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1 Introduction

We consider bounds on causal effects for an ordinal treatment variable under treatment selection. The main
purpose of this work is to consider the relationship between the assumptions of monotone treatment selection
(MTS) [1] and monotone confounding (MC) [2]. We will show MC and MTS coincide for a binary treatment, but
MC does not imply MTS for a treatment variable with more than two levels. We also derive new bounds under
different combinations of MTS or MC and an assumption of monotone treatment response (MTR).

We assume a treatment response framework identical to Manski [3] and Manski and Pepper [1]. Let Aω

denote the treatment assigned to subject ω: Aω ¼ t if ω is assigned to the treatment t, where t ¼ 0, 1, …, k is
an ordered categorical variable. Yω denotes the outcome for subject ω, and Yω(t) denotes the potential
outcome of Y for subject ω if ω is assigned to treatment t.

We use the notation B
‘

C Dj to denote that B is independent of C conditional on D [4]. The assumption
of “unconfoundedness” or “weak ignorability” or “selection on observables” [5] for observed covariates X is
that YðtÞ‘A Xj , where X denotes a covariate or a set of covariates. The assumption allows for identification
of treatment effects by

E½YðtÞ� � E½Yð0Þ�
¼

X
x

EðY jA ¼ t;X ¼ xÞPðX ¼ xÞ �
X
x

EðY jA ¼ 0;X ¼ xÞPðX ¼ xÞ:

However, the assumption itself is often not plausible. The literature on partial identification allows for more
credible inference for treatment effects because it makes much weaker assumptions [1, 2, 6–8]. Some of this
literature on partial identification derives bounds by imposing various monotonicity assumptions which are
considerably weaker than “selection on observables.” This paper advances this literature further by con-
sidering the relationships that hold between different monotonicity assumptions and by deriving new
bounds under differing monotonicity assumptions that will sometimes be tighter than those currently
offered in the literature.
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The paper is organized as follows. In Section 2, we review the MTR, MTS, and MC assumptions and the
bounds under them. In Section 3, we give results concerning relations between MTS and MC. In Section 4,
we provide new results on bounds under MTR and a reversed conditional analog of MTS. Section 5 offers
some concluding remarks.

2 Review of existing assumptions and bounds

Without monotonicity assumptions, the nonparametric bounds for an ordered categorical treatment are as
follows [1]:

EðY jA ¼ tÞPðA ¼ tÞ þ K0

X
s�t

PðA ¼ sÞ

� E½YðtÞ� � EðY jA ¼ tÞPðA ¼ tÞ þ K1

X
s�t

PðA ¼ sÞ;

where K0 and K1 are the lower and upper bounds of Y, respectively.
The nonparametric bounds can be improved by adding certain monotonicity assumptions. In this

section, we review assumptions introduced in the previous literature and the bounds under them. We
review the MTR and MTS assumptions in Section 2.1. In Section 2.2, we review the MC assumption.

2.1 Monotone treatment response and monotone treatment selection

Manski [1, 6] introduced the following MTR assumption:

ASSUMPTION 1 (MTR assumption). Let T be an ordered set, and t1 and t2 be elements of T. Then, t2� t1
)Yω(t2) � Yω(t1) for each ω.

The MTR assumption is simply that for each individual an increase in the treatment variable A will
increase or leave unchanged the outcome that would be observed.

PROPOSITION 1 (Manski [1, Corollary M1.2]). Under the MTR assumption, bounds on E[Y(t)] are

X
s�t

EðY jA ¼ sÞPðA ¼ sÞ þ K0PðA > tÞ

� E½YðtÞ� �
X
s�t

EðY jA ¼ sÞPðA ¼ sÞ þ K1PðA< tÞ:

A characteristic of the MTR bounds is that the upper bound for treatment category of A ¼ 0 is equal to the
lower bound for that of A ¼ k. Thus, the lower bound on the causal effect, E[Y(k)] – E[Y(0)], under the MTR
assumption is always zero.

Manski and Pepper [2] introduced the following MTS assumption:

ASSUMPTION 2 (MTS assumption). Let T be an ordered set, and t1 and t2 be elements of T. Then,
t2 � t1 )E[Y(t) | A ¼ t2] � E[Y(t) | A ¼ t1].

The interpretation of the MTS assumption is that if we compare two groups, those who actually received
treatment level t1 and those who actually received some higher level of treatment t2, then, for each fixed
treatment level t, the average outcomes that would have occurred if treatment had been fixed to t, is at least
as high in the group that actually received t2 as it is in the group that actually received t1.
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PROPOSITION 2 (Manski and Pepper [2, Proposition 1, Corollary 2]). Under the MTS assumptions, bounds on
E[Y(t)] are

EðY jA ¼ tÞPðA � tÞ þ K0PðA< tÞ � E½YðtÞ� � EðY jA ¼ tÞPðA � tÞ þ K1PðA > tÞ:

Bounds with narrower width follow by combining the MTR and MTS assumptions.

PROPOSITION 3 (Manski and Pepper [2, Proposition 2, Corollary 2]). Under the MTR and MTS assumptions,
bounds on E[Y(t)] are

X
s�t

EðY jA ¼ sÞPðA ¼ sÞ þ EðY jA ¼ tÞPðA > tÞ

� E½YðtÞ� �
X
s�t

EðY jA ¼ sÞPðA ¼ sÞ þ EðY jA ¼ tÞPðA< tÞ:

Note that even when the MTS assumption is added to the MTR assumption, the upper bound for
treatment category of A ¼ 0 is still equal to the lower bound for that of A ¼ k, and thus the lower
bound on E[Y(k)] – E[Y(0)] is always zero.

2.2 Monotone confounding

For observed covariates X, VanderWeele [3] introduced the following MC assumption:

ASSUMPTION 3 (MC assumption). There exists univariate U such that Y(t) q Aj {X, U} and both E(Y | A ¼ t,
X ¼ x, U ¼ u) and E(A | X ¼ x, U ¼ u) are either non-decreasing or non-increasing in u for all t and x.

The MC assumption would be plausible if there were a single unmeasured covariate U that affected both A
and Y such that controlling for the measured covariates X and the unmeasured covariate U sufficed to
control for confounding and such that U affected treatment A and outcome Y in the same direction. The
interpretation of MC in the presence of multiple unmeasured variables, however, is more complicated.
Consider for example the relations in Figure 1 in which both U and V are unmeasured.

In this diagram, controlling for just U along with the measured covariates X would suffice to control for
confounding for the effect of A on Y [9]. However, in Figure 1, the effect of U on A is itself confounded and
the MC assumption that E(A | X ¼ x, U ¼ u) is monotonic in u would not simply correspond to the effect of
U on A being monotonic but would require that the association between U and A due to V was such that it
was still the case that E(A | X ¼ x, U ¼ u) was monotonic. The MC assumption may thus be difficult to
establish or argue for on substantive grounds. It is, however, how epidemiologists often conceive of
confounding [10] and for this reason it is of interest, from a theoretical perspective at least, to compare
this conceptualization to that of MTS above. As we have seen, the interpretation of the MC assumption is
only straightforward when there is a single unmeasured variable and appeal should probably only be made

A YX

V
U

Figure 1 Example in which the effect of A on Y is unconfounded conditional on (X, U) but for which the MC assumption is
difficult to interpret because of V
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to the assumption in such a context. With a single unmeasured variable, the monotonicity conditions can be
interpreted simply as that U affects A and Y in the same direction. While it is impossible to know certainly
that there is a single unmeasured confounding variable, epidemiologic studies often have very rich and
extensive data on confounding variables which may make such an assumption more plausible in some
epidemiologic studies than it would in many economic research contexts wherein data on important
confounding variables is sometimes more limited.

For example, many clinical studies have data on nearly all of the information that is available to a
physician who makes decisions concerning the treatments of patients. Not infrequently the only information
that is not available in a clinical study is the physician’s subjective assessment of the patient’s prognosis.
This subjective assessment could potentially serve as the unmeasured confounding variable in the MC
assumption. For instance, Shahinian et al. [11] conducted a cohort study of prostate cancer patients to
measure the effect of androgen deprivation therapy (ADT, the standard treatment for prostate cancer, which
has fatigue, weakness, and frailty as side effects) on the occurrence of fractures. Control was made for a
number of demographic and clinical variables including age, race, grade of prostate cancer, other cancer
treatments received, and the occurrence of a fracture or the diagnosis of osteoporosis during the 12 months
preceding the diagnosis of cancer. The study did not, however, measure the physicians’ subjective assess-
ment of the patients’ maneuverability. Those with a high level of maneuverability will in general be less
likely to be frail and experience a fracture and thus also more likely to receive ADT. The MC assumption may
thus be plausible in this context.

As will be seen below, many of the results that follow also hold for multivariate U when the
components of U are conditionally independent given X. For multivariate U, we say that u � u′ whenever
each component of u is greater than or equal to the corresponding component of u′. The MC assumption
for multivariate U is then once again that E(Y | A ¼ t, X ¼ x, U ¼ u) and E(A | X ¼ x, U ¼ u) are either
both non-decreasing or both non-increasing in u for all t and x. Many of the results below hold with
multivariate U under the multivariate MC assumption but also require that the components of U are
conditionally independent given X. Such conditional independence is a strong assumption and will be
difficult to evaluate since U is unmeasured. Thus, once again, appeal to the MC assumption will in general
only be reasonable when there is a single unmeasured covariate. Although we note below when results do
hold with multivariate U under the conditional independence assumption, we do this principally
for completeness rather than because of the utility of the results for multivariate U, which we believe, in
most cases, will be limited. Alternatively, the results would also apply if there were a multivariate
unmeasured confounder that could be summarized into a single score U for which the MC assumption
held.

PROPOSITION 4 (VanderWeele [3, Theorem 1]). For binary treatment A (t2 > t1), under the MC assumption,
bounds on E[Y(t)] are

E½Yðt2Þ� �
X
x

EðY jA ¼ t2;X ¼ xÞPðX ¼ xÞ;

E½Yðt1Þ� �
X
x

EðY jA ¼ t1;X ¼ xÞPðX ¼ xÞ:

Furthermore, if U is multivariate, the conclusion still holds if the components of U are conditionally indepen-
dent given X.

The inequalities in Proposition 4 are reversed if, in Assumption 3, one of the conditional expectations is
non-increasing in u for all t and x and the other is non-decreasing in u for all t and x.

VanderWeele [3] considered only bounds for a binary treatment. Chiba [12] showed that results similar
to Proposition 4 also held for the average treatment effect on the treated employing conditional expectations
of the form, E[Y(t) | A ¼ 1].
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Proposition 4 above was proved using the following lemma that will also be used in developing
subsequent results.

LEMMA 1 (Esary et al. [13, Theorem 2.1]). Let f and g be functions with n real-valued arguments such that both
f and g are non-decreasing in each of their arguments. If X ¼ (X1,…, Xn) is a multivariate random variable with
n components such that each component is independent of the other components, then Cov{f(X), g(X)} � 0.

Construction of confidence intervals for the bounds of a causal effect, sometimes also called “uncertainty
regions” [14], is a challenging problem and will not be explored further here as our focus here is principally
conceptual, on the relationship between different monotonicity assumptions. The interested reader is
referred to recent literature on the topic for further discussion [14–18].

3 Relation between monotone treatment selection and monotone
confounding

In this section, we discuss the relation between the MTS and MC assumptions. The discussion is facilitated
by considering a conditional version of the MTS assumption. The conditional version of MTS will be useful
as it more closely corresponds to the MC assumption. The conditional MTS assumption and the uncondi-
tional MTS assumption coincide if the set of conditioning variables is empty. The conditional MTS assump-
tion can be stated follows:

ASSUMPTION 4 (Conditional MTS assumption). Let T be an ordered set, and t1 and t2 be elements of T. Then,
t2 � t1 )E[Y(t) | A ¼ t2, X ¼ x] � E[Y(t) | A ¼ t1, X ¼ x] for all x.

The conditional MTS assumption implies MTS but the converse does not hold. By applying the MTS bounds
under each distinct value of x and then summing over x we have the following immediate Corollary to
Propositions 2 and 3 above.

COROLLARY 1. Under conditional MTS, the bounds on E[Y(t)] are

X
s�t

X
x

EðY jA ¼ t;X ¼ xÞPðX ¼ xjA ¼ sÞPðA ¼ sÞ þ K0PðA < tÞ

� E½YðtÞ�
�

X
s�t

X
x

EðY jA ¼ t;X ¼ xÞPðX ¼ xjA ¼ sÞPðA ¼ sÞ þ K1PðA > tÞ:
ð1Þ

Under the conditional MTS and MTR assumptions, the bounds on E[Y(t)] are

X
s< t

EðY jA ¼ sÞPðA ¼ sÞ þ
X
s�t

X
x

EðY jA ¼ t;X ¼ xÞPðX ¼ xjA ¼ sÞPðA ¼ sÞ

� E½YðtÞ�
�

X
s>t

EðY jA ¼ sÞPðA ¼ sÞ þ
X
s�t

X
x

EðY jA ¼ t;X ¼ xÞPðX ¼ xjA ¼ sÞPðA ¼ sÞ:
ð2Þ

Note that the upper bound for A ¼ 0 is also equal to the lower bound for A ¼ k under the conditional MTS–
MTR assumptions, and the lower bound on E[Y(k)] – E[Y(0)] is always zero.

In the case of a binary treatment, the conditional MTS bounds are the same as the MC bounds on E[Y(t)].
This follows immediately from inequality (1). Likewise, the conditional MTS bounds on E[Y(t) | A ¼ a]
(a ¼ 0, 1) are also the same as the MC bounds. This is easily verified as follows:
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E Yð1ÞjA ¼ 0½ � ¼
X
x

E½Yð1ÞjA ¼ 0;X ¼ x�PðX ¼ xjA ¼ 0Þ

�
X
x

E½Yð1ÞjA ¼ 1;X ¼ x�PðX ¼ xjA ¼ 0Þ

¼
X
x

EðY jA ¼ 1;X ¼ xÞPðX ¼ xjA ¼ 0Þ

by the conditional MTS assumption. Similarly,

E½Yð0ÞjA ¼ 1� �
X
x

EðY jA ¼ 0;X ¼ xÞPðX ¼ xjA ¼ 1Þ

is derived.
We now consider the relation between the MTS and MC assumptions themselves (rather than simply the

bounds that are obtained under them). The following proposition states that MC and conditional MTS are
equivalent for binary treatment. The result also holds under MC with multivariate U, provided the compo-
nents of U are conditionally independent of one another given X.

PROPOSITION 5. For binary treatment, the MC assumption implies the conditional MTS assumption. If in
addition, the positivity assumption holds, i.e. min

y1;y0
P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x� > 0 for all x, then the

conditional MTS assumption implies the MC assumption.

PROOF. If the MC assumption holds, then for t ¼ 0, 1,

E½YðtÞjA ¼ 1;X ¼ x�
¼

X
u

E½YðtÞjA ¼ 1;X ¼ x;U ¼ u�PðU ¼ ujA ¼ 1;X ¼ xÞ

¼
X
u

E½YðtÞjA ¼ t;X ¼ x;U ¼ u�PðU ¼ ujA ¼ 1;X ¼ xÞ

¼
X
u

E½Y jA ¼ t;X ¼ x;U ¼ u�PðA ¼ 1jX ¼ x;U ¼ uÞPðU ¼ ujX ¼ xÞ
PðA ¼ 1jX ¼ xÞ

¼ EFUjX¼xfEðY jA ¼ t;X ¼ x;U ¼ uÞPðA ¼ 1jX ¼ x;U ¼ uÞg
PðA ¼ 1jX ¼ xÞ

� EFUjX¼xfEðY jA ¼ t;X ¼ x;U ¼ uÞgEFUjX¼xfPðA ¼ 1jX ¼ x;U ¼ uÞg
PðA ¼ 1jX ¼ xÞ

¼ EFUjX¼xfEðY jA ¼ t;X ¼ x;U ¼ uÞg

¼ EFUjX¼xfEðY jA ¼ t;X ¼ x;U ¼ uÞgEFUjX¼xfPðA ¼ 0jX ¼ x;U ¼ uÞg
PðA ¼ 0jX ¼ xÞ

� EFUjX¼xfEðY jA ¼ t;X ¼ x;U ¼ uÞPðA ¼ 0jX ¼ x;U ¼ uÞg
PðA ¼ 0jX ¼ xÞ

¼
P
u
EðY jA ¼ t;X ¼ x;U ¼ uÞPðA ¼ 0jX ¼ x;U ¼ uÞPðU ¼ ujX ¼ XÞ

PðA ¼ 0jX ¼ xÞ
¼

X
u

EðYðtÞjA ¼ t;X ¼ x;U ¼ uÞPðU ¼ ujA ¼ 0;X ¼ xÞ

¼
X
u

E½YðtÞjA ¼ 0;X ¼ x;U ¼ u�PðU ¼ ujA ¼ 1;X ¼ xÞ

¼ E½YðtÞjA ¼ 0;X ¼ x�
The first inequality follows because by Lemma 1,
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EΦYjΞ¼�
f’ð�;YÞγð�;YÞg � EΦYjΞ¼�

f’ð�;YÞgEΦYjΞ¼�
fγð�;YÞg

¼ CovΦYjΞ¼�
f’ð�;YÞ; γð�;YÞg

� 0;

where both f(x, U) ¼ E(Y | A ¼ t, X ¼ x, U ¼ u) and g(x, U) ¼ P(A ¼ 1| X ¼ x, U ¼ u) are non-decreasing
in u. Likewise, the second inequality follows because E(Y | A ¼ t, X ¼ x, U ¼ u) is non-decreasing in u and

P(A ¼ 0 | X ¼ x, U ¼ u) is non-increasing in u. A similar calculation holds in the case in which both f(x, U)
and g(x, U) are non-increasing in u. We thus see that if the MC assumption holds then the conditional MTS
assumption also holds.

On the other hand, if the conditional MTS assumption holds, then we have that the joint distribution
of {Y(1), Y(0), A, X} are such that E[Y(t) | A ¼ 1, X ¼ x] �E[Y(t) | A ¼ 0, X ¼ x]. Let U denote a binary

variable such that P½U ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;A ¼ t;X ¼ x� ¼ θy1y01x and P½U ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;

A ¼ 0;X ¼ x� ¼ θy1y00x with

θy1y01x ¼
ð 1
e0x

� 1Þ � Ry1y0x

1
e0x

� 1
e1x

, θy1y00x ¼
ð 1
e1x

� 1Þ
Ry1y0x

θy1y01x,

where Ry1y0x ¼ P½A¼0jYð1Þ¼y1;Yð0Þ¼y0;X¼x�
P½A¼1jYð1Þ¼y1;Yð0Þ¼y0;X¼x�and e0x and e1x are constants satisfying 0< e0x < e1x �

min
y1;y0

fP½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�g.
We show that this U satisfies the MC assumption.
First, we have

P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;U ¼ 1;X ¼ x�

¼ P½U ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;A ¼ 1;X ¼ x�P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�P
t¼0;1

P½U ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;A ¼ t;X ¼ x�P½A ¼ tjYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�

¼ θy1y01xP½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�P
t¼0;1

θy1y0txP½A ¼ tjYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�

¼ 1

1þ θy1y00x
θy1y01x

Ry1y0x

¼ 1

1þ 1
e1x

� 1
� � ¼ e1x;

P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;U ¼ 0;X ¼ x�

¼ P½U ¼ 0jYð1Þ ¼ y1;Yð0Þ ¼ y0;A ¼ 1;X ¼ x�P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�P
t¼0;1

P½U ¼ 0jYð1Þ ¼ y1;Yð0Þ ¼ y0;A ¼ t;X ¼ x�P½A ¼ tjYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�

¼ ð1� θy1y01xÞP½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�P
t¼0;1

ð1� θy1y0txÞP½A ¼ tjYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�

¼ 1

1þ 1�θy1y00x
1�θy1y01x

Ry1y0x

¼ 1

1þ
Ry1y0x� 1

e1x
�1

� �
θy1y01x

1�θy1y01x

¼ 1

1þ 1
e0x

� 1
� � ¼ e0x:
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Since e1x and e0x only depend on x, we have

P½A ¼ 1jU ¼ 1;X ¼ x�¼P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;U ¼ 1;X ¼ x�¼e1x;

P½A ¼ 1jU ¼ 0;X ¼ x�¼P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;U ¼ 0;X ¼ x�¼e0x;

which means Y(t)qA | {X, U}.
Second, by construction we have e0x � e1x, thus we E (A ¼ 1|X ¼ x, U ¼ u) is non-decreasing in u.
Third, we can get

P½U ¼ 1jYð1Þ ¼ y1;A ¼ 1;X ¼ x�
¼

X
y0

θy1y01xP½Yð0Þ ¼ y0jYð1Þ ¼ y1;A ¼ 1;X ¼ x�

¼
X
y0

1
e0x

� 1
� �

� Ry1y0x

1
e0x

� 1
e1x

P½Yð0Þ ¼ y0jYð1Þ ¼ y1;A ¼ 1;X ¼ x�

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1�
X
y0

Ry1y0xP½Yð0Þ ¼ y0jYð1Þ ¼ y1;A ¼ 1;X ¼ x�
( )

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1�
X
y0

P½A ¼ 0jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�
P½A ¼ 1jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x� P½Yð0Þ ¼ y0jYð1Þ ¼ y1;A ¼ 1;X ¼ x�

( )

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1�
X
y0

P½A ¼ 0jYð1Þ ¼ y1;Yð0Þ ¼ y0;X ¼ x�P½Yð0Þ ¼ y0jYð1Þ ¼ y1;X ¼ x�
P½A ¼ 1jYð1Þ ¼ y1;X ¼ x�

( )

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1�
X
y0

P½A ¼ 0;Yð0Þ ¼ y0jYð1Þ ¼ y1;X ¼ x�
P½A ¼ 1jYð1Þ ¼ y1;X ¼ x�

( )

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1� P½A ¼ 0jYð1Þ ¼ y1;X ¼ x�
P½A ¼ 1jYð1Þ ¼ y1;X ¼ x�

� �

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1� P½Yð1Þ ¼ y1jA ¼ 0;X ¼ x�PðA ¼ 0jX ¼ xÞ
P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�PðA ¼ 0jX ¼ xÞ

� �
:

Therefore, we have

E½Y jA ¼ 1;X ¼ x;U ¼ 1�
¼

X
y1

y1P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x;U ¼ 1�

¼
X
y1

y1
P½U ¼ 1jYð1Þ ¼ y1;A ¼ 1;X ¼ x�P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�

PðU ¼ 1jA ¼ 1;X ¼ xÞ

¼ 1
PðU ¼ 1jA ¼ 1;X ¼ xÞ

1
1
e0x

� 1
e1x

X
y1

y1
1
e0x

� 1� P½Yð1Þ ¼ y1jA ¼ 0;X ¼ x�PðA ¼ 0jX ¼ xÞ
P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�PðA ¼ 1jX ¼ xÞ

� �
P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�

¼ E½Y jA ¼ 1;X ¼ x�
PðU ¼ 1jA ¼ 1;X ¼ xÞ

1
1
e0x

� 1
e1x

1
e0x

� 1� E½Yð1ÞjA ¼ 0;X ¼ x�PðA ¼ 0jX ¼ xÞ
E½Yð1ÞjA ¼ 1;X ¼ x�PðA ¼ 1jX ¼ xÞ

� �
;

where

PðU ¼ 1jA ¼ A;X ¼ xÞ
¼

X
y1

P½U ¼ 1jYð1Þ ¼ y1;A ¼ 1;X ¼ x�P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�

¼ 1
1
e0x

� 1
e1x

X
y1

1
e0x

� 1� P½Yð1Þ ¼ y1jA ¼ 0;X ¼ x�PðA ¼ 0jX ¼ xÞ
P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�PðA ¼ 1jX ¼ xÞ

� �
P½Yð1Þ ¼ y1jA ¼ 1;X ¼ x�

¼ 1
1
e0x

� 1
e1x

1
e0x

� 1� PðA ¼ 0jX ¼ xÞ
PðA ¼ 1jX ¼ xÞ

� �
:
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Then, we have

E½Y jA ¼ 1;U ¼ 1;X ¼ x�=E½Y jA ¼ 1;X ¼ x�

¼ 1
e0x

� 1� E½Yð1ÞjA ¼ 0;X ¼ x�PðA ¼ 0jX ¼ xÞ
E½Yð1ÞjA ¼ 1;X ¼ x�PðA ¼ 1jX ¼ xÞ

� �
=

1
e0x

� 1� PðA ¼ 0jX ¼ xÞ
PðA ¼ 1jX ¼ xÞ

� �
:

Since E[Y(t) | A ¼ 1, X ¼ x] � E[Y(t) | A ¼ 0, X ¼ x] for t ¼ 0,1, we have E[Y| A ¼ 1, X ¼ x, U ¼ 1] � E[Y |
A ¼ 1, X ¼ x], and then E[Y |A ¼ 1, X ¼ x, U ¼ 1] � E[Y |A ¼ 1, X ¼ x, U ¼ 0]. Similarly, we can get E[Y |
A ¼ 0, X ¼ x, U ¼ 1] � E[Y |A ¼ 0, X ¼ x, U ¼ 0]. Therefore, E[Y |A ¼ t, X ¼ x, U ¼ u] is non-
decreasing in u. □

Although MC and conditional MTS are equivalent for binary treatment, the MC assumption does not imply the
conditional MTS assumption for a treatment variable with three or more levels, as stated in the next proposition.

PROPOSITION 6. For treatment with three or more level, the MC assumption does not imply the conditional
MTS assumption.

PROOF. For simplicity, we assume X is empty.

First, suppose P(U ¼ 1) ¼ P(U ¼ 0) ¼ 0.5, and A can take a value in {0,1,2} with P(A ¼ 0|U ¼ 1) ¼ 0.3, P
(A ¼ 0|U ¼ 0) ¼ 0.5, P(A ¼ 1|U ¼ 1) ¼ 0.5, P(A ¼ 1|U ¼ 0) ¼ 0.2, P(A ¼ 2|U ¼ 1) ¼ 0.2 and P(A ¼ 2|
U ¼ 0) ¼ 0.3, then we have E[A|U ¼ 1] ¼ 0.9 and E[A|U ¼ 0] ¼ 0.8. Thus, E[A|U ¼ u] is increasing in u.
Suppose E[Y|A ¼ t, U ¼ 1]>E[Y|A ¼ t, U ¼ 0] for t ¼ 0,1,2. Therefore, the MC assumption holds. Then we
can get

E½Yð1ÞjA ¼ 1� ¼
X
u¼0;1

E½Y jA ¼ 1;U ¼ u �PðU ¼ ujA ¼ 1Þ

¼ 5
7
E½Y jA ¼ 1;U ¼ 1� þ 2

7
E½Y jA ¼ 1;U ¼ 0�;

E½Yð1ÞjA ¼ 2� ¼
X
u¼0;1

E½Y jA ¼ 1;U ¼ u�PðU ¼ ujA ¼ 2Þ

¼0:4E½Y jA ¼ 1;U ¼ 1� þ 0:6E½Y jA ¼ 1;U ¼ 0�:
Thus, E[Y(1)|A ¼ 1]>E[Y(1)|A ¼ 2], which means that the MTS assumption does not hold.

However, the problem whether the conditional MTS assumption implies the MC assumption for a
treatment variable with three or more levels remains open.

4 New bounds under reverse conditional monotone treatment
selection and monotone treatment response

We finally give one more proposition that gives bounds when the MTR and conditional MTS assumptions
hold but in opposite directions from each other. We thus further introduce the following reverse conditional
MTS assumption:

ASSUMPTION 5 (Reverse conditional MTS assumption). Let T be an ordered set, and t1 and t2 be elements of
T. Then, t2 � t1 )E[Y(t) | A ¼ t2, X ¼ x] ≤ E[Y(t) | A ¼ t1, X ¼ x] for all x.

New bounds can be derived under a combination of the MTR and reverse conditional MTS assumptions.
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PROPOSITION 7. Suppose that the MTR assumption holds and that the reverse conditional MTS assumption
holds, then

K0PðA > tÞ þ
X
x

X
s�t

max
EðY jA ¼ t;X ¼ xÞ
EðY jA ¼ s;X ¼ xÞ

� �
PðA ¼ sjX ¼ xÞPðX ¼ xÞ

� E½YðtÞ�

� K1PðA< tÞ þ
X
x

X
s�t

min
EðY jA ¼ t;X ¼ xÞ
EðY jA ¼ s;X ¼ xÞ

� �
PðA ¼ sjX ¼ xÞPðX ¼ xÞ:

PROOF.

E½YðtÞjX ¼ x�
¼

X
s�t

E½YðtÞjA ¼ s;X ¼ x�PðA ¼ sjX ¼ xÞ

þ
X
s< t

E½YðtÞjA ¼ s;X ¼ x�PðA ¼ sjX ¼ xÞ

�
X
s�t

E½YðtÞjA ¼ s;X ¼ x�PðA ¼ sjX ¼ xÞ þ K1

X
s< t

PðA ¼ sjX ¼ xÞ:

Now, for s � t, we have that E[Y(t) | A ¼ s, X ¼ x] ≤ E[Y(s) | A ¼ s, X ¼ x] by the MTR assumption and E[Y
(t) | A ¼ s, X ¼ x] ≤ E[Y(t) | A ¼ t, X ¼ x] by the reverse conditional MTS assumption. Thus, we have that

E½YðtÞjA ¼ s;X ¼ x�

� min
E½YðtÞjA ¼ t;X ¼ x�
E½YðsÞjA ¼ s;X ¼ x�

� �
¼ min

EðY jA ¼ t;X ¼ xÞ
EðY jA ¼ s;X ¼ xÞ

� �
:

Consequently,

E½YðtÞjX ¼ x�

�
X
s�t

min
EðY jA ¼ t;X ¼ xÞ
EðY jA ¼ s;X ¼ xÞ

� �
PðA ¼ sjX ¼ xÞ þ K1PðA< tjX ¼ xÞ:

Multiplying by P(X ¼ x) and summing over x establishes the right-hand side of the inequality of Proposition
7. The left-hand side of the inequality of Proposition 7 is proved similarly. This completes the proof. □

Note that if A is binary then we have the following bounds for E[Y(0)] and E[Y(1)]:

K0PðA ¼ 1Þ þ
X
x

EðY jA ¼ 0;X ¼ xÞPðA ¼ 0jX ¼ xÞPðX ¼ xÞ

� E½Yð0Þ�
�

X
x

EðY jA ¼ 0;X ¼ xÞPðA ¼ 0jX ¼ xÞPðX ¼ xÞ

þ
X
x

min
EðY jA ¼ 0;X ¼ xÞ
EðY jA ¼ 1;X ¼ xÞ

� �
PðA ¼ 1jX ¼ xÞPðX ¼ xÞ;

and X
x

EðY jA ¼ 1;X ¼ xÞPðA ¼ 1jX ¼ xÞPðX ¼ xÞ

þ
X
x

max
EðY jA ¼ 0;X ¼ xÞ
EðY jA ¼ 1;X ¼ xÞ

� �
PðA ¼ 0jX ¼ xÞPðX ¼ xÞ

� E½Yð1Þ�
� K1PðA ¼ 0Þ þ

X
x

EðY jA ¼ 1;X ¼ xÞPðA ¼ 1jX ¼ xÞPðX ¼ xÞ:
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In particular, a lower bound on the causal effect is given by

E½Yð1Þ� � E½Yð0Þ�

�
X
x

EðY jA ¼ 1;X ¼ xÞPðA ¼ 1jX ¼ xÞPðX ¼ xÞ

þ
X
x

max
EðY jA ¼ 0;X ¼ xÞ
EðY jA ¼ 1;X ¼ xÞ

( )
PðA ¼ 0jX ¼ xÞPðX ¼ xÞ

�
X
x

EðY jA ¼ 0;X ¼ xÞPðA ¼ 0jX ¼ xÞPðX ¼ xÞ
"

þ
X
x

min
EðY jA ¼ 0;X ¼ xÞ
EðY jA ¼ 1;X ¼ xÞ

( )
PðA ¼ 0jX ¼ xÞPðX ¼ xÞ

#
:

This lower bound for the causal effect will often be greater than (and never less than) the lower bound given
in VanderWeele [3] under the MC (or conditional MTS) assumption, which was

E½Yð1Þ� � E½Yð0Þ�

�
X
x

EðY jA ¼ 1;X ¼ xÞPðX ¼ xÞ �
X
x

EðY jA ¼ 0;X ¼ xÞPðX ¼ xÞ

¼
X
x

EðY jA ¼ 1;X ¼ xÞPðA ¼ 1;X ¼ xÞPðX ¼ xÞ

þ
X
x

EðY jA ¼ 1;X ¼ xÞPðA ¼ 0;X ¼ xÞPðX ¼ xÞ

�
X
x

EðY jA ¼ 0;X ¼ xÞPðA ¼ 0;X ¼ xÞPðX ¼ xÞ
(

þ
X
x

EðY jA ¼ 0;X ¼ xÞPðA ¼ 1;X ¼ xÞPðX ¼ xÞ
)
:

5 Conclusion

When thinking about the direction and extent of bias due to unmeasured confounding, different formal
assumptions have been employed. Economists have more frequently appealed to a MTS assumption.
Epidemiologists have more frequently appealed to a MC assumption. In this paper, we have shown that
the MC assumption and the conditional MTS assumptions are in fact equivalent for binary treatment
variables, but the MC assumption does not imply the conditional MTS assumption for treatment variables
with three or more levels. We have also presented new bounds under the MTR assumption along with a
reversed analog of the conditional MTS assumption. These new bounds will generally be narrower than
bounds currently in the literature. The MC assumption is often more difficult to justify on substantive
grounds than the conditional MTS assumption. This is because the MC assumption will generally only be
reasonable if there is a single unmeasured confounder and it is often difficult to know this in practice.
However, again, in the case of a binary treatment, the two assumptions are in fact equivalent and so, with a
binary treatment, epidemiologists and economists can reasonably conceptualize unmeasured confounding
in either manner.
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