
Richard Wyss*, Mark Lunt, M. Alan Brookhart, Robert J. Glynn and Til Stürmer

Reducing Bias Amplification in the Presence of
Unmeasured Confounding through Out-of-Sample
Estimation Strategies for the Disease Risk Score

Abstract: The prognostic score, or disease risk score (DRS), is a summary score that is used to control
for confounding in non-experimental studies. While the DRS has been shown to effectively control for
measured confounders, unmeasured confounding continues to be a fundamental obstacle in non-
experimental research. Both theory and simulations have shown that in the presence of unmeasured
confounding, controlling for variables that affect treatment (both instrumental variables and measured
confounders) amplifies the bias caused by unmeasured confounders. In this paper, we use causal
diagrams and path analysis to review and illustrate the process of bias amplification. We show that
traditional estimation strategies for the DRS do not avoid bias amplification when controlling for
predictors of treatment. We then discuss estimation strategies for the DRS that can potentially reduce
bias amplification that is caused by controlling both instrumental variables and measured confounders.
We show that under certain assumptions, estimating the DRS in populations outside the defined study
cohort where treatment has not been introduced, or in outside populations with reduced treatment
prevalence, can control for the confounding effects of measured confounders while at the same time
reduce bias amplification.
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1 Introduction

Measured and unmeasured confounding present challenges in non-experimental, e.g. pharmacoepidemio-
logic research. To control for large numbers of measured confounders, summary scores are increasingly
used. The propensity score (PS), defined as the conditional probability of treatment given a set of measured
covariates, has become the most widely used summary score for confounding control [1, 2]. An alternative
summary score to the PS is the prognostic score, also known as the disease risk score (DRS) [3]. Unlike the
PS which models covariate associations with treatment, the DRS models the probability or rate of disease
occurrence absent of exposure. In a recent paper, Hansen [3] formalized the theoretical framework for the
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prognostic score or DRS. Formally, a DRS is defined as any scalar or multi-dimensional function that, when
conditioned on, induces independence between measured covariates and the potential outcome under
control (discussed further in Section 3) [3]. Although applications of the DRS have been limited compared to
the PS, use of DRSs in medical studies has increased in recent years. A number of recent studies
have demonstrated the application of DRSs for confounding control in both simulated and substantive
data [3–9].

While both PSs and DRSs control for measured confounders, unmeasured confounding continues to be
fundamental obstacle in pharmacoepidemiology and non-experimental studies in general. In the presence
of unmeasured confounding, it has been shown that controlling for variables that do not affect the outcome
except through treatment (instrumental variables) amplifies bias caused by unmeasured confounders
[10–15]. Pearl [12] further explains that bias amplification is not just a function of controlling for instruments
but also occurs when controlling for any variable that affects treatment, including measured confounders.
Controlling for measured confounders, however, removes confounding bias due to the measured confoun-
ders in addition to increasing bias caused by unmeasured confounders.

Given the potential for bias amplification, PS and DRS models that exclude instrumental variables are
desirable in terms of reducing bias caused by unmeasured confounders. Because bias amplification is also a
function of controlling for measured confounders, Pearl [12] suggests that researchers should consider the
cost when controlling for measured confounders that have a strong effect on treatment but only a weak
effect on the outcome (near instruments). For studies involving large numbers of covariates, however,
identifying instrumental variables and evaluating the cost of controlling for near instruments can be
challenging. Pharmacoepidemiologic and medical studies utilizing automated databases often involve
large numbers of potential covariates that have not been selected with a specific research question in
mind and where a multitude of factors other than the prognosis strongly influence treatment decisions (e.g.
marketing, formularies, and physician preference) [16]. In these settings, reducing bias amplification
through automated or knowledge driven variable selection strategies can be difficult.

In this paper, we discuss ways in which researchers can estimate DRSs to potentially reduce bias
amplification in situations where it is difficult to identify instrumental variables or evaluate the cost of
controlling for near instruments. In Section 2, we use causal diagrams and path analysis to review the
process of bias amplification. We show how bias amplification results from controlling indirect correlations
that are induced between predictors of treatment and unmeasured confounders when conditioning on
treatment. In Section 3, we review the balancing properties of DRSs and discuss why traditional estimation
strategies for the DRS cause bias amplification in the presence of unmeasured confounders. In Section 4, we
then discuss alternative out-of-sample estimation strategies for the DRS within large medical claims
databases. We show that under certain assumptions, researchers can reduce bias amplification by estimat-
ing the DRS within historical data prior to treatment introduction or by estimating the DRS in populations
with reduced treatment prevalence. In Section 5, we compare DRS estimation strategies when comparing
the COX-2 inhibitor celecoxib to non-selective NSAIDS in reducing gastrointestinal complications. In Section
6, we conclude and discuss limitations of the proposed estimation strategies for the DRS.

2 Bias amplification

2.1 Setup and notation

For illustrative purposes, consider the causal diagram described in Figure 1 where the nodes represent
random variables and the arrows represent causal effects. Figure 1 describes a causal structure consisting of
a treatment (T), an instrumental variable (Z), an unmeasured confounder (U), and an outcome (Y). Causal
associations between variables are shown by paths in which all arrows point forward. For example, the
path U ! Y represents the direct causal effect of U on Y and the path U ! T ! Y represents the indirect
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causal effect of U on Y. For simplicity, we will assume that T is a linear function in Z and U and that Y is
linear in U and T.

Under assumptions of linearity, Wright [17] developed a method of path analysis to determine the
correlation between two variables. This method initially labeled the arrows between variables with correla-
tion coefficients, since they are the same in both directions. However, to assess causal effects in terms of
how much one variable will change when another is changed by a given amount, regression coefficients
need to be used.

Lunt et al. [18] and Pearl [19] explain that Wright’s method can be modified slightly to determine the
relation between two variables in terms of regression coefficients. It has been shown that the value of a path
between two variables is the product of the individual segments in the path and that the overall association
between two variables is determined by the sum of all paths between the variables [17–19]. So in this case, if
we were to perform a regression of Y on U (a hypothetical regression as U is unobserved), the coefficient for
U would be equal to λ3 þ λ2λ1, where λ3 represents the value of the direct causal effect of U on Y, and λ2λ1
represents the value of the indirect causal effect of U on Y through T (Figure 1).

If we wished to calculate the direct effect of U on Y, we would need to block the indirect path
U ! T ! Y . Paths can be blocked either by controlling for a variable on the path or by having a “collider”
on the path. For example, the path U ! T  Z is blocked by the collider at T. If we were to regress Y on U
and T, the coefficient for U would be λ3.

Regression coefficients can also represent non-causal effects. For example, in Figure 1, we could regress T
on U and the regression coefficient would be λ2. However, we could also regress U on T. It is important to note
that this regression coefficient will not be equal to λ2, since its units will be whatever units U is measured in,
whereas λ2 represents a change in the prevalence of treatment whenU changes by one unit. For this reason, we
let the regression coefficient rðλ2Þ represent the value of the path labeled λ2, but in the reverse direction.

Causal diagrams enable us to identify and control for confounding effects. For example, in Figure 1
there are two paths from T to Y: T ! Y and T  U ! Y . The second path does not represent a causal effect
since all of the arrows do not point in the forward direction. The coefficient λ1 þ rðλ2Þλ3 represents the effect
of T on Y through both of these paths. This coefficient does not represent the causal effect of T on Y, since it
is confounded by U. If we block the path T  U ! Y by controlling for U (e.g. including it in the regression
equation), only the direct causal path from T to Y is left open, and the regression coefficient for T will
represent the causal effect. Pearl [12, 19] and Lunt et al. [18] provide detailed discussions on path analysis
and additional examples of Wright’s method in a structural equation setting.

2.2 Bias amplification from a causal diagram perspective

Figure 1 illustrates that the instrumental variable, Z, and the unmeasured confounder, U, are marginally
independent since the path between Z and U is blocked by the collider, T. Once we condition on T, which
we do when we estimate the treatment effect, we induce a correlation between Z and U which is represented
by the dashed arrows between Z and U in Figure 2(a). The dashed lines illustrate that this association is

T Y

U

Z

λ1

λ2

λ3

λ4

Figure 1 Causal diagram consisting of a treatment, T, an instrumental variable, Z, an unmeasured confounder, U, and an
outcome, Y
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induced and non-causal. The two arrows between Z and U are used to illustrate that this induced
association represents two pathways: (1) the indirect path in the direction from Z to U (Z ! U) and (2)
the indirect path in the direction from U to Z (U ! Z). The value of the path Z ! U is represented by the
term λ5 and can be interpreted as the regression coefficient for Z in a regression of U on Z and T. Similarly,
the value of the path U ! Z is represented by the term λ6 and is interpreted as the regression coefficient of
U in a regression of Z on U and T.

There are now four paths from treatment, T, to the outcome, Y: (1) the direct path T ! Y, (2) the indirect
path T  U ! Y (confounding by U), (3) the indirect path T  Z ! U ! Y (confounding by U and Z,
created by the correlation between U and Z that occurs when conditioning on T), and (4) the indirect path
T  U ! Z ! U ! Y (which also represents confounding by U and Z, created by the correlation between
U and Z after conditioning on T). Were we to regress Y on T, the coefficient for T would represent the sum
effect of these four paths. Formally,

@

@t
E Y jT ¼ t½ � ¼ @

@t

X
z

X
u

E Y jt; z; u½ �pðujz; tÞpðzjtÞ ð1Þ

¼ λ1 þ rðλ2Þλ3 þ λ5λ3
@

@t
E½Zjt� ð2Þ

¼ λ1 þ rðλ2Þλ3 þ rðλ4Þλ5λ3 þ rðλ2Þλ6λ5λ3: ð3Þ
Each of the terms in eq. (3) represents one of the four pathways from T to Y when we regress Y on T. The

first term, λ1, is the direct effect of T on Y and represents the unconfounded treatment effect. The second
term in eq. (3), rðλ2Þλ3, represents the value of the path T  U ! Y . The third term, rðλ4Þλ5λ3, represents the
value of the path T  Z ! U ! Y . The last term, rðλ2Þλ6λ5λ3, represents the value of the path
T  U ! Z ! U ! Y . The sum of the last three terms in eq. (3) represents the bias in the treatment effect
when not controlling for the instrument, Z, and can be expressed as

B0 ¼ rðλ2Þλ3 þ rðλ4Þλ5λ3 þ rðλ2Þλ6λ5λ3: ð4Þ
After controlling for Z, all of the pathways between T and Y that occur through Z are blocked (Figure 2

(b)). There are now only two paths between treatment and the outcome: (1) the direct path T ! Y and (2)
the confounding path T  U ! Y . A regression of Y on T and Z can then be calculated as the sum of the
values of these two pathways.

@
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E Y jT ¼ t; Z ¼ z½ � ¼ @
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E Y jt; z; u½ �pðujt; zÞ ð5Þ

¼ λ1 þ λ3
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@t
E½Ujt; z� ð6Þ

¼ λ1 þ rðλ2Þλ3: ð7Þ
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(a) Conditioning on treatment
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(b) Conditioning on treatment and Z

Figure 2 (a) Conditioning on T induces an association between Z and U. The dashed lines between Z and U illustrate that this
association is indirect and non-causal. The parallel arrows illustrate that this induced association represents two pathways.
(b) After conditioning on T and Z, all pathways from T to Y that occur through the instrument, Z, are blocked
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In eq. (7), λ1 represents the value of the direct effect of T on Y and the term rðλ2Þλ3 represents the value of
the indirect path T  U ! Y . The bias in the treatment effect after controlling for the instrument, Z, can
then be expressed as

Bz ¼ rðλ2Þλ3: ð8Þ
Pearl [12] shows that B0 ¼ ð1� ρ2ZTÞBZ, where ρZT is the correlation between Z and T. Since 0 � ρ2ZT � 1,

B0 � BZ with equality only if ρZT ¼ 0. In other words, not controlling for the instrument, Z, reduces the
overall bias in the treatment effect that is caused by the unmeasured confounder, U. When we do not
condition on Z, we allow for an induced correlation to occur between Z and U upon conditioning on T. This
induced correlation results in additional confounding (an induced confounding) that is of smaller magni-
tude and in the opposite direction than the confounding caused by U alone. Therefore, the overall
confounding in the treatment effect is less than the confounding caused only by U. Controlling for Z
eliminates the induced confounding and returns the total confounding to the value it would have been in
the absence of the instrument.

Pearl [12] provides an intuitive way of describing this effect which is discussed by Myers et al. [14].
According to Pearl, not conditioning on an instrumental variable allows the instrument to account for part
of the change or variation in the treatment variable. This reduces the amount of variation in the treatment
variable that is explained by the unmeasured confounder, thereby reducing the total amount of residual
confounding caused by the unmeasured confounder.

While we have described bias amplification in terms of controlling for an instrumental variable, the
same arguments apply when controlling for any variable affecting treatment (e.g. measured confounders).
Controlling for a measured confounder, X, will remove the confounding due to X, but also eliminate the
induced reduction in confounding by U. This may increase or decrease the overall confounding, depending
on the relative strengths of these two confounding effects. For a detailed discussion on bias amplification,
we refer the reader to Pearl [12]. The purpose for this discussion is to emphasize and illustrate that bias
amplification results from controlling induced correlations that occur between instrumental variables (or
measured confounders) and unmeasured confounders upon conditioning on treatment. Viewing bias
amplification from this perspective helps to discuss ways in which DRSs can be estimated to avoid
controlling these induced correlations while simultaneously controlling for the direct effects of measured
confounders on the outcome.

3 Balancing properties of DRSs and bias amplification when
conditioning on E½Y0 Xj � vs E½Y Xj ;T ¼ 0�

3.1 Covariate balance when conditioning on prognostic scores

In medical research investigators are often interested in comparing a treatment to a comparator therapy or no
treatment. FollowingRubin’s description of the counterfactual framework [20, 21], letY1 represent the potential
response had the individual received treatment and Y0 the potential response had the individual remained
untreated. In practice, only one of the potential outcomes is observed. Let Y represent the observed outcome
and T a dichotomous treatment. Further, let X represent a set of measured baseline covariates.

Hansen [3] shows that a prognostic score, or DRS, acts as a “prognostic balancing” score in that measured
covariates are independent of the potential outcome under no treatment upon conditioning on the DRS.
Formally, a function of X, ψðXÞ, is a DRS if it satisfies Y0?XjψðXÞ, where ? denotes the independence of
random variables and j denotes conditional on. Prognostic balance differs from “propensity balance” since
conditioning on the PS renders covariates independent of treatment assignment, not the outcome. Hansen
explains that if the conditional expectation of Y0 given X follows a generalized linear model, then one possible
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DRS is the function E½Y0jX�. The DRS can also be a multi-dimensional function. For example, if Y0jX follows a
linear model where the variance of Y0 is nonconstant in X, then the function E½Y0jX� and the variance function
together constitute a DRS [3]. Hansen further shows that under the assumption Y0? TjX (i.e. treatment
assignment isweakly ignorable or nounmeasured confounding), subclassification on aDRS,ψðXÞ, is sufficient
to satisfy Y0? TjψðXÞ and allow for identification of the treatment effect in the treated.

3.2 Bias amplification when conditioning on E½Y0jX�

Consider the causal scenario illustrated in Figure 3(a) where T represents a treatment, X a measured
confounder, U an unmeasured confounder, and Y the outcome. For simplicity, we will keep the same
linearity and distributional assumptions discussed previously when describing Figure 1 with the exception
that we will relax the linearity assumption between X and Y and assume

E Y jT ¼ t;U ¼ u;X ¼ x½ � ¼ λ1t þ λ3uþ f ðxÞ; ð9Þ
where f ðxÞ represents a non-linear function in X (e.g. f ðxÞ ¼ x þ x2). The direct effect of X on Y can then be
represented by f 0ðxÞ ¼ @

@x f ðxÞ as shown in Figure 3(a).

The reason for not assuming linearity between Y and X is because if the DRS is a linear function of only one
covariate, X, then each DRS value could be mapped to a unique value of X and conditioning on the DRS
would essentially be equivalent to conditioning on X itself. When the DRS is non-linear in X or a function of
two or more covariates, however, this is generally not the case. While the previous discussion on bias
amplification assumed a linear structural equation framework, Pearl [12, 22] extends the discussion of bias
amplification to non-linear models and shows that similar arguments for describing bias amplification can
apply in many non-linear settings.

When discussing confounding control through DRSs, it is helpful to illustrate prognostic balance using
DAGs that include the potential outcome under no treatment, Y0. Richardson and Robins [23] have
formalized the unification of DAGs with counterfactual theory and potential outcomes. Figure 3(b) shows
the causal relations between the covariates X, U, and T with Y0. Because Y0 is defined as the potential
outcome had everyone remained untreated, the observed treatment variable, T, does not affect Y0 [23].
Because we have assumed that Y is linear in T, the direct effects of X and U on Y0 are the same as those for
the observed outcome, Y (Figure 3).

For this causal scenario, one possible DRS for the measured covariate X is the function E½Y0jX�. It is
straightforward to show that E½Y0jX� is equivalent to modeling the direct relationship between X and Y0

which, in this case, is represented by the function f ðXÞ in eq. (9). Therefore, conditioning on E½Y0jX� blocks
the direct pathway between X and Y0 as illustrated in Figure 4(a): it can be thought of as blocking the arrow
labeled f 0ðXÞ from the figure, resulting in Y0 being independent of X (i.e. Y0?XjE½Y0jX�).

U

X

λ1

λ 2

λ3

λ4

f (x)

(a) Causal diagram with observed
outcome

T Y T Y0

U

X

λ2

λ3

λ4

f (x)

(b) Causal diagram with potential 
outcome under no treatment

Figure 3 (a) Causal diagram consisting of a dichotomous treatment, T, a measured confounder, X, an unmeasured confounder,
U, and an outcome, Y. (b) Causal diagram illustrating the relation between covariates in Figure 3(a) with the potential outcome
under no treatment, Y0
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If we condition on T, we again induce a correlation between U and X that is not modeled in the DRS
function, E½Y0jX�. So, if we regress Y0 on T and E½Y0jX�, there are three pathways between T and Y0: (1) the
path T  U ! Y0, (2) the path T  X ! U ! Y0, and (3) the path T  U ! X ! U ! Y0 (Figure 4(b)).
Paths (2) and (3) partially counter the effect of confounding by path (1) as discussed previously. Therefore,
the bias in the estimated treatment effect when conditioning on E½Y0jX� is reduced compared to the bias
that would result had we controlled for X directly since conditioning on X blocks paths (2) and (3) while
conditioning on E½Y0jX� does not (Figure 4(b)).

3.3 Bias amplification when conditioning on E½Y Xj ;T ¼ 0�

In practice, Y0 is only observed for the untreated population, and the DRS must be estimated indirectly
using the observed outcome Y. This has primarily been done in one of two ways. The first is to fit a
regression model to the untreated within the study cohort and then use this model to predict the disease
risk for all individuals within the full cohort. The second is to fit a regression model to the full cohort (i.e.
both treated and untreated) as a function of baseline covariates and treatment and then estimate the
disease risk for each individual after setting treatment status to untreated [3, 5–7, 9, 24].

Both of these estimation strategies attempt to estimate E½Y0jX� indirectly by estimating the function
E½Y jX;T ¼ 0�. If there were no unmeasured confounding, then it is easy to show that E½Y jX;T ¼ 0� ¼ E½Y0jX�.
In the presence of unmeasured confounding, however, E½Y jX;T ¼ 0��E½Y0jX� and E½Y jX;T ¼ 0�does not have
the properties of a prognostic score (or DRS) as defined by Hansen [3]. Further, in the presence of unmeasured
confounding, conditioning on E½Y jX;T ¼ 0� results in bias amplification. This is because the function
E½Y jX;T ¼ 0� conditions (or restricts) on T ¼ 0 and, therefore, the regression coefficient for X in this function
will not only represent thedirect effect ofXonYbut also the indirect correlation that is inducedbetweenXandY
through Uwhen conditioning on T ¼ 0. Consequently, conditioning on E½Y jX;T ¼ 0� not only controls for the
confounding due to X but also controls for the induced correlation between X and Y through U and, therefore,
removes the reduction in confounding in U that is caused by this induced correlation. Hence, the total
confounding effect in this case is BX (eq. 8) which is greater than the overall confounding had we conditioned
on E½Y0jX�.

3.4 Simulation illustrating bias amplification when conditioning on E½Y0jX� vs
E½Y jX;T ¼ 0�

For illustrative purposes, we simulated a causal structure consisting of a dichotomous treatment, T, a
standard normal measured confounder, X, a standard normal unmeasured confounder, U, and a normally
distributed outcome, Y. The conditional expectation of treatment and outcome were simulated according to

T Y 0

U

X

λ2

λ3

λ4

f (X)

(a) Conditioning on E[Y0|X ]

T Y0

U

X

λ2
λ3

λ4

f (X)

λ5λ6

(b) Conditioning on E[Y0|X ] and T

Figure 4 (a) Conditioning on E½Y0jX� blocks the direct path from X to Y0 which results in Y0 being independent of X (i.e.
Y0?XjE½Y0jX�). (b) After conditioning on both E½Y0jX� and T, X becomes associated with Y0 through an induced association
between X and U
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eqs (10) and (11). We varied the strength of the effect of the measured confounder, X, on treatment (α1) while
holding the other parameters constant.

logit E½Tjx; u�ð Þ ¼ α1x þ 0:7u ð10Þ

E½Y jx; u; t� ¼ 0:7x þ 0:7x2 þ 0:7uþ 0:7t ð11Þ
The parameter values in eqs (10) and (11) were chosen simply for illustrative purposes, and other values
could be used. In addition to the scenarios described in eqs (10) and (11) where U acts as an unmeasured
confounder, we also conducted simulations where U had no effect on T or Y (no unmeasured confounding)
to illustrate that traditional estimation strategies for the DRS can successfully control for measured
confounders and result in unbiased effect estimates in the absence of unmeasured confounding.

We estimated the treatment effect after conditioning on E½Y0jX� and again after conditioning on
E½Y jX;T ¼ 0�. Because the data were simulated, E½Y0jX� was known by design. We estimated
E½Y jX;T ¼ 0� by fitting an outcome model within the untreated cohort and then used this model to predict
disease risk for each individual within the full cohort. For comparison, we also estimated the treatment
effect after adjusting for X directly within a traditional outcome regression model.

Results in Table 1 show the bias in the unadjusted treatment effect as well as the bias after adjusting for
X directly in an outcome regression model, or adjusting for X by conditioning on E½Y0jX� or E½Y jX;T ¼ 0�.
When there is no unmeasured confounding and X does not affect treatment (OR ¼ 1.0), both the
unadjusted and the adjusted effect estimates are unbiased as expected since there is no confounding due
to either U or X. When there is no unmeasured confounding and X has an effect on treatment (X is a
measured confounder), adjusting for X directly in an outcome regression model, or conditioning on either
E½Y jX;T ¼ 0� or E½Y0jX�, successfully controls for the confounding caused by X, resulting in approximately
unbiased effect estimates (Table 1).

When U acts as an unmeasured confounder and X has no effect on T (OR ¼ 1), the unadjusted and
adjusted bias is 0.44. This bias represents the magnitude of confounding due to the unmeasured con-
founder, U. As the strength of the effect of X on T increases, the unadjusted bias also increases as expected
(Table 1). When we condition on E½Y0jX�, we control for the confounding that is caused by X without
controlling the reduction in confounding in U that is due to the induced correlation between X and U as
discussed previously. This reduction in confounding that is caused by the induced correlation between X
and U is illustrated by the reduction in bias for E½Y0jX� when X affects treatment (Table 1).

When U acts as an unmeasured confounder and we condition on E½Y jX;T ¼ 0� or control for X directly
in an outcome regression model, we remove the confounding that is caused by X, but we also control the
reduction in confounding in U that is due to the indirect correlation between X and U as discussed

Table 1 Simulation results

Scenario expðα1Þb Absolute bias in the estimated treatment effecta

Unadjusted Outcome regression E ½Y jX ; T ¼ 0� E½Y0jX �
No unmeasured confounding

OR ¼ 1.0 0.00 0.00 0.00 0.00
OR ¼ 3.0 0.62 0.00 0.00 0.00
OR ¼ 5.0 0.77 0.00 0.00 0.00

With unmeasured confounding
OR ¼ 1.0 0.44 0.44 0.44 0.44
OR ¼ 3.0 0.95 0.44 0.44 0.39
OR ¼ 5.0 1.06 0.44 0.44 0.35

Notes: aBias after adjusting for X directly in a traditional outcome regression model, or adjusting for X by conditioning on E½YjX; T ¼ 0�
or E½Y0jX�; bStrength of the effect of X on T.
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previously. Therefore, the overall confounding in the estimated treatment effect is the same had this
indirect correlation not existed at all (i.e. X did not affect T to begin with). While bias amplification is
the common term used to describe this event, this process can be thought of as a bias reduction that occurs
when not controlling indirect correlations that are induced between predictors of treatment and unmea-
sured confounders.

We use this example to emphasize two aspects of bias amplification: (1) IVs and measured confounders
can reduce the magnitude of bias caused by unmeasured confounders when the induced correlations
between predictors of treatment and unmeasured confounders are not controlled and (2) prognostic scores
(or DRSs) can control for the confounding effects of measured confounders while at the same time reduce
bias amplification.

4 Estimation strategies for the DRS to reduce
bias amplification

4.1 Challenges with same-sample estimation

Under the assumption of no unmeasured confounding, the traditional DRS estimation strategies discussed
previously can result in accurate estimates for the DRS. Even in settings with no unmeasured confounding,
however, implementing these strategies in practice can be challenging due to limitations when modeling
the DRS within the study cohort. Fitting the DRS to the full cohort benefits from increased sample size, but
can be particularly sensitive to model misspecification due to the additional assumptions required for
correctly modeling the relation between the treatment and outcome [3]. Hansen [3] explains that even small
misspecifications in the specified DRS model can result in the treatment effect being associated with the
estimated scores. This non-ancillarity in the estimated DRSs can introduce additional bias when used for
confounding control [3, 9].

Fitting the DRS only within the untreated cohort, however, increases the potential for overfitting the
model which can result in misspecified DRSs [3, 7]. In particular, if the DRS is estimated from the untreated
or control group within the study data, this estimated DRS model will be overfit in this referent group,
leading to over-estimation of risk in the control group for higher risk patients and under-estimation of risk
in the control group for lower risk patients [3, 7]. Since the DRS is often and appropriately used for stratified
treatment comparisons, such within study estimation can introduce bias in these comparisons. While bias
due to overfitting the DRS model may be small in some settings (e.g. the bias due to overfitting the DRS
model in the simulations described in Section 3.4 was very small which is likely due to the very large
sample size used in the simulations), Hansen [3] describes scenarios and gives an example involving
smaller sample sizes where overfitting the DRS model can potentially be problematic. Because factors
affecting disease risk are likely to be constant over time and across populations, recent strategies that use
out-of-sample estimation have been proposed to potentially overcome these shortcomings.

Both Hansen [3] and Glynn et al. [7] have proposed that disease risk can be accurately estimated from
either a separate population, or the same population but with historical data from a period prior to the
current study period. Hansen explains that estimating the DRS within an alternate sample of controls can
potentially avoid the complications of overfitting that can occur when using same-sample estimation. Glynn
et al. [7] suggest that estimating the DRS within historical data prior to treatment introduction can be
particularly advantageous in pharmacoepidemiologic studies that use large administrative healthcare
databases to evaluate newly introduced treatments and evolving drug therapies. Estimation with historical
data from the same data collection process increases the comparability of subject surveillance and variable
definitions between the DRS model development and application samples and limits overfitting associated
with the application of a prediction model to the same data used in its development.
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4.2 Estimating disease risk within historical data prior to treatment introduction

A potential advantage of estimating the DRS within historical data prior to treatment introduction that has
not been discussed is the potential to reduce bias amplification in the presence of unmeasured confoun-
ders. Recall that bias amplification results from controlling indirect associations between predictors of
treatment and unmeasured confounders that are induced upon conditioning on treatment. When using
historical data prior to treatment introduction to estimate the DRS, we can avoid controlling these induced
associations since we avoid having to condition on treatment when estimating the DRS.

For example, consider the same causal structure discussed previously with the exception that treatment
has not been introduced (Figure 5(a)). Assuming the effects of covariates on the observed outcome are
constant across populations, it is straightforward to show that E½YhjX� is equal to E½Y0jX�, where Yh

represents the observed outcome within the historical population prior to treatment introduction.
Therefore, conditioning on E½YhjX� within the original study cohort where treatment is present satisfies
Y0?XjE½YhjX� by blocking the direct effect of X on Y0 without controlling the indirect association between X
and Y0 through U (Figure 5(b)).

4.3 Estimating disease risk in populations with reduced treatment prevalence

Although the theoretical aspects of using historical data to estimate the DRS are promising, the
implementation of this strategy is limited to situations where historical data are available. For studies
conducted within administrative healthcare databases, this strategy can further be challenging when
covariate assessments and coding practices change over time. To address these complications we propose
an alternative DRS estimation strategy for studies conducted within large administrative databases: esti-
mate the DRS in populations where the treatment prevalence is reduced compared to the original study
population.

In pharmacoepidemiologic and medical studies, many restrictions are often placed on study participa-
tion to increase the comparability of treatment groups. For example, study participation is often restricted
to new-users of a given treatment (or treatments) after a specified washout period to reduce possible biases
caused by healthy users [25]. The new-user design and other restriction criteria are necessary to reduce bias
when using non-experimental study designs to evaluate medical treatments. However, many restrictions
placed on study participation when estimating the treatment effect may be unnecessarily restrictive when
estimating the DRS. If the effects of covariates on disease risk are stable across populations, then
individuals from outside the defined study cohort can potentially be used when estimating the DRS.
Including external data increases the volume of outcome events which can be advantageous when
attempting to model rare outcomes as a complex function of large sets of covariates. Further, including

Yh

U

X

λ3

f (X)

(a) Historical population prior to
treatment introduction

T Y0

U

X

λ2 λ3

λ4

f (X)

λ5λ6

(b) Conditioning on E[Yh|X ] and T within
the original study population

Figure 5 (a) Causal diagram representing a historical population prior to the introduction of treatment. (b) Population after the
introduction of treatment. Assuming the effects of covariates on the outcome are constant across populations, conditioning on
E½YhjX� blocks the direct effect of X on Y0 without controlling the indirect association between X and Y0 that occurs through U
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external data when estimating the DRS can potentially allow researchers to reduce bias amplification by
lowering the prevalence of treatment in the population where the DRS is estimated.

The strength of induced correlations between predictors of treatment and unmeasured confounders that
occur when conditioning on treatment is a function of the prevalence of treatment within the population.
Reducing the prevalence of treatment reduces the strength of these induced correlations (see Appendix for a
detailed explanation). For example, consider two populations with similar causal structures with the
exception that the prevalence of treatment is lower in one of the populations (Figure 6(a) and 6(b)).
Let Yr and Tr represent the observed outcome and treatment in the population with reduced treatment
prevalence. The induced correlation between X and U that occurs when conditioning on treatment will be
weaker within the population with reduced treatment prevalence compared to the original cohort (Figure 6
(a) and 6(b)).

If we estimate the DRS within the population with reduced treatment prevalence, we will be estimating a
function that is equal to E½YrjX;Tr ¼ 0�. The regression coefficient for X in this function represents the direct
effect of X on Yr as well as the indirect association between X and Yr that occurs through U when
conditioning on Tr ¼ 0. This coefficient correctly represents the direct effect of X on Y within the original
study cohort since the effect of X on the outcome is constant across populations. However, this coefficient
also underrepresents the strength of the induced association that X has with Y through U in the original
population since the induced correlation between X and U is weaker in the population with reduced
treatment prevalence where the DRS was estimated. Therefore, conditioning on E½YrjX;Tr ¼ 0� within the
original study population controls for the confounding caused by X, but only partially controls the induced
correlation between X and U within the original study cohort. This correlation, in turn, reduces the
magnitude of confounding caused by U as discussed previously.

4.4 Simulation study: a simple illustrative example

To illustrate, we simulated the same population described in eqs (10) and (11) which has a baseline
treatment prevalence of 50%. In this example, we held the effect of X on T constant at an OR¼ 5:0. We
estimated the treatment effect within this population after conditioning on E½Y jX;T ¼ 0�, where
E½Y jX;T ¼ 0� was again estimated by fitting an outcome model within the untreated cohort and then
used to predict disease risk for each individual within the full cohort. We then simulated four populations
similar to the original population with the exception that we reduced the prevalence of treatment. We
estimated the treatment effect within the original study cohort (simulated population with baseline treat-
ment prevalence of 50%) after conditioning on DRSs that were estimated within the populations with
reduced treatment prevalence.

T Y
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f (X)
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(a) Original study population

Tr Yr
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X
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λ2
λ3

λ4
f (X)
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**λ6

(b) Population with reduced treatment prevalence

Figure 6 (a) Original study cohort where the treatment effect is estimated. (b) Population with reduced treatment prevalence
where the DRS is estimated. The induced association between X and U after conditioning on Tr is weaker than the induced
association between X and U within the original study cohort after conditioning on T, and the regression coefficients λ�5 and λ�6
in Figure 6(b) are smaller in magnitude than the regression coefficients λ5 and λ6 in Figure 6(a)
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Results in Table 2 illustrate that bias amplification can be reduced by estimating the DRS in a population
where the prevalence of treatment is reduced compared to the original study cohort. Results further indicate
that this reduction in bias is a function of the baseline prevalence of treatment in the population where the
DRS is estimated. This simple example is not intended to be reflective of any practical settings, but is used
to illustrate that conditioning on DRSs that are estimated in populations with reduced treatment prevalence
only partially controls the induced confounding pathway (i.e. the induced correlation) that occurs between
predictors of treatment and unmeasured confounders upon conditioning on treatment. This, in turn,
reduces the overall confounding in the estimated treatment effect.

4.5 Challenges when comparing treatment to alternative therapies

In the previous discussion and simulated examples, we compared treated to untreated individuals to
simplify the discussion. While comparing treated populations to no treatment or placebo is a question of
interest in many studies, comparing treatments to alternative therapies (comparative effectiveness) is often
more relevant for clinical decision making in pharmacoepidemiology. Comparing treatment to alternative
therapies has many advantages with respect to avoiding the potential for confounding bias, but presents
additional challenges when attempting to reduce bias amplification through the proposed DRS estimation
strategies. This is because we can no longer avoid conditioning on treatment when estimating the DRS.

For example, if T2 represents a comparator treatment and Y2 the potential outcome under T2, then the
DRS is defined as E½Y2jX� not E½Y0jX�, where E½Y0jX� represents the baseline disease risk had individuals
remained untreated (i.e. did not receive T1 or T2). Conditioning on E½Y0jX� induces prognostic balance for Y0

by satisfying Y0?XjE½Y0jX�, but does not necessarily satisfy Y2?XjE½Y0jX�. Conditioning on E½Y0jX� when
comparing alternative treatment therapies, therefore, requires the additional assumption that treatment
effect heterogeneity for the comparator treatment is similar across populations that have the same distribu-
tion of baseline disease risk.

Because the DRS does not balance covariates across treatment groups, two groups that have the same
distribution of baseline disease risk (i.e. E½Y0jX�) do not necessarily imply that those treatment groups will
have the same distribution of disease risk under the comparator treatment (i.e. E½Y2jX�). Differences can
arise because different covariate distributions across the two treatment groups can potentially result in
differences in treatment effect heterogeneity for the comparator treatment across the two populations. If
there is no treatment effect heterogeneity, or it is reasonable to assume that treatment effect heterogeneity
for the comparator treatment is similar across populations with the same distribution of baseline disease
risk, then treatment groups with the same distribution of baseline disease risk will also have the same
distribution of disease risk under the comparator treatment. Under this assumption, the proposed estima-
tion strategies for baseline disease risk (i.e. E½Y0jX�) can potentially reduce bias amplification when

Table 2 Simulation results for DRS estimation strategies to reduce bias amplification

DRS estimation method Prevalence of treatment Absolute bias

Same-sample estimationa

50% 0.44
Reduced tmt. prevalenceb

10% 0.39
5% 0.37
1% 0.36

Historical populationc

0% 0.35

Notes: aDRS estimated in the study cohort. bDRS estimated in a separate population with lower treatment
prevalence. cDRS estimated in a population prior to treatment introduction.
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comparing alternative treatment therapies while at the same time control for the confounding effects of
measured confounders.

5 Empirical example: COX-2 inhibitors vs NSAIDs

We compared new-users of the COX-2 inhibitor celecoxib to new-users of non-selective NSAIDs (ibuprofen
or diclofenac) in reducing gastrointestinal (GI) complications over a 60-day follow-up period. New-users
were defined as individuals who initiated a celecoxib or NSAID between the years 2006 and 2008 after
having no prescription of these medications during a 6-month washout period. GI complication was defined
as a hospitalization for a GI hemorrhage or peptic ulcer disease or an outpatient visit for a GI hemorrhage.
Analyses were performed in the MarketScan Commercial Claims and Encounters and Medicare
Supplementary and Coordination of Benefit database (Truven Healthcare, Inc.), a large US employer-
based insurance claims database. The database contains patient billing information for in- and outpatient
procedures and diagnoses, pharmacy medication dispensing, and enrollment information for enrolled
employees, spouses, dependents, and retirees. We included all individuals who were continuously enrolled
in MarketScan for at least 12 months prior to drug initiation. All demographic and clinical covariates were
defined during the 6 months prior to drug initiation and are described in Table 3.

We chose this example for a few reasons. First, observational studies comparing COX-2 inhibitors to
NSAIDs using claims data are known to contain some degree of unmeasured confounding due to a lack of
information on important confounding factors (e.g. smoking status, body mass index, alcohol consumption,
etc.) [16, 25]. Further, previous studies have shown strong confounding by indication when comparing COX-
2 inhibitors to NSAIDs in preventing GI complication [26, 27]. The likelihood for confounding by indication
in this setting is supported by strong differences in the distribution of baseline covariates across treatment
groups shown in Table 3. Finally, we can use results from clinical trials as a benchmark when evaluating
the performance of various methods for DRS estimation [28, 29].

The effect of initiating celecoxib vs NSAIDs was estimated using a Cox proportional hazards model after
stratifying on the estimated DRS. We also estimated the treatment effect after stratifying on the estimated PS
for comparison. We estimated the DRS in two different populations. We first estimated the DRS (DRS1)
within the comparator group of NSAID new-users (ibuprofen or diclofenac). We also estimated the DRS

Table 3 Covariate summary

Baseline covariates celecoxib (N ¼ 4,606) NSAID (N ¼ 17,175)

Age (mean) 60.7 55.2
Sex (female) 61.2% 60.2%
Rheumatoid arthritis 2.9% 1.2%
Osteoarthrosis 27.8% 12.9%
Backache 24.1% 17.0%
Chest pain 15.0% 12.2%
Osteoporosis 4.0% 2.1%
Atrial fibrillation 9.1% 5.7%
Abdominal pain 21.5% 17.1%
Peptic ulcer, GERD, or esophageal ulcer 10.7% 7.3%
Heart disease 20.6% 15.5%
Hypertension 40.3% 32.8%
PPI 14.8% 9.7%
Warfarin use 6.5% 3.4%
Pain 32.5% 22.3%
Six or more prescription drugs in prior year 69.8% 57.9%
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(DRS2) in a population of untreated individuals (celecoxib and NSAID non-users). Because surveillance
between non-initiators and new-users can differ, we identified a group of healthcare-seeking individuals
who had an outpatient physicians visit after a 6-month washout period where no celecoxib or NSAID was
used. We required that individuals have an outpatient physicians visit in order to minimize potential
differences in covariate surveillance between non-initiators and new-users. For each of the DRS models,
we calculated the c-statistic and Hosmer–Lemeshow test statistic within a validation set of controls (i.e. a
subset of NSAID new-users) to evaluate the discrimination and calibration of the fitted DRS model.
Individuals were censored if they lost any part of coverage during follow-up.

PS stratification and both estimation methods for the DRS gave similar results in terms of the estimated
hazard ratio (Table 4). Although both PS and DRS stratification moved the effect estimate in the expected
direction, none of these methods resulted in effect estimates that are consistent with clinical trials which
have shown COX-2 inhibitors to have a significant protective effect against GI complications compared to
non-selective NSAIDs [28, 29]. These discrepancies indicate the existence of strong unmeasured confound-
ing. In this example, we did not see an improvement in a reduction of bias amplification when estimating
the DRS within an untreated population where the prevalence of both treatments (celecoxib and NSAIDs)
were reduced. Estimating the DRS within NSAID new-users (DRS1) resulted in better model fit with
improved discrimination (c-statistic) and calibration (Hosmer–Lemeshow test) compared to estimating the
DRS within an untreated population (DRS2).

6 Conclusions

We have given a concise overview of bias amplification and have discussed how bias amplification results
from controlling induced correlations that occur between predictors of treatment and unmeasured con-
founders when conditioning on treatment. We have further discussed ways in which bias amplification can
potentially be reduced using alternative estimation strategies for the DRS. Estimating the DRS in an outside
population using either historical or contemporary data allows researchers to potentially reduce bias
amplification caused by both instrumental variables and measured confounders. In theory, alternative
estimation strategies for the DRS provide a way to avoid conditioning on measured instrumental variables
and may reduce the cost of controlling for measured confounders that have strong effects on treatment and
weak effects on the outcome.

Although estimating the DRS in alternative populations has the potential to reduce bias amplification,
applying these estimation strategies within administrative claims databases has limitations as illustrated in
the empirical example comparing new-users of the COX-2 inhibitor celecoxib to new-users of non-selective
NSAIDs. As discussed previously, estimating the DRS in untreated individuals outside of the defined study
cohort has the potential for covariate and outcome misclassification due to differential surveillance of
individuals within the database. Further, estimating the DRS within populations outside the study cohort
requires the assumption that the effects of baseline covariates on the outcome are not modified in the
population where disease risk is estimated. Estimation of disease risk in a lower risk population

Table 4 Results comparing celecoxib vs NSAIDs

HR 95% CI C-statistic Hosmer–Lemeshowa

Unadjusted 1.21 (0.93, 1.50) − −

PS stratification 0.98 (0.73, 1.31) − −

DRS1 stratificationb 0.97 (0.72, 1.30) 0.65 0.21
DRS2 stratificationc 1.02 (0.75, 1.37) 0.61 0.01

Notes: ap-value for the Hosmer–Lemeshow test for goodness of fit; bdisease risk score estimated in a comparator group of NSAID new-
users; cdisease risk score estimated in a population of untreated individuals (celecoxib and NSAID non-users).
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(non-initiators) can lead to problems with extrapolation of the DRS and possibly non-linear associations
with risk. Additional research is needed to evaluate the performance of DRSs when using external data to
estimate the DRS in settings specific to pharmacoepidemiology and large database research.
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Appendix

Consider the causal scenario described in Figure 6(a) where λ5 ¼ @
@x E½Ujx; t� is the regression coefficient of X

in a regression of U on X and T. Let λ�5 represent the same regression coefficient, but within a population
with reduced treatment prevalence compared to the original study population (Figure 6(b)).
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In the above equations, ρUX and ρUXjT represent the correlation between U and X and the correlation
between U and X after conditioning on T, respectively. The term σUjT is the standard deviation of U

conditional on T. Other terms can be interpreted similarly. Since ρXT ¼ covðX;TÞ
σXσT

approaches 0 as the

prevalence of treatment approaches 0, it follows that jλ�5j � jλ5j.
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