplifies to:
Fua(W) = j Qo(c! (a, W))g" (a|W)
- j Qo(c! (@, W))g" (@, W)Qu o (dw)

- j Qol()g; (c|W) - j Qo) (c]W)Qu o (dw).

In addition,
Fz
fri=Dy; — Eo(Dy;|A, W) = (CY)(Y Qo(C)),

and fy; = Eo (D§1i|A, W) —Ey (D’;,?l.|W) + fjj. We also note that, conditional on W, A, Zyy is a sum of inde-
pendent mean zero random variables fy;(Y;) (functions of Y;); conditional on W, Zy, is a sum of
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fai(4; : j € F;) with conditional mean zero, given W; A;, i =1,...,N are (conditionally) independent, given
W; and, finally, Zyw = 1/vVN > i{fwi(Wj :j € Ry) — Pofw}, with W satisfying our independence assumption
(e.g. Wy,...,Wy are independent). Recall that the sets R; are defined such that g*(4;:j € F;|W) only
depends on W through (W; : j € R;).

Exploiting these independence structures, we will show that

ZNY =d N(O, O'%,-)
Zna=a N(0,0%)
Zyw =4 N(0,0%,) (A1)

with the expressions for ¢, ¢4, and o2, as specified in the theorem. Here (eq. Al) represents all

three convergence statements. Due to the orthogonality of the three empirical processes, using moment
generating functions, our results also imply Zyy + Zya + Zyw =4 N(0,0? = 6% + 03 + o%,). For example,
we can analyze E(Zyy + Zya)’ = 3, ¢(p, k)E{Zxy}*E{Zya}** and use convergence of moments of each
process separately to establish convergence to E(Zy + Z4)P. Once we have convergence of all moments,
and we can bound E(Zyy + Zya)? < CP for some C< oo, which follows from results established in our
separate analysis, then we obtain convergence in moment generating function, and thereby weak
convergence of the sum Zyy + Zys. In this manner, the desired weak convergence of the sum
Zny + Zna + Zyw is shown.

This finishes the outline of the proof. It remains to establish (eq. Al), (eq. A2), (eq. A3), and (eq. A4).

(A3)
(A3): Outline of proof

Let h=h"/h and we will denote Dj with Dj(h,Q). Our goal is to prove that
VN(Py — Po){Dj (ho, Qy) — D*(ho,Q")} = 0p(1) and VN(Py —Po){Dy(hn,Qy) — Dy (ho, Qy)} = op(1). Let
Po yiawf> Poawf, and Powf, denote the expectation operators w.r.t. their respective conditional distribu-
tions. We have

Zy(h,Q) = V'N(Py — Po)Dy(h,Q) = VN(Py — Poyaw)Dy(h, Q)
+VN(Py — POAA\W)PO‘Y\A,WD;(}NL Q)

+VN(Py — Po.w)Po ajwPo.yiawDy (h, Q)

=D HEN (@ - Q) - | FE)(Q0 - DIzt ))

N
+ JLN;{L h(Qo — Q)(c)goi(c|W) — PoDy(h,Q)}

=Zny(h) + Zya(h, Q) + Zyw(h, Q).

We now note that, for a fixed (fl, O), conditional on (W, A), Zyy is a sum of independent mean zero random
variables fy;(Y;) (functions of Y;). We also note that for a fixed (fz, Q), conditional on W, Zy, is a sum of
mean zero fa;((4; : j € F;)), where 4;, i = 1,..., N are (conditionally) independent. Finally, for a fixed (h,Q),
Zyw =1/V/N > ifwi(Wj :j € F;) — Pofw;, and, by assumption on Qw o, for each i, fi; is only dependent on
maximally K fw ;.
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Let Q* be the limit of Qy, and let hy = 715 /ho be the limit of hy. By exploiting these independence
structures, we will use empirical process theory to establish that

Zyy(hy) = Z5(ho) + 0p(1)
Zya(hy, Q) = Zya(ho, Q%) + 0p(1)

Zw(hn, Q) = Zyw(ho, Q") + 0p(1).
This then establishes Ry, = 0p(1/v/N) and Ry 3 = op(1/VN).

(A3): Outline of establishing asymptotic equicontinuity of a process

For that purpose, we will apply Lemma 5 in van der Vaart and Wellner [41], which concerns establishing
weak convergence of a process (Zy(0) : 6 € F), indexed by a 6 = (h,Q) € F. Given that F is a subset of
some metric space of functions with metric d, one defines N(¢, F, d) as the minimal number of balls of size ¢
needed to cover F. In addition, for a given strictly monotone function 1:Rso — IR, let || Zy(0) |,=
inf{co : 2(|Zn(0)|/co) < 1} be the so-called orlics norm of the random variable Zy(6).

For example, one can select the LP-norm || Zy(0) |[p,= {[E{Zn(6)}" }1/ Pof Zy(0) for arbitrary large p
which correspond with the choice of orlics norm defined by 4,(x) = x”. The orlics norm implied by
J20(x) = exp(x?) —1 is the typical orlics norm pursued in the case of sums of independent random
variables, and this is the one we will also use.

This Lemma 5 states that, if (1) || Zy(61) — Zn(6,) ||, is bounded by cd(6;,6,) for some universal
constant ¢ and metric d(-,-), (2) F is totally bounded w.r.t. this metric d, (3) for some #>0,
Je 2 Y(N(e, F,d))de< oo, (4) the marginal distributions Zy(#) converge to a normal distribution Z(6), then
Zy converges weakly to a Gaussian process Z in €>(F), where ¢*°(F) is the metric space of functions
G : F — R endowed with supremum norm || G ||r= supycr |G(9)|. We assumed that our parameter space F
for (flm Qo) consists of uniformly bounded functions on a set C' that contains CY (A, W) with probability 1,
and we defined the metric d as the supremum norm. Thus, (2) holds. We posed (3) as an entropy condition
on the parameter space F, which will thus hold by assumption. For example, F could be the class of
functions on ¢¥ ¢ R? that have uniform sectional variation norm bounded by a M < oo, in which case this
entropy condition holds. Under conditions 1-3 we have that the process Zy is asymptotically tight, and, for
any sequence J, — 0, we have for each x>0,

P sup |Zy(61) —Zn(6,)|>x ) — 0 as N — cc.
d(61,02) < 0y

So once we have established the orlics-norm condition (1), then this tightness can be used to establish that
terms Zy(6n) — Zn(0) = op(1) for random Oy € F converging to § € F w.r.t. metric d in probability,
assuming F satisfies the entropy condition and is totally bounded w.r.t. this metric d.

Bounding the orlics norm of our empirical processes

The orlics norm || - |; indexed by function /,(x) = exp(x*) — 1 is defined as
| X ;= inf{c>0: Eexp(XP/C) ~1 < 1}.

We consider a stochastic process Xy(0) indexed by 8 € F for a class of functions F. In our application,
we have that, for example, 6 = (O, ﬁ) € F represents two real valued functions Q and h defined on a set
C¥ ¢ RY that contains {c! (4, W) : i} with probability 1. In addition, our processes can be represented as
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Xn(0) = 1/V/N SN, £(6)(0), where, for example, for each i there is an associated set F; C {1,...,N},
and, if F;nF; = (), then fi(6)(0) and f;(0)(0) are independent, and, in general, it is known that for each
i, fi(6) is independent of {f;(¢) : j € S{} for sets S; with max; |S;| < K. For some of our processes, these
independencies are conditional on a random variable (e.g. conditional on infinite sequence
(Wh,...,),(A1,...)). In that case, we will apply our general proof below conditional on this random
variable and obtain a bound on the orlics norm that holds for almost every value of the conditioning
random  variable. For example, one establishes a universal bound C in
| Xn(61) —Xn(62) ||, <C | fi—f2|| with the P in the orlics norm being a conditional distribution,
given a value of the conditioning random variable) where C does not depend on the value of the
random variable one conditions upon. Finally, we really need to bound || Xy(61) — Xn(62) |, » so that we
will apply the lemmas below to Xy(6;) — Xn(6,) instead of Xy(6).

So our goal is to bound | Xy(0) [,< C| 6| for some universal (in N and 6 € F) . As outlined in
previous subsection, the choice of orlics norm and norm || 6| for 8 € F is important, since the corre-
sponding entropy requirement on  is that [J A7/ (N(e, || - ||, F))de < co. We will establish our results for the
strongest orlics norm which corresponds with A(x), while we select the supremum norm
| 0 ||= max(|| Q ||s, || i ||) for the functions 6 € F.

Lemma 3 Let || X ||; be the orlics norm defined above w.r.t. /(x) = exp(x?) — 1. Suppose that for each p
EXn(0)P <C(N.p) [ 0.
Let D(N) be a number so that

> C(N,2p)D(N)¥ /p! < 1.
p=1

Then,

I Xn(0) 2= pem 1O 1 -

( )

In particular, if C(N, p) can be bounded from above by C(p) constant in N, and one finds a D (constant in N) so
that »°, C(2p)D* /p! <1, then it follows that | Xy (0) i< 3| 6 |-

Proof. We first note

IS Ll

= = C¥p!
Suppose that for each even p E|Xy(0)]° < C(N,p) || @ ||P . Then, we have

~C(N.2p) || 0>

Eexp{Xy(0)/C}* —1< cp!

p=1
So || Xn(0) ||; is bounded by a C chosen so that

3 CW.2) ||0|| ¥
p! T

p=1

Let D(N) be a number so that

C(N,2p)D(N)* /p! < 1.

NgE

1

S
Il

Then, C can be selected so that || f || /C < D(N), or equivalently, C >|| 6 || /D(N). Thus, we have shown that
I Xn(0) [12< 5 1 € || - The last statement is straightforwardly shown. O
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Thus, apparently, it suffices to establish a bound of the type E|Xy(6)]P < C(N,p) || 6 ||P for some
C(N,p) that is somewhat well behaved as function in p for p — oo so that the previous lemma applies.
We use the following lemma to bound the pth moment of Xy(6).

Lemma 4 Assume that, for each i =1,...,N, and each integer p, we have a universal constant C so that
1
1£0) I, =EG@) 0N F<C 8] (21)
Then, we have
p p
E[[f<]]lIflasclolF.
j=1 j=1

The bounding (eq. 21) is a straightforward consequence of our conditions stated in the theorem, where we
use the supremum norm on 6 € F, thereby allowing us to apply this lemma.

Proof. By repeatedly applying Cauchy—-Schwarz inequality, it follows that
P 7\ V@)
ETT50) < [1(E607) =TT 150 I3 -
j j=1 j=1
By assumption, || f;(0) ||5< C || @] , so that the latter is bounded by C? || ¢ ||P . O
The following lemma provides us with an upper bound for C(N, p) so that E|Xy(0)]° < C(N,p) || 0| -
Lemma 5 Assume that, for each i, and each integer p, we have a universal constant C so that

1£0) = EGF@)©O))P<clo].

Let R(iy, ..., i) be an indicator, identified by indices i= (i1,...,0p) € {1,..., N}, which equals 1 if there
exist a set F(i;) among the sets F(iy), ..., F(iy,) that is disjoint from the other sets. More generally, we can define
R(iy,...,1,) equals 1 if there exists an element j € {i,...,i,} so that fj(0) is independent of fi(f) for all
ke {i,...,ip} with k#j.

Let

C(N,p)=N"7>"_(1-R(i).
Then

| Xn(0) l[p< CN.p)C [ O] .
Proof. We have

p
E(l/\/ﬁZﬁ) =Ny Eﬁfii
i i j=1

1oy

=NP2 Z (1—R(, .. 71P))E1£[f1/
L =1

By the previous lemma, we have E[},fj < C? || 6 || for a C< oo, so that we obtain

p
E(l/x/ﬁZﬁ) SNPPY(1—R(@,...,;,)CP || 0.0

By putting a bound on |F;|, we can obtain a nice bound on Zih”’ip(l —R(iy,...,1,)), so that the previous
lemma combined with Lemma 3 results in the following lemma providing the desired universal bound on
the orlics norm.
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Lemma 6 Assume that, for each i, and each p, we have a universal constant C so that
1£:00) [l= (E(0)(0)) < clla] .

Assume that f; is independent of {f; : j € S} for a set S; C {1,...,N} and max; |S;| < K. For p an integer, we
have E|Xx(0)° < C(N,p)CP || 0 ||P, where

C(N,p)=N"">"(1-R(is,...,ip))

< Z(Kp)"*(N — Kp)"*N P>,
For A(x) = e —1, we have || Xy(0) |,< Ci(K) || 0] for some C,(K) < CVK for some universal C < cc.

Proof. We first need to show that C(N,p) < 2°(Kp)?/*(N — Kp)P/’N~P/2. Selection of one particular i corre-
sponds with p times in a row selecting an element in {1,...,N}. Without restrictions on this sequence of p
draws, one has N options at each of the subsequent p steps resulting in N? vectors i Suppose we have
arrived at the Ith draw, so that we have a sequence (i, ..., ;) with corresponding sets S(i;), ..., S(i;_;). For
a next i; we define a binary B(i;) = 1if S(i}) " 24 S(is) = 0. Suppose B(i)) = 1. {i, ..., i}, i; is an island, and
one cannot find a single element iy, in {1,...,N}/{i,. .., i} for which iy is an element of both (1) S; and (2)
Us<1-1S;,, since we arranged that S(i) U2 S(is) = 0. As a consequence, an element with B(i;) = 1 will need
at least one future s>1 selection with B(i) = 0 in order to connect i; with is, and such a future selection s
cannot simultaneously connect with another i; with j<1I. As a consequence, if the sequence of p elements
(B(i1), ..., B(iy)) has more than p/2 1’s, then there will be at least one island {i;} among {ij,...,i,} of size 1
with B(ij) = 1. Thus, in that case 1—R(i) = 0. Thus, we only need to count the vectors i for which
B(i;),...,B(ip) has at most p/2 1’s.

For a choice with B(i;) = 1, we have at most N — Kp possible choices since we cannot select any of the
elements in S(i;), ..., S(i;_1). For a choice with B(i;) = 0, we have maximally Kp choices. The total number of
sequences B(i), ..., B(i,) for which there are at most p/2 1’s is upper-bounded by 2°. The total number of
sequences i present in one such sequence is given by (Kp)? 2 (N — Kp)? 2. To conclude, we have the
following upper bound

C(N,p) < 2°(Kp)P/*(N — Kp)P/>’N*/2,

which proves our first result.

Thus, we have E|[Xy(0)]P < CPC(N,p) || 6 ||P with C(N,p) bounded by this upper bound. We now want
to bound the orlics norm || Xy(6) ||, . Let us first do this for the orlics norm 4, (x) = exp(x) — 1. Using that
p' > (p/2)!(p/2"2, (N — Kp)/N < 1, we have

< CPC(p,N)| 6 ||P
|| Xn(6) |,11—inf{c0 : ZMH CPH . 1}
0

= P
= inf {Co : i%(@)p/ gu ;,f/f)p/z ” fglp < 1}
: mf{c" : gCNIEOH 9 ”)p@/zﬁ:f/z)”/z : 1}
o S E 1)

Thus there exists a co = co(K,C) || € || so that the term on the left of the inequality is smaller or equal than
1, so that we have shown || Xy(0) ||, < co(K,C) || 6] . It also follows that co(K,C) can be bounded by a
universal constant times /K. This completes the proof for this orlics norm identified by ;.
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Let us now do the proof for the orlics norm identified by ,. Note E exp{(Xy(0)/co)*} —1 = > oot Excbz,szl)b
Thus, we have °

| 2p
p=1 p: Co

0 2092p _ 4 2p
:inf{cO:ZC 2 (sz)p(N K2p)” || 4| <1}

! 14 2 =
p=1 b N Co

o0 »

p=1

, < c2C(2p,N) | 0 ||*
||XN(9)||AZ—1nf{CO:Z N 51}

The term within ()21” can be made smaller than an arbitrary number 0> 0 by just selecting co large enough.
Therefore, we need to show that Z;OZI &pP /p! is bounded for some small enough §>0. The proof then
proceeds as above for the Z;-orlics norm. Now, we note that, using 1— x ~ exp(—x) for x ~ 0, and

p
2T G- /)~ exp- 37 /)
j=1

=exp(—) 7 (i~ 1)/p) = exp(~1/pp(p —1)/2) = exp(~(p — 1)/2).

Thus, > )7, #pP/p! behaves as 3_ 7, 0" exp((p — 1)/2). Since exp((p —1)/2) < exp(p), by selecting J small
enough with J * exp(1)<1, this sum can be made arbitrarily small. As before it follows that ¢, can be
bounded by universal constant times v/K. O

(A3): Asymptotic equicontinuity of ZNY(T))

The process Zyy = 1/v/N Y, fy; is a sum of independent random variables conditional on (W, A), so that its
analysis is a simple imitation of the general analysis presented in previous subsection, conditional on W, A.
The proof that the | - ||, -norm (conditional on W, A) of fy;(h;) — fY (h,) is bounded by a universal constant
times the supremum norm of le - flz is as follows:

Epawf(h — h2) (CY)(Yi = Qo(CY )} <l ha — Bz |2, By (Y — Qo(CY))
=C ||~ ha |12,

where, because ¥; < 1 and Q, < 1, we have that C < 1.

(A3): Asymptotic equicontinuity of ZNA(T), Q

Conditional on W, for a fixed 6 = (h, Q), we can represent this process as 1/v/N >_;{fai(0) — P¥fa;}, where
fai depends on A through (4; :j € F;)), while all 4;, i=1,...,N, are independent. As a consequence, for
each i, conditional on W, f,; is independent of (fy; : j, Fj N F; = (). Again, the above general analysis can be
applied, and the proof that the || - ||, -norm of f4 ;(61) — fa:(6>) is bounded by a universal constant times the
supremum norm of #; — 0, is as follows. Firstly,

fai(hi, Q1) — fai(ha, Q) =hi(Qo — Q1) — h2(Qo — Qo)
- (Jﬁl(éo — Q)80 — Jilz(@o - Q)80
=(h —h)(Qo — Q) + i (Q — Q1)
= ([ = Ra) @0 -~ Qulgo + [ (@2 - Qg
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We have || (h — hy)(Qo — Q2) [[p<[| B1 — bz [l and || ha(Q; — Q1) [[,<]| F1 [locl @2 — Q1 || - By our uniform
bound on the class of functions F we have that || h; ||, <M< oo for some M< co. We also have

I [(hs = Fa)(@a — Qoo o] L(Oo Q) (OZo(clW) ol P — iy [,

where || j (Qo — Q)(c )80i(c|W) || < supy J"Cgoj(c|W) = 1. The same bounding applies to || fll(()z — Ql)go_,-.
This proves that indeed || fa;(h1,Q1) — fai(hy— Q) ||, is bounded by C times max(|| by — h; |«
|| @ — Q2 ||oo), Which completes the proof.

(A3): Asymptotic equicontinuity of ZNW(F, Q)

Conditional on Fy,...,Fy, we can represent Zyw(h,Q) as 1/N Y {fwi(h,Q)(W;:j € Ri) — Pofw.}.
Specifically, fwi(h,Q) = [h(Q — Qo)goi(c|W). Under our independence assumption, we know that for
each i, fyw; only depends on maximally K fw ;. Thus, we can apply our general proof above to establish
the bound of its orlics norm. As above, we can show that the || - ||, norm of f¥(6) is bounded by a constant
C times the supremum norm of 6.

Proof of (A2)

Define the process Zj, y(Q) = \/_Zl {firi(Q) — Pofy, (Q)} indexed by Q, where f},,(Q) = [Q(c)g; (c|W). We
need to prove that Ry = Z}, y(Qy — Q") = op(1). This proof is completely analogue to our proof above for

establishing asymptotic equicontinuity of the other ZW_,N(ﬁ, Q) process analyzed above, but now with respect
to the supremum norm for Q.

Proof of (A4)

Recall the definition of the process

N

Zu® = U5 D@
where
Rule) = | 12100~ @)l (e W)s(aw
-] ] @ - e @mstawuomn.
and g(a|w) is the conditional distribution of A = (4;,...,Ay), given W, implied by g. We need to prove that

Z3, v (8n) — Z3; y(80) = op(1). This proof is completely analogue to our proof above for establishing asymp-

totic equicontinuity of the other ZW7N(}71, Q) process analyzed above, but now with respect to the supremum
norm for g.
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(A1): Establishing weak convergence of first-order approximation of
standardized estimator

Outline of proof

Recall
\m%mwﬁgﬂmﬁ%Z%ﬁm+M%AHAﬁhm
where
for = 4D € Qo)
i = (€@ - Q)]
- | F (0~ @ sostel) + £

s = | Go(c)giclm) - |

C,

Qo(c)g; (c|W)Qwo(dw).

We will establish weak convergence of each of the three terms separately.
The proof of weak convergence of Zyy can be based on standard CLT since, conditional on (4, W), Zyy is
a sum of mean zero independent random variables.

Lemma 7 Zyy = 1/VN Zf’: 1fr.i converges weakly to a normal distribution with mean zero and variance
1 N
2 s 2
= lim = P,f2.
o = Jim y 2_Pofi,

= Jim [Ro(e)s3(c/Ro(c)ducc)

N—oo

assuming this limit exists, where

oy(CY) = Eo({Yi — Qo(C)}*|A, W) = Eo({Y: — Qo(C]) }’lc] (4, W)).

For example, if Y; is binary, then the latter expression equals
oy (CY) = Qo(1— Qo)(C}).
Recall that hfy = L3 ke ..

We establish weak convergence of Zy, by establishing convergence of its pth moment. Specifically, we
establish that E(Zy,)? — pl’/zﬁizm for p even, and E(Zy,)” — 0 for p odd, as N — oo, where j represents
the limit of the second moment E (ZNA)Z. This convergence in moments implies that Zy converges weakly to
a normal distribution N(0,¢? = p), where we utilize the following two lemmas.

Lemma 8 A random variable Z with EZP = pl’/zﬁlim for p even, and EZP = 0O for p odd has probability
distribution equal to N(0,¢* = p), the normal distribution with mean zero and variance p.
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Proof. We have

N (2p)'
_,,;(p) p

= exp(0.5t%5),
which is the moment generating function of N(0,s% = ), i.e. a normal distribution with mean zero and

variance equal to p. O

Lemma 9 Suppose EZ§ < C? for a universal C< co. Suppose that EZY, — pP?p!/(p/2)12°/% for p even, and
EZ¥ — 0 for p odd, as N — oco. Then Zy converges in distribution to Z = N(0,0*> = 2d), as N — oo.

Proof. Consider the moment generating function E exp(tZy) when EZ§, — pr2 By Fubini’s theorem,

p!
PEZE
EZ &7 = ngzg‘

p=0

Because EZ} < CP, we have

p:Mp' p:Mp'

which converges to zero in M — oo. Therefore, we can truncate the summation defining the moment
generating function of Zy and focus on establishing convergence of E Zﬂiong\’,, but the latter follows
from EZ§ — EZP as N — oc. This proves that

Eexp(tZy) — Eexp(tZ).

This proves that Zy(Q) converges in distribution to Z(Q) = N(0,6*> =p) as N — co. O

(A1): Establishing convergence of pth moment for Zy,

We consider the case that Wy, ..., Wy are independent, given F. The proof can be generalized to handle our
weaker independence assumption on the distribution of W.

Lemma 10 Consider the empirical mean Zy, = ﬁzi fai, Let
pU1,J2lW) = Eo(fajifas,|W).
For example, if gy = go, we have

:;E 1; (Qo - Q)(c );E (€2)(Qo — Q)(c2)805 (€1, €2l W)

- [0 - @eigoatew) [ 1@ - Qg0 (eI,

0

P, J2|W) J

where gy ;; is the conditional distribution of (C;(4, W), C;(A, W)), given W, which only depends on A through
(Al :le FiUF}').



66 —— M. ). van der Laan: Population of Causally Connected Units DE GRUYTER

Let p,(j1,j2) = E(p(j1,j2| W)|F). For two integers (i;, i), define R,(ij, ;) as the indicator that the intersec-
tion of F;, and F;, is non-empty. Assume that for a constant p4, we have

1 .. _
Z pA(117 12) —“N—oo PA-

i1,12,Ra (i1,12)=1

We have for p even,

p
1 p! _p/2
(3 ) ~ e
For p odd, this pth moment converges to zero.

Proof. Given an index i = (it,...,0p) € {1,..., N}’ (one among NP), we can draw a graph by drawing a line
between two elements iy, i, in {i,...,i,} whenever the two corresponding sets F(i;) and F(i,) have a non-
empty intersection. Classify an element (i, . . ., iy) by the sizes of the connected sets that make up the graph

—

of (i1,...,ip). One category of indices is that each connected set is of size 2, assuming p is even, and let R(i)
be the indicator of falling in this category. For each of the other categories with all connected sets of size
larger or equal than 2, but at least one larger than 2, we can show that its number X of elements is of smaller
order than N~?/2; NP/2X — 0 as N — oo, using that |Fi| < K. The latter shows, in particular, that the
moment for p odd converges to zero. In addition, for i with Rz(?) =1,letj=1,...,p/2 index the p/2 pairs
that are connected, and let j; (?), jz(?) denote the two indices in {i, ..., i,} corresponding with each jth pair.
We also note that (faj,,fa;,) are independent across the pairs j, conditional on W. We have

P p/2
Ew (% ZfAJ.) — NP2 Z Ry(iy, ..., ip) HEfA,il@fAﬁb(;) +0(1)
i 11,00 slp j=1
p/2
=N7P2 3" Ry(in, ..., 1p) [ [ i, 2l W) + 0(1).

ip,dp j=1
Let (F;, W;) represent the i-specific baseline covariates, so that F; is separate from W;. We now want to take a
conditional expectation, given Fi,..., Fy, of the last expression in order to obtain an expression for the pth
moment only conditioning on F. Conditional on Fj, ..., Fy, the indicators R,(i) are fixed. Since p(ji, jo|W)
only depends on W through (W; : i € F, UF;,), the sets Fj UF;, in the product over j are disjoint across j, and

Wi, ..., Wy are independent, it follows that, conditional on F = (Fj, ..., Fy),

p/2

p
E(\/lﬁz fA‘,.> <N S Rl i) [

Let p4(j1,j2) = E(p(j1,j2| W)|F). For two integers (iy, i), define R,(i1, i;) as the indicator that the intersection of
F;, and F;, is non-empty. Let R, = {(i1,i,) € {1,...,N}” : Ry(iy, i) = 1}, and Rg/z is the Cartesian product of

— —

this set. Let R = {(i1,...,ip) : Ro(i) = 1}, where we are reminded that R,(i) is the indicator of all connected
sets among {ij,...,i,} being of size 2. We have the following lemmas.

Lemma 11 We have

p/2
Nﬁp/2 Z RZ(jlajZ:j:L"'ap/z) HpA(jl7j2)
((12)d=1....0 /<R =
p/2

— NP2 Z HpA(j1,fz) +o(1).
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Proof of Lemma 11. Note that the right-hand side sums over vectors in Rﬁ’/ ? while the left-hand side sums
over vectors that are both in R’Z’/ % and satisfy that the corresponding p-dimensional vector is an element of
R. Since a vector made up of p/2-connected pairs can correspond with connected sets of larger size than 2,
we have that R C R’;/ 2, i.e. the right-hand side sums over more elements. However, the number of these
extra vectors i € R’Z’/ ?/R that should not have been counted is of smaller order than N?/2, so that the
contribution is negligible. 0

Lemma 12 We have

p/2
NP2 % Ryfiy, ... ,ip) [1 palissf2)
. . j=1

p/2
:(IJ/ZPWNip/Z Z Rz(jlajZ ]:177p/2)HpA(]17]2)
((1J2))eRY? =t

Proof of Lemma 12: Consider a vector of three connected pairs (1,1),(2,2), (3,3) (i.e. p = 6). These three
connected pairs appear 3! (i.e. (p/2)!) times on right-hand side. However, on the left-hand side, any vector of
length 6 with two 1s, two 2s, and two 3s is counted, and there are 6!/23 (i.e. p! /21’/2) of such vectors: the
number of ordered vectors of length 6 is 6!, but flipping the two 1’s or two 2’s or two 3’s does not yield a
different vector. [

Finally, we state the following trivial result

Lemma 13 We have

p/2 r/2
Z HpA(jlvj2) = Z pA(i17i2)
(G 2)5=1,...p/2) RS =1 {(i1,02):Ry (i1,12)=1}
This proves that
2 . AN A
NP2 37 Ro(is, ., ip) [T palir, o)
iy j=1
p! /2 p/2
__ ¥ a\D s e s ..
= e Y. Ralnjii=1....p/2) [[palir.]2)
() ) eRy? =1
p/2

D ~p/2 ;o
~pwrN " 2 et
(Grd2))eR8? J=1
p/2

p! ..
= (YN Y pu(in o)
| 2
(p/Z).Zp/ {(il,iz):Rz(iljz):l}

Finally, we assumed that the latter summation within the power converges to p. Thus, for p even, we have
1 g p!
E|— ; =2 1O
(m Zf) “ "

(A1): Convergence of pth moment of Zyy.

The same proof can be applied to establish the convergence of the pth moment of Zyy resulting in the
following lemma.

Lemma 14 Let Zyw = >_;(fw,i(W) — Pofw;), and fw (W) = fwi(W; : j € R;) for set R; defined by F with |Ri| <K
for some fixed K < oo, where we condition on F. Let

pw i, j2) = Eo(fw jy (W)fwj,(W)IF) — Eo(fwj, (W)|F)Eo (fw., (W)[F).
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Specifically, for Zyw we have
FrsW) = | olc! (@, W))g"(@W) = | Qolclgs i)

Cc

We assumed that g*((4; : j € F;)|W) only depends on (W; : j € R;) for sets R; implied by F. Thus, in this case
pulind2) = Bw | Qoler) Qe ([ Wgos (e W)
C1,C2
~Ew | Qo(€)g04(cIW)Ew | Qalcgos(cl).
c c

For two integers (iy, ), define Ry (i1, i2) as the indicator that the fw ; and fw ;, are dependent (conditional on F).
Assume

1 . _
N Z pw (it ) —N—oo p-

iy,iy,Ry (i,12) =1

We have for p even,

1
E(WZ}CWJ) —Nooo (p/Z)'ZP/pr /2

For p odd, this pth moment converges to zero.

General template of proof of Theorem 4

We have PYD}(Qy, Qwn, h(Qw.n,80)) = ¥(Qo, Qwn) — ¥(Qj, Qwn). We now proceed as follows:
¥(Qy, Qw) — ¥(Qo, Qwn) = — P¥D}y(Qyy, Qwn. h(Qun, £0))
= (Py — PY)D;(Qy, Qw.n, h(Qwn, 80))
+ Py{D;(Qy, Qw.n, hn) — Dy (Qy, Qw.n, h(Qw, 80)}
= (Py — PY)D}(Qy, Qw.n, h(Qw v, 80))
+ (Pv — Py ){Dy(Qy, Q.. hv) — Dy (Qy, Qw.n. h(Qw.n.80))}
+ Py{Dy(Qy, Qw.n, An) — Dy (Qy, Quwv, h(Qw v, 80))}-
The second term we denote with Ry,. We note that {D}(Qj, Qw.n, hy) — D% (Qk, Qwn, h(Qwn, o))} equals
N [ 7
. (Z_Z - W) (¥~ Gy(C))).

Thus, we have obtained the following expansion:

vy — Wo = (Pn — Py )Dy(Qx» Qw, h(Qw., 80))

1 ht _
+pY N —Q")(CY) +Ry,
ONZ<hN h(QWN,g0>>(Q° Q')(C!) +Ry

where

RszSV}ViZ( - QWN,go>><Q — Q)

* E* .
Py — P} NZ<hN —)(Yi—QN(C,»Y»

QW Nago)
=Rn;1 + Rn.
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By assumption, we have Ry; = op(1/V/N).
We have

(Px — P§')Dy(Qy, Qw.n, h(Qw, 80)) = (Py — P§')Dy(Q", Qw, h(Quw.n, £0))
+ (Py — PY){Dy(Qy, Qwn, h(Qw . 80)) — Dy(Q*, Qw v, h(Qw.n, 80))}
= (Py — PY)D;(Q",Qwn, h(Qwn,80)) + Ru 3.

Analogue to our proof for Theorem 2, we can show that
Ry, = 0p(1/VN) and Ry = op(1/V/N) (A3)
Consider now the term

*

N 7*
_ N (O~ — O"(CY
Z;(hm QWN,go))(QO N

We have
1 &5 (el Ry (CY) oo
PgVNZ{hN ch) (QW,IA\Ihgo)(CiY)}(QO - @)
. hy(c) _ hy(c) A _ DO 7
B Jc{l_uv(c) E(QWW,go)(C)}(QO @M. 80)(€
_ - [ N (h(Qux.gn) — h(Qwx, 80))(€)(@0 — Q) (C)h(Qux,0)()
h(Qw.n, 8o)
+ Ry 4,
where

Ry4 = L{:—i - m} o (hy — h(Qw N, 80))(Qo — Q) (c)h(Qw.x, 80)(C).

We assumed that Ry, = op(1/v/N). We also assumed

-[ = M Qs gn) — R(Qus6))(E) (@0 — @) ()R(Qu. 80)(C)
(QWNagO)

NZfA, +0p(1/VN),

where f; ;(0) only depends on O through (4;, (W; : j € F3)), and Eo(f; ;(0)|[W) = 0
Thus, we have obtained the following first-order expansion:

vy —¥(Qwn, Qo) = (Py — PY)D}(Q", Qw.n, h(Qw, 80))

N
F M- PYAL + on(1/VA).
i=1

Analysis of first-order approximation: Let

fi =Dyi(Q", Qwn, h(Qw.x,80)) + f1,-

Then, the first-order approximation is given by 1/N >",{fi(0) — P¥f;}, where PYf; = 0. It remains to prove
that this first-order expansion converges to a normal limit distribution. This proof has its own outline.
Firstly, we decompose 1/N3} ;fi(O) using f;=fa;i+fri, where fa;=Eo(filA,W)— Eo(f;|lW), and
fri = fi — Eo(fi|/A, W). Denote the two corresponding terms with Zyy/v/N + Zya/v/N.
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Note that
fri = Dy; — Eo(Dy |4, W) = ,7°<CY><Y Q(C)),

and fa; = Eo(Dy;|A, W) — Eo(Dy;|W) +f3;- We also note that, conditional on (W,A), Zyy is a sum of
independent mean zero random variables fy; (functions of Y;), and, conditional on W, Zy, =1/ VN >oifai
for some f,; which depends on A through (4;:j € F;), while 4;, i=1,...,N are pairwise (conditionally)
independent.

Analogue to our proof of Theorem 2, we can show that

ZNy =d ]V(O7 J%,)
ZNA =d N(O, 0'31)

with the expressions for o3, 4 as specified in the Theorem. Due to the orthogonality of the two empirical
processes, using moment generating functions, it also follows that Zyy + Zya =4 N(0,0° = 6% + 03). O

Notation index

TMLE: Targeted Minimum Loss-Based Estimation/Estimator

O;: Data observed on unit i. In general, 0; = (L;(0),A4;(0),...,L;i(K),Ai(r),Li(r + 1) = Y;), and the special
case r = 0 is denoted with 0; = (W}, 4;,Y;)

A;(t): Intervention node for unit i at time ¢

L;(t): Measurements/covariates for unit i at time ¢ in between intervention nodes A;(t — 1) and A;(t)

Y;: Final outcome for unit i

Li(t): Li(t) = (Li(0),...,Li(t)). Similarly, we define A;(t)

Li: Li = (Li(0),...,Li(r +1) = Y))

F;i(t): Friends of unit i at time ¢ indicating that L;(¢) and A;(t) causally only depends on the history of all
subjects through the history of unit i itself and the history of its friends j € F;(t). This defines exclusion

restrictions in the structural equation model for the equations for A;(¢t) and L;(t). For the = O-data
structure, we denote this set with F;

0: O = (0y,...,0y) is the collection of all data on the N units

Py: P is possible probability distribution of data O under our model assumptions, and P, is the true
probability distribution of O

L:L=(L,...,Ly)
A: A= (A17 "7AN)

L(t): L(t) = (Li(t) : i=1,...,N) the history of L for all N units
A(t): A(t) = (Ai(t) :i=1,...,N) the history of treatment/intervention process A on all N subjects Y:
Y=(%,...,Yy) the outcomes on all N subjects

Y: Y =15V ; the average outcome for the combined N units
Pa(A(t)): Pa(A(t)) = (L(t),A(t — 1)), parent nodes of A(t) according to the following time-ordering only:
0 = (L(0),A(0),...,L(z),A(r),Y)
Pa(L(t)): Pa(L(t)) = (L(t —1),A(t — 1)) parent nodes of L(t) according to time-ordering only

F: F = (Fy,...,Fy) the friend-process/network-process for all N units. In all probability distributions, we
always condition on F(0) = (F1(0),...,Fn(0))

U: U = (Ur0), Ua(o)s - - - » Ur()» Ua(e), Uy) the exogenous errors in the structural equation model for O defined

as L(0) = f1(0)(UL(0)): A(0) = fa(0)(L(0), Ua0)), - - - » L(z) = fr(o) (Pa(L(7)), Uyr)), A7) = faqr)(Pa(A(7)), Uaw) ),

Y = fy(Pa(Y), Uy), where f. are functions of the parent nodes and exogenous errors, modeled as in article
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PF: A possible probability distribution of (0, U) as modeled by the structural equation model
PL: The true distribution of (0, U)

MF: The set of possible probability distributions of (0, U) as specified by the structural equation model
formulated in the article. We also refer to this as the full-data model

M: The set of possible probability distributions of 0, implied by M?, or defined without reference to the
underlying model MF. M is called the statistical model for the data distribution P,

g*:g" =11,8/, g is a conditional distribution of a A*(t), given Pa(A*(t)), t =0, ..., 7. The distribution g;;(t)
is modeled through a common g;: g; (A(t)|Pa(A(t)) = Hf’zl g/ (A;(t)|Pa*(A*(t)). 8" = (g :t=0,...,7). 8
represents a stochastic intervention on the intervention nodes A representing the intervention that
replaces the true conditional distribution of A(t), given Pa(A(t)), by this user-supplied choice g, for all
t=0,...,7. One can also denote A, = A

g: g =[1,8: 8 is a possible conditional distribution of A(t), given Pa(A(t)), t = 0,...,r. The distribution
8a(y is modeled through a common g;: g;(A(t)|Pa(A(t)) = H?’Zl 8i(Ai(t)|Pa(A(t)). 8= (8 :t=0,...,7). 8o
is the true conditional distribution parametrized in terms of the true gy

L,-: The post-intervention random version of L obtained by replacing the structural equations for A by the
stochastic intervention g*. It is also called a intervention-specific counterfactual

Y;-: The post-intervention random version of Y. Note Y. is a component of Lg-

Yo: Yy = %Zfi 1 Ye i, the average outcome under intervention g*

Pg.: A possible probability distribution of the counterfactual Lg-. Py the true probability distribution of Lg-
implied by the true distribution P of (0, U).

Pg": The G-computation formula expression for P,., purely defined as a function of P. Under the posed
causal model M*, we would have Pg. o = P8"0

L#: A random variable with probability distribution P§ . Similarly, we define Y¢" and ¥¢'

WE: wF . MF — R represents the parameter mapping that maps a distribution of the underlying (0, U) into
the desired quantity of interest: W*(PL) represents the true causal quantity value. In this article, we
defined ¥ (PF) = Ep,. Yo [¥:]¥ : M — R represents the parameter mapping that maps a distribution of P
of O into a parameter value of interest. ¥(P,) represents the true statistical parameter value/estimand. In
this article, ¥(Py) = E Y, i.e. the expectation of ¥ under the G-computation distribution P% . Under the
causal model MF, we have WF (PE) = W(P,)

Statistical estimation problem: Estimation of w, = W(Py) based on O~P,, i.e. defined separately from the
underlying causal model, but the causal model allows a causal interpretation Epg Y-

Cti, Cli: Cy = cfi(L(t — 1), A(t — 1)), C; = 4 (L(t), A(t — 1)) are i-specific summary measures of the past that

Li(t) and A;(t) depend upon, respectively

Q.8: P(0) = Pog(0)=Qy(0)(L(0)) [Ti1 [T Qe (Li(6)|CH) TTizo TTi1 8e(Ai(8)ICA). Q=(Quo), Qo 1t =1,...,
7+ 1). The statistical model M = {Pqg : Q,g € G}, where Q is left-unspecified, and G is some model for g
We denote Q = (Qu :t=1,...,7+1) and g = (84 : t =0,...,7). Note Qp and g, denote common
(in i) conditional distributions of L;(t) and A;(t), respectively. We also use short-hand Q; = Qy

Cﬁ;*: ct;(L(t —1),A*(t — 1)), i.e. same summary measure as cf; but with A replaced by A..

¥(Q): Same as ¥(P), but stressing that ¥ only depends on P through Q

D« (Q,g): The canonical gradient/efficient influence curve of ¥ : M — R at P = Pyg. Also denoted with
D*(Q,h,¥(Q)) to stress that it only depends on g through a specified h(Q,g) and can be viewed as
estimating function in y

L(Q): A loss function (0, Q) — L(Q)(0) for Q satisfying Qo = arg ming PoL(Q). In our case, we define a loss
for Qy for each ¢ and define L(Q) as the sum-loss: L(Q)(0) = Y1) Li(Qr))(0). For example, one can
use the log-likelihood loss. We use a separate loss function for Qo)
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L(g): A loss function (0,8) — L(g)(0) for g. See L(Q) for sum-loss representation

Cross-validation: For example, suppose we want to estimate (_Qo,t = QO_L(Q, the common conditional dis-
tribution of L(t), given Cf,. Create a data set (L;(t), C,L[) i=1,...,N. Consider a V-fold sample split of
these N observations in a so-called validation sample Val(v) C {1 .,N} and its complement, the so-
called training sample, Tr(v), v=1,...,V. Let Q;n 1) be an estimator applied to the training sample
{(Li(t),Cf;) i€ Tr(v)}. The cross-validated risk w.rt. loss L) of this estimate is defined as
> Z,evmv Lt(QLNvT,(,,))(Li(t),Cft). A cross-validation selector among a set of candidate estimators is
defined as the one that minimizes this cross-validated risk across the candidate estimators. Similarly, we
can define cross-validation for estimation of g;

h: hit(Q,8)(ct) = Pog(Cly=c¢),i=1,...,N,t=1,...,t+1. Similarly, we define h;+(Q,g") = Pgg (C = ).
Short-hand notations are h;; and h;,. In add1t1on ht NZ: L hir and B = Zf’: e

Analogue point-treatment notation: Py, Puw, Pyaw, C!=cy(W), Cf =c\(A,W), hi(Q.g)(c)=
Pog(CY =), h(Q.g)(c) = § XL hi(Q.8)(c), h" =h(Qg"), D'(P), D'(Qg), D'(Qh(Qs) ¥Q),
Q = (Qw, Q), Qy common conditional density of Y;, given CY, Qu is the probability density of W and
Qo(CY) = Ey, (Yi|A, W) = Ep,(Yi|C}), &(Ai|C#) common density of A;, given C#

D} (P), D}, (P): D*(P) = Dj,(P) + Dy (P), orthogonal decomposition in function of W and function of
0 = (W,A,Y) with conditional mean zero, given A, W, both are elements of the tangent space at P of
the statistical model M

P": PV is conditional distribution of O, given W. P"f = Ep(f(0)|W)

WY wW(P) = ¥(Q, Qw.), where Qy y is probability distribution of W that puts mass 1 on the observed W.

Pf: f always represents a function of O: O — f(0). Pf = Epf(O)

Pyf: Pyf = f(0) since Py represents probability distribution that puts mass 1 on observed O

Zn0): Zn(6) = \/_Zl {fi(0)(0) — Pofi(0)} for specified fi(). (Zy(0) : 0 € F) represents a process indexed
by class of functions F, which we aim to analyze. In our processes 6 plays role of (Q,g, h)

fo fro fas fws Given a fi(0), we orthogonally decompose f; = fy;+ fai+fw; with fy;=fi — Py"f,
fai= PQ’W i — PV, fwi = PY'fi — Pof;, where P represents the conditional distribution of O, given X.

fI}V.ﬂ f‘ﬁ,’i, fjj?etc.: fw, indicates that it only depends on O through W and will be centered marginally, fa;
indicates that it only depends on O through (4, W) and will be centered conditional on W, and fy;
indicates that it is centered to have mean zero conditionally, given A, W. In addition, we use superscripts
to have notation for multiple of such functions if part of a single proof: e.g. fl}V.i? fz ;- In different separate
parts of proofs, we often use same notation so that fir; can denote one thing in one proof and another in
another proof.

Znas Zny, Zyw: Given a mean zero centered process (Zy(6 Z fi(0) : 6 € F), we define a corresponding
orthogonal decomposition Zy = Zyy + Zya + Zyw with Z‘[ le Jri(0), Z§(0) = \/_Z, 1fa1(0),
and Zy (0) = \/ﬁZi:lfW,l(

N(e, F,d): Number of balls of size ¢ needed to cover F w.r.t. metric d

Cy, Ca: Cy is set that contains Ciy for all i with probability 1. It is a subset of R¥ for some k (constant in N).
Similarly, Cy is set that contains C# with probability 1

|IIl;: The orlics norm of a random variable implied by a strictly monotone function 4 : R>o — R. We are
concerned with bounding the orlics norm of the random variable Zy(¢) uniformly in 6 and N.
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