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Abstract: We consider estimation of and inference for the mean outcome under the optimal dynamic two
time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic
treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline
and intermediate covariates. This estimation problem is addressed in a statistical model for the data
distribution that is nonparametric beyond possible knowledge about the treatment and censoring mechan-
ism. This contrasts from the current literature that relies on parametric assumptions. We establish that the
mean of the counterfactual outcome under the optimal dynamic treatment is a pathwise differentiable
parameter under conditions, and develop a targeted minimum loss-based estimator (TMLE) of this target
parameter. We establish asymptotic linearity and statistical inference for this estimator under specified
conditions. In a sequentially randomized trial the statistical inference relies upon a second-order difference
between the estimator of the optimal dynamic treatment and the optimal dynamic treatment to be
asymptotically negligible, which may be a problematic condition when the rule is based on multivariate
time-dependent covariates. To avoid this condition, we also develop TMLEs and statistical inference for
data adaptive target parameters that are defined in terms of the mean outcome under the estimate of the
optimal dynamic treatment. In particular, we develop a novel cross-validated TMLE approach that provides
asymptotic inference under minimal conditions, avoiding the need for any empirical process conditions. We
offer simulation results to support our theoretical findings.
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1 Introduction

Suppose we observe n in4dependent and identically distributed observations of a time-dependent random
variable consisting of baseline covariates, initial treatment and censoring indicator, intermediate covari-
ates, subsequent treatment and censoring indicator, and a final outcome. For example, this could be data
generated by a sequentially randomized controlled trial (RCT) in which one follows up a group of subjects,
and treatment assignment at two time points is sequentially randomized, where the probability of receiving
treatment might be determined by a baseline covariate for the first-line treatment, and time-dependent
intermediate covariate (such as a biomarker of interest) for the second-line treatment [1]. Such trials are
often called sequential multiple assignment randomized trials (SMART). A dynamic treatment rule deter-
ministically assigns treatment as a function of the available history. If treatment is assigned at two time
points, then this dynamic treatment rule consists of two rules, one for each time point [1–4]. The mean
outcome under a dynamic treatment is a counterfactual quantity of interest representing what the mean
outcome would have been if everybody would have received treatment according to the dynamic treatment
rule [5–11]. Dynamic treatments represent prespecified multiple time-point interventions that at each
treatment-decision stage are allowed to respond to the currently available treatment and covariate history.
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Examples of multiple time-point dynamic treatment regimes are given in Lavori and Dawson [12, 13];
Murphy [14]; Rosthøj et al. [15]; Thall et al. [16, 17]; Wagner et al. [18]; Petersen et al. [19]; van der Laan
and Petersen [20]; and Robins et al. [21], ranging from rules that change the dose of a drug, change or
augment the treatment, to making a decision on when to start a new treatment, in response to the history of
the subject.

More recently, SMART designs have been implemented in practice: Lavori and Dawson [12, 22];
Murphy [14]; Thall et al. [16]; Chakraborty et al. [23]; Kasari [24]; Lei et al. [25]; Nahum-Shani et al.
[26, 27]; Jones [28]; Lei et al. [25]. For an extensive list of SMARTs, we refer the reader to the website
http://methodology.psu.edu/ra/adap-inter/projects. For an excellent and recent overview of the literature
on dynamic treatments we refer to Chakraborty and Murphy [29].

We define the optimal dynamic multiple time-point treatment regime as the rule that maximizes the
mean outcome under the dynamic treatment, where the candidate rules are restricted to only respond to a
user-supplied subset of the baseline and intermediate covariates. The literature on Q-learning shows that
we can describe the optimal dynamic treatment among all dynamic treatments in a sequential manner
[14, 30–33]. The optimal rule can be learned through fitting the likelihood and then calculating the
optimal rule under this fit of the likelihood. This approach can be implemented with maximum likelihood
estimation based on parametric models. It has been noted (e.g., Robins [32], Chakraborty and Murphy
[29]) that the estimator of the parameters of one of the regressions (except the first one) when using
parametric regression models is a non-smooth function of the estimator of the parameters of the previous
regression, and that this results in non-regularity of the estimators of the parameter vector. This raises
challenges for obtaining statistical inference, even when assuming that these parametric regression
models are correctly specified. Chakraborty and Murphy [29] discuss various approaches and advances
that aim to resolve this delicate issue such as inverting hypothesis testing [32], establishing non-normal
limit distributions of the estimators (E. Laber, D. Lizotte, M. Qian, S. Murphy, submitted), or using the m
out of n bootstrap.

Murphy [30] and Robins [31, 32] developed structural nested mean models tailored to optimal dynamic
treatments. These models assume a parametric model for the “blip function” defined as the additive effect
of a blip in current treatment on a counterfactual outcome, conditional on the observed past, in the
counterfactual world in which future treatment is assigned optimally. Statistical inference for the para-
meters of the blip function proceeds accordingly, but Robins [32] points out the irregularity of the estimator,
resulting in some serious challenges for statistical inference as referenced above. Structural nested mean
models have also been generalized to blip functions that condition on a (counterfactual) subset of the past,
thereby allowing the learning of optimal rules that are restricted to only using this subset of the past [32]
and Section 6.5 in van der Laan and Robins [34].

An alternative approach, referenced as the direct approach in Chakraborty and Murphy [29], uses
marginal structural models (MSMs) for the dynamic regime-specific mean outcome for a user-supplied class
of dynamic treatments. If one assumes the marginal structural models are correctly specified, then the
parameters of the marginal structural model map into a dynamic treatment that is optimal among the user-
supplied class of dynamic regimes. In addition, the MSM also provides the complete dose–response curve,
that is, the mean counterfactual outcome for each dynamic treatment in the user-supplied class. This
generalization of the original marginal structural models for static interventions to MSMs for dynamic
treatments was developed independently by Orellana et al. [35]; van der Laan and Petersen [20]. These
articles present inverse probability of treatment and censoring weighted (IPCW) estimators and double
robust augmented IPCW estimators based on general longitudinal data structures, allowing for right
censoring, time-dependent covariates, and survival outcomes. Double robust estimating equation-based
methods that estimate the nuisance parameters with sequential parametric regression models using clever
covariates were developed for static intervention MSMs by Bang and Robins [36]. An analogous targeted
minimum loss-based estimator (TMLE) [37–39] was developed for marginal structural models for a user-
supplied class of dynamic treatments by Petersen et al. [40]. This estimator builds on the TMLE for the mean
outcome for a single dynamic treatment developed by van der Laan and Gruber [41]. Additional application
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papers of interest are [42–44] which involve fitting MSMs for dynamic treatments defined by treatment-
tailoring threshold using IPCW methods.

Each of the above referenced approaches for learning an optimal dynamic treatment that also aims to
provide statistical inference relies on parametric assumptions: obviously, Q-learning based on parametric
models, but also the structural nested mean models and the marginal structural models both rely on
parametric models for the blip function and dose–response curve, respectively. As a consequence, even in a
SMART, the statistical inference for the optimal dynamic treatment heavily relies on assumptions that are
generally believed to be false, and will thus be expected to be biased.

To avoid such biases, we define the statistical model for the data distribution as nonparametric, beyond
possible knowledge about the treatment mechanism (e.g., known in an RCT) and censoring mechanism.
This forces us to define the optimal dynamic treatment and the corresponding mean outcome as parameters
defined on this nonparametric model, and to develop data adaptive estimators of the optimal dynamic
treatment. In order to not only consider the most ambitious fully optimal rule, we define the V-optimal rules
as the optimal rule that only uses a user-supplied subset V of the available covariates. This allows us to
consider suboptimal rules that are easier to estimate and thereby allow for statistical inference for the
counterfactual mean outcome under the suboptimal rule. This is analogous to the generalized structural
nested mean models whose blip functions only condition on a counterfactual subset of the past. In a
companion article we describe how to estimate the V-optimal rule.

In Example 4 of Robins et al. [45], the authors develop an asymptotic confidence set for the optimal
treatment regime in an RCT under a large semiparametric model that only assumes that the treatment
mechanism is known. This confidence set is certainly of interest and warrants further consideration in
the optimal treatment literature. They get this confidence set by deriving the efficient influence curve
for the mean squared blip function. They propose selecting a data adaptive estimate of the optimal
treatment rule by a particular cross-validation scheme over a set of basis functions, and show that this
estimator achieves a data adaptive rate of convergence under smoothness assumptions on the
blip function. Our work is distinct from this earlier work in that the earlier work does not directly
consider the mean outcome under the optimal rule and only considers data generated by a point
treatment RCT.

In this article we describe how to obtain semiparametric inference about the mean outcome under the
two time point V-optimal rule. We will show that the mean outcome under the optimal rule is a pathwise
differentiable parameter of the data distribution, indicating that it is possible to develop asymptotically
linear estimators of this target parameter under conditions. In fact, we obtain the surprising result that the
pathwise derivative of this target parameter equals the pathwise derivative of the mean counterfactual
outcome under a given dynamic treatment rule set at the optimal rule, treating the latter as known. By a
reference to the current literature for double robust and efficient estimation of the mean outcome under a
given rule, we then obtain a TMLE for the mean outcome under the optimal rule. Subsequently, we prove
asymptotic linearity and efficiency of this TMLE, allowing us to construct confidence intervals for the mean
outcome under the optimal dynamic treatment or its contrast with respect to a standard treatment. Thus,
contrary to the irregularity of the estimators of the unknown parameters in the semiparametric structural
nested mean model, we can construct regular estimators of the mean outcome under the optimal rule in the
nonparametric model.

In a SMART the statistical inference would only rely upon a second-order difference between the
estimator of the optimal dynamic treatment and the optimal dynamic treatment itself to be asymptotically
negligible. This is a reasonable condition if we restrict ourselves to rules only responding to a one-
dimensional time-dependent covariate, or if we are willing to make smoothness assumptions. To avoid
this condition, we also develop TMLEs and statistical inference for data adaptive target parameters that are
defined in terms of the mean outcome under the estimate of the optimal dynamic treatment (see van der
Laan et al. [46] for a general approach for statistical inference for data adaptive target parameters). In
particular, we develop a novel cross-validated TMLE (CV-TMLE) approach that provides asymptotic infer-
ence under minimal conditions.
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For the sake of presentation, we focus on two time point treatments in this article. In the appendices of
our earlier technical reports [47, 48] we generalize these results to general multiple time point treatments,
and develop general (sequential) super-learning based on the efficient CV-TMLE of the risk of a candidate
estimator. In this appendix we also develop a TMLE of a projection of the blip functions on a parametric
working model (with corresponding statistical inference, which presents a result of interest in its own right).
We emphasize that this technical report is distinct from our companion paper in this issue, which focuses
on the data adaptive estimation of optimal treatment strategies.

1.1 Organization of article

Section 2 defines the mean outcome under the optimal rule as a causal parameter and gives identifiability
assumptions under which the causal parameter is identified with a statistical parameter of the observed
data distribution.

The remainder of the paper describes strategies to estimate the counterfactual mean outcome under
the optimal rule and related quantities. This paper assumes that we have an estimate of the optimal rule
in our semiparametric model. In our companion paper we describe how to obtain estimates of the
V-optimal rule.

The first part of this article concerns estimation of the mean outcome under the optimal rule. Section 3
establishes the pathwise differentiability of the mean outcome under the V-optimal rule conditions. A
closed form expression for the efficient influence curve for this statistical parameter is given, which
represents a key ingredient in semiparametric inference for the statistical target parameter. We obtain the
surprising result that, under straightforward conditions, estimating the mean outcome under the unknown
optimal treatment rule is the same in first order as estimating the mean outcome under the optimal rule
when the rule is known from the outset. Section 4 presents the key properties of a TMLE for the mean
outcome under the optimal rule, which is presented in detail in “TMLE of the mean outcome under a given
rule” in Appendix B due to its similarity to TMLEs presented previously in the literature. Section 5 presents
an asymptotic linearity theorem for this TMLE and corresponding statistical inference.

The second part of this article concerns statistical inference for data adaptive target parameters that
are defined in terms of the mean outcome under the estimate of the optimal dynamic treatment, thereby
avoiding the consistency and rate condition for the fitted V-optimal rule as required for asymptotic
linearity of the TMLE of the mean outcome under the actual V-optimal rule. These results are of interest
in practice because an estimated, possibly suboptimal, rule will be implemented in the population, not
some unknown optimal rule. Section 6 presents an asymptotic linearity theorem for the TMLE presented
in Section 4, but now with the target parameter defined as the mean outcome under the estimated rule.
In Section 7 we present the CV-TMLE framework. A specific CV-TMLE algorithm is described in “CV-TMLE
of the mean outcome under data adaptive V-optimal rule” in Appendix B due to its similarity to
CV-TMLEs presented previously in the literature. The CV-TMLE provides asymptotic inference under
minimal conditions for the mean outcome under a dynamic treatment fitted on a training sample,
averaged across the different splits in training sample and validation sample. Both results allow us to
construct confidence intervals that have the correct asymptotic coverage of the random true target
parameter, and the fixed mean outcome under the optimal rule under conditions, but statistical
inference based on the CV-TMLE does not require an empirical process condition that would put a
brake on the allowed data adaptivity of the estimator.

Section 8 presents the simulation methods. The simulations estimate the optimal rule using an
ensemble algorithm presented in our companion paper, and then given this estimate apply the estimators
of the optimal rule presented in this paper. Section 9 presents the coverage and efficiency of the various
estimators in our simulation. Appendix C gives analytic intuition as to why some of the simulation results
may have occurred. Section 10 closes with a discussion and directions for future work.

All proofs can be found in Appendix A.
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2 Formulation of optimal dynamic treatment estimation problem

Suppose we observe n i.i.d. copies O1; . . . ;On 2 O of

O ¼ ðLð0Þ;Að0Þ; Lð1Þ;Að1Þ;YÞ,P0;

where AðjÞ ¼ ðA1ðjÞ;A2ðjÞÞ, A1ðjÞ is a binary treatment, and A2ðjÞ is an indicator of not being right censored
at “time” j, j ¼ 0; 1. That is, A2ð0Þ ¼ 0 implies that ðLð1Þ;A1ð1Þ;YÞ is n ot observed, and A2ð1Þ ¼ 0 implies
that Y is not observed. Each time point j has covariates LðjÞ that precede treatment, j ¼ 0; 1, and the
outcome of interest is given by Y and occurs after time point 1. For a time-dependent process Xð�Þ, we use
the notation �XðtÞ ¼ ðXðsÞ : s � tÞ, where �Xð�1Þ ¼ ;. Let M be a statistical model that makes no assump-
tions on the marginal distribution Q0;Lð0Þ of Lð0Þ and the conditional distribution Q0;Lð1Þ of Lð1Þ, given
Að0Þ; Lð0Þ, but might make assumptions on the conditional distributions g0AðjÞ of AðjÞ, given �Aðj� 1Þ; �LðjÞ,
j ¼ 0; 1. We will refer to g0 as the intervention mechanism, which can be factorized in a treatment
mechanism g01 and censoring mechanism g02 as follows:

g0ðOÞ ¼
Y2
j¼1

g01 A1ðjÞj�Aðj� 1Þ; �LðjÞ� �
g02 A2ðjÞjA1ðjÞ; �Aðj� 1Þ; �LðjÞ� �

:

In particular, the data might have been generated by a SMART, in which case g01 is known.
Let Vð1Þ be a function of ðLð0Þ;Að0Þ; Lð1ÞÞ, and let Vð0Þ be a function of Lð0Þ. Let V ¼ ðVð0Þ;Vð1ÞÞ.

Consider dynamic treatment rules Vð0Þ ! dAð0ÞðVð0ÞÞ 2 f0; 1g � f1g and ðAð0Þ;Vð1ÞÞ ! dAð1ÞðAð0Þ;
Vð1ÞÞ 2 f0; 1g � f1g for assigning treatment Að0Þ and Að1Þ, respectively, where the rule for Að0Þ is only a
function of Vð0Þ, and the rule for Að1Þ is only a function of ðAð0Þ;Vð1ÞÞ. Note that these rules are restricted
to set the censoring indicators A2ðjÞ ¼ 1, j ¼ 0; 1. Let D be the set of all such rules. We assume that Vð0Þ is a
function of Vð1Þ (i.e., observing Vð1Þ includes observing Vð0Þ), but in the theorem below we indicate an
alternative assumption. For d 2 D, we let

dðað0Þ; vÞ; dAð0Þðvð0ÞÞ; dAð1Þðað0Þ; vð1ÞÞ
� �

:

If we assume a structural equation model [7] for variables stating that

Lð0Þ ¼ fLð0Þ ULð0Þ
� �

Að0Þ ¼ fAð0Þ Lð0Þ;UAð0Þ
� �

Lð1Þ ¼ fLð1Þ Lð0Þ;Að0Þ;ULð1Þ
� �

Að1Þ ¼ fAð1Þ �Lð1Þ;Að0Þ;UAð1Þ
� �

Y ¼ fY �Lð1Þ; �Að1Þ;UY
� �

;

where the collection of functions f ¼ ðfLð0Þ; fAð0Þ; fLð1Þ; fAð1ÞÞ is unspecified or partially specified, we can
define counterfactuals Yd defined by the modified system in which the equations for Að0Þ;Að1Þ are replaced
by Að0Þ ¼ dAð0ÞðVð0ÞÞ and Að1Þ ¼ dAð1ÞðAð0Þ;Vð1ÞÞ, respectively. Denote the distribution of these counter-
factual quantities as P0;d, where we note that P0;d is implied by the collection of functions f and the joint
distribution of exogeneous variables ðULð0Þ;UAð0Þ;ULð1Þ;UAð1Þ;UYÞ. We can now define the causally optimal
rule under P0;d as d�0 ¼ arg max d2D EP0;dYd. If we assume a sequential randomization assumption stating
that Að0Þ is independent of ULð1Þ;UY , given Lð0Þ, and Að1Þ is independent of UY , given �Lð1Þ;Að0Þ, then we
can identify P0;d with observed data under the distribution P0 using the G-computation formula:

p0;d Lð0Þ;Að0Þ; Lð1Þ;Að1Þ;Yð Þ
; I A ¼ dðAð0Þ;VÞð Þq0;Lð0ÞðLð0ÞÞq0;Lð1Þ Lð1ÞjLð0Þ;Að0Þð Þq0;Y Y j�Lð1Þ; �Að1Þ� �

;
ð1Þ
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where p0;d is the density of P0;d and q0;Lð0Þ, q0;Lð1Þ, and q0;Y are the densities for Q0;Lð0Þ, Q0;Lð1Þ, and Q0;Y ,
respectively, where Q0;Y represents the distribution of Y given �Lð1Þ; �Að1Þ. We assume that all densities above
are absolutely continuous with respect to some dominating measure μ. We have a similar identifiability
result/G-computation formula under the Neyman-Rubin causal model [8]. For the right censoring indicators
A2ð0Þ and A2ð1Þ, we note the parallel between the coarsening at random assumption and the sequential
randomization assumption [49]. Thus here we have encoded our missingness assumptions in our causal
assumptions.

More generally, for a distribution P 2 M we can define the G-computation distribution Pd as the
distribution with density

pdðLð0Þ;Að0Þ; Lð1Þ;Að1Þ;YÞ
; IðA ¼ dðAð0Þ;VÞÞqLð0ÞðLð0ÞÞqLð1ÞðLð1ÞjLð0Þ;Að0ÞÞqYðY j�Lð1Þ; �Að1ÞÞ;

where qLð0Þ, qLð1Þ, and qY are the counterparts to q0;Lð0Þ, q0;Lð1Þ, and q0;Y , respectively, under P.
For the remainder of this article, if for a static or dynamic intervention d, we use notation Ld (or Yd, Od)

we mean the random variable with the probability distribution Pd in (1) so that all of our quantities are
statistical parameters. For example, the quantity EP0ðYað0Það1ÞjVað0Þð1ÞÞ defined in the next theorem denotes
the conditional expectation of Yað0Það1Þ, given Vað0Þð1Þ, under the probability distribution P0;að0Það1Þ (i.e.,
G-computation formula presented above for the static intervention ðað0Þ; að1ÞÞ. In addition, if we write
down these parameters for some Pd, we will automatically assume the positivity assumption at P required
for the G-computation formula to be well defined. For that it will suffice to assume the following positivity
assumption at P:

PrP 0< min
a12f0;1g

g0Að0Þ a1; 1jLð0Þð Þ
� �

¼ 1

PrP 0< min
a12f0;1g

g0Að1Þða1; 1j�Lð1Þ;Að0ÞÞ
� �

¼ 1: ð2Þ

The strong positivity assumption will be defined as the above assumption, but where the 0 is replaced
by a δ>0.

We now define a statistical parameter representing the mean outcome Yd under Pd. For any rule
d 2 D, let

ΨdðPÞ ; EPdYd:

For a distribution P, define the V-optimal rule as

dP ¼ argmax
d2D

EPdYd:

For simplicity, we will write d0 instead of dP0 for the V-optimal rule under P0. Define the parameter
mapping Ψ : M ! IR as ΨðPÞ ¼ EPdP

YdP . The first part of this article is concerned with inference for the
parameter

ψ0 ;ΨðP0Þ ¼ EP0;d0
Yd0 :

Under our identifiability assumptions, d0 is equal to the causally optimal rule d�0. Even if the sequential
randomization assumption does not hold, the statistical parameter ψ0 represents a statistical parameter of
interest in its own right. We will not concern ourselves with the sequential randomization assumption for
the remainder of this paper.

The next theorem presents an explicit form of the V-optimal individualized treatment rule d0 as a
function of P0.

Theorem 1. Suppose Vð0Þ is a function of Vð1Þ. The V-optimal rule d0 can be represented as the following
explicit parameter of P0:
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�Q20ðað0Þ; vð1ÞÞ ¼
EP0 Yað0Þ;Að1Þ¼ð1;1ÞjVað0Þð1Þ ¼ vð1Þ� �� EP0 Yað0Þ;Að1Þ¼ð0;1ÞjVað0Þð1Þ ¼ vð1Þ� �

d0;Að1ÞðAð0Þ;Vð1ÞÞ ¼ Ið�Q20ðAð0Þ;Vð1ÞÞ >0Þ; 1
� �

�Q10ðvð0ÞÞ ¼ EP0 Yð1;1Þ;d0;Að1Þ jVð0Þ
� �

� EP0 Yð0;1Þ;d0;Að1Þ jVð0Þ
� �

d0;Að0ÞðVð0ÞÞ ¼ Ið�Q10ðVð0ÞÞ>0Þ; 1
� �

;

where að0Þ 2 f0; 1g � f1g. If Vð1Þ does not include Vð0Þ, but, for all ðað0Þ; að1ÞÞ 2 ff0; 1g � f1gg2,
EP0 Yað0Þ;að1ÞjVð0Þ;Vað0Þð1Þ

� � ¼ EP0 Yað0Þ;að1ÞjVað0Þð1Þ
� �

; ð3Þ

then the above expression for the V-optimal rule d0 is still true.

3 The efficient influence curve of the mean outcome
under V-optimal rule

In this section we establish the pathwise differentiability of Ψ and give an explicit expression for the
efficient influence curve [34, 50, 51]. Before presenting this result, we give the efficient influence curve for
the parameter Ψ : M ! R where ΨdðPÞ ; EPYd and the rule d ¼ ðdAð0Þ; dAð1ÞÞ 2 D is treated as known. This
influence curve has previously been presented in the literature [36, 41]. The parameter mapping Ψd has
efficient influence curve:

D�ðd;PÞ ¼
X2

k¼0

D�
kðd;PÞ

where

D�
0ðd;PÞ ¼ EP YdjLð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ

� 	� EPYd

D�
1 ðd;PÞ ¼

I Að0Þ ¼ dAð0ÞðVð0ÞÞ
� �

gAð0ÞðOÞ

� EP Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	� EP YdjLð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ
� 	� �

D�
2ðd;PÞ ¼

I �Að1Þ ¼ dðAð0Þ;VÞ� �
Q1

j¼0 gAðjÞðOÞ
Y � EP Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	� �

: ð4Þ

Above ðgAð0Þ; gAð1ÞÞ is the intervention mechanism under the distribution P. We remind the reader that Yd

has the G-computation distribution from (1) so that:

EP YdjLð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ
� 	
¼ EP EP Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1ÞÞ� 	j Lð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ

� 	
At times it will be convenient to write D�

kðd;Qd; gÞ instead of D�
kðd;PÞ, where Qd represents both of the

conditional expectations in the definitions of D�
1 and the marginal distribution of Lð0Þ under P and g

represents the intervention mechanism under P. We will denote these conditional expectations under P0 for
a given rule d by Qd

0. We will similarly at times denote D�ðd;PÞ by D�ðd;Qd; gÞ.
Whenever D�ðPÞ does not contain an argument for a rule d, this D�ðPÞ refers to the efficient influence

curve of the parameter mapping Ψ for which ΨðPÞ ¼ EPYdP , where the optimal rule dP under P is not treated
as known. Not treating dP as known means that dP depends on the input distribution P in the mapping
ΨðPÞ. The following theorem presents the efficient influence curve of Ψ at a distribution P. The main
condition on this distribution P is that
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max
a0ð0Þ2f0;1g

PrP �Q2 ða0ð0Þ; 1Þ;Vað0Þ¼ða0ð0Þ;1Þ
� � ¼ 0

� � ¼ 0

PrP �Q1ðVð0ÞÞ ¼ 0
� � ¼ 0; ð5Þ

where �Q2 and �Q1 are defined analogously to �Q20 and �Q10 in Theorem 1 with the expectations under P0

replaced by expectations under P. That is, we assume that each of the blip functions under P is nowhere
zero with probability 1. Distributions that do not satisfy this assumption have been referred to as “excep-
tional laws” [32, 52]. These laws are indeed exceptional when one expects that treatment will have a
beneficial or harmful effect in all V-strata of individuals. When one only expects that treatment will have an
effect on outcome in some but not all strata of individuals then this assumption may be violated. We will
make this assumption about P0 for all subsequent asymptotic linearity results about EP0Yd0 , and we will
assume a weaker but still not completely trivial assumption for the data adaptive target parameters in
Sections 6 and 7.

Theorem 2. Suppose P 2 M such that PrPðjY j<MÞ ¼ 1 for some M <1 and the positivity assumption (2)
and (5). Then the parameter Ψ : M ! IR is pathwise differentiable at P with canonical gradient given by

D�ðPÞ;D�ðdP;PÞ ¼
X2

k¼0

D�
kðdP;PÞ:

That is, D�ðPÞ equals the efficient influence curve D�ðdP;PÞ for the parameter ΨdðPÞ;EPYd at the V-optimal
rule d ¼ dP, where Ψd treats d as given.

The above theorem is proved as Theorem 8 in van der Laan and Luedtke [48] so the proof is omitted here.
We will at times denote D�ðPÞ by D�ðQ; gÞ, where Q represents QdP , along with portions of the likelihood

which suffice to compute the V-optimal rule dP. We denote dP by dQ when convenient. We explore which
parts of the likelihood suffice to compute the V-optimal rule in our companion paper, though Theorem 1
shows that �Q20 and �Q10 suffice for d0 (and analogous functions suffice for a more general dP). We have the
following property of the efficient influence curve, which will provide a fundamental ingredient in the
analysis of the TMLE presented in the next section.

Theorem 3. Let dQ be the V-optimal rule corresponding with Q. For any Q; g, we have

P0D�ðQ; gÞ ¼ ΨðQ0Þ �ΨðQÞ þ R1dQ QdQ ;QdQ
0 ; g; g0

� �
þ R2ðQ;Q0Þ

where for all d 2 D
R1dðQd;Qd

0; g; g0Þ;P0D�ðd;Qd; gÞ � ðΨdðQd
0Þ �ΨdðQdÞÞ;

ΨdðPÞ ¼ EPYd is the statistical target parameter that treats d as known, and D�ðd;Qd
0; g0Þ is the efficient

influence curve of Ψd at P0 as given in Theorem 2. In addition,

R2ðQ;Q0Þ ; ΨdQðQdQ
0 Þ �Ψd0ðQd0

0 Þ
¼ EP0 dQ;Að0Þ � d0;Að0Þ

� �
Vð0ÞÞ�Q10ðVð0Þ
� �

þ EP0 dQ;Að1Þ � d0;Að1Þ
� � ð0; 1Þ;Vð0;1Þð1Þ

� �
�Q20 ð0; 1Þ;Vð0;1Þð1Þ

� �
; R2Að0ÞðQ;Q0Þ þ R2Að1ÞðQ;Q0Þ:

From the study of the statistical target parameter Ψd in van der Laan and Gruber [41], we know that
P0D�ðd;Qd; gÞ ¼ ΨdðQd

0Þ �ΨdðQdÞ þ R1dðQd;Qd
0; g; g0Þ, where R1d is a closed form second-order term invol-

ving integrals of differences Qd � Qd
0 times differences g � g0.
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The following lemma bounds R2. We note that this lemma, which concerns how well we can estimate d0
rather than how well we can make inference about EP0Yd0 , does not require condition (5) to hold. We
showed in Theorem 1 that knowing the blip functions �Q10 and �Q20 suffices to define the optimal rule d0. For
general Q, we will let �Q1 and �Q2 represent the blip functions under this parameter mapping.

Lemma 1. Let R2 be as in Theorem 3. Let P0;ð0;1Þ represent the static intervention-specific G-computation
distribution where treatment ð0; 1Þ is given at the first time point. Suppose there exist some β1; β2 > 1 such that:

EP0 j�Q10ðVð0ÞÞj�β1 I j�Q10ðVð0ÞÞj >0
� �h i

<1
EP0;ð0;1Þ j�Q20 ð0; 1Þ;Vð0;1Þð0Þ

� �j�β2 I j�Q20ðð0; 1Þ;Vð0;1Þð0ÞÞj>0
� �h i

<1; ð6Þ

where the expression in each expectation is taken to be 0 when the indicator is 0. Fix p 2 ð1;1� and define
h : ð1;1� � ð1;1Þ as the function for which hðp; βÞ ¼ pðβþ1Þ

pþβ when p<1 and hðp; βÞ ¼ β þ 1 otherwise. Then:

R2Að0ÞðQ;Q0Þ � K1
�Q1 � �Q10



 

hðp;β1Þ
p;P0

R2Að1ÞðQ;Q0Þ � K2
�Q2 � �Q20



 

hðp;β2Þ
p;P0;ð0;1Þ

;

where �k kp;P denotes the Lp;P norm for the distribution P and K1;K2 � 0 are finite constants that respectively
rely on p, P0, β1 and p, P0;ð0;1Þ, β2.

The conditions in (6) are moment bounds which ensure that �Q10 and �Q20 do not put too much mass around
zero. To get the tightest bound, we should always choose β1; β2 to be as large as possible. We remind the
reader that convergence in Lp;P implies convergence in Lq;P for all distributions P and 1 � q � p � 1. Hence
there is a trade-off between the chosen bounding norm, Lp;P, and the rate we need to obtain with respect to
that norm so that the term can be expected to be of order n�1=2. See Table 1 for some examples of rates of
convergence that suffice to give R2Að0Þ ¼ oP0ðn�1=2Þ.

Using the upper bound on �Q10 and applying Cauchy-Schwarz inequality to eq. (15) in the proof of the
lemma shows that:

R2Að0ÞðQ;Q0Þ � �Q1 � �Q10


 



2;P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrP0 0< j�Q10j< �Q1 � �Q10

�� ��� �q
:

Hence R2Að0Þ ¼ oP0ðn�1=2Þ without any moment condition when �Q1 � �Q10


 



2;P0
¼ OP0ðn�1=2Þ, which occurs

when one has correctly specified a parametric model for �Q10. In general it is unlikely that one can correctly
specify a parametric model for �Q10. In these cases, Lemma 1 shows that the term R2Að0Þ will still be oP0ðn�1=2Þ
if a moment condition holds and �Q10 is estimated at a sufficient rate. The analogue holds for �Q20.

Table 1: Convergence rates of estimators of �Q10 which suffice for R2Að0Þ to be oP0 ðn�1=2Þ according to
Lemma 1. The higher the moments of �Q�1

10 that are finite, the slower the estimator needs to
converge. It is of course preferable to have an estimator which converges according to the P0
essential supremum than just in L2;P0 , but whether or not there is convergence in L1;P0 depends on
the estimator used and the underlying distribution P0.

p β1 Sufficient Lp;P0 convergence rate

2 1 oP0 ðn�3=8Þ
2 oP0 ðn�1=3Þ
β1 large oP0 ðn�ð1=4þ"ÞÞ for small ">0

4 1 oP0 ðn�5=16Þ
2 oP0 ðn�1=4Þ
β1 large oP0 ðn�ð1=8þ"ÞÞ for small ">0

1 1 oP0 ðn�1=4Þ
2 oP0 ðn�1=6Þ
β1 large oP0 ðn�

1
2ðβ1þ1ÞÞ
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The bounds given in Lemma 1 are loose. It is not in general necessary to estimate the blip functions �Q10

and �Q20 correctly, only their signs. As an extreme example of the looseness of the bounds, one can have
that infvð0Þ j�Q1nðvð0ÞÞ � �Q10ðvð0ÞÞj ! 1 as n ! 1 and still have that R2Að0ÞðQ;QnÞ ¼ 0 for all n.
Nonetheless, these bounds give interpretable sufficient conditions under which the term R2 converges
faster than a root-n rate. We consider methods that do not directly estimate the blip functions in our
companion paper.

4 TMLE of the mean outcome under V-optimal rule

Throughout this and the next section we assume that condition (5) holds at P0. Our proposed TMLE is to
first estimate the optimal rule d0, giving us an estimated rule dnðAð0Þ;VÞ ¼ dn;Að0ÞðVð0ÞÞ; dn;Að1ÞðAð0Þ;Vð1ÞÞ,
and subsequently apply the TMLE of EYd for a fixed rule d at d ¼ dn as presented in van der Laan and
Gruber [41]. This TMLE is an analogue of the double robust estimating equation method presented in Bang
and Robins [36]: see also Petersen et al. [40] for a generalization of the TMLE to marginal structural models
for dynamic treatments. In a companion paper we describe a data adaptive estimator of d0. In this paper we
take dn as given. We review the TMLE for ΨdðP0Þ ¼ EP0Yd at a fixed rule d in “TMLE of the mean outcome
under a given rule” in Appendix B. Observations which are only partially observed due to right censoring
do not cause a problem for the TMLE. In particular, the TMLE only uses individuals who are not right
censored at the first or second time point to obtain initial estimates of EP0 ½YdjAð0Þ ¼ dAð0ÞðVð0ÞÞ; Lð0Þ� and
EP0 ½Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� in (4), respectively. See the appendix for details.

Here we note some of the key properties of the TMLE. Let Qdn�
n consist of the empirical distribution

QLð0Þ;n of Lð0Þ, a regression function lð0Þ 7!E�
n½YdjLð0Þ ¼ lð0Þ� that estimates EP0 ½YdjLð0Þ�, and a regression

function

að0Þ;�lð1Þ� � 7!E�
n Y j�Að1Þ ¼ dðað0Þ; vÞ; �Lð1Þ ¼ �lð1Þ� 	

that estimates EP0 ½Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ�, where we note that v is a function of �lð1Þ. In the appendix
we describe our proposed algorithm to get the estimates in Qdn�

n . The proposed TMLE for ψ0 ¼ EP0Yd0 is
given by

ψ�
dn;n ¼ ΨdnðQdn�

n Þ ¼ 1
n

Xn
i¼1

E�
n Ydn jLð0Þ ¼ lð0Þi
� 	

;

where we have applied the TMLE in the appendix to the case where d ¼ dn, treating dn as known. Note that
ΨdnðQdn�

n Þ is a plug-in estimator in that it is obtained by plugging Qd�n into the parameter mapping
Qd 7!ΨdðQdÞ for d ¼ dn. We expect our plug-in estimator to give reasonable estimates in finite samples
because it naturally respects the constraints of our model. In the next section we show that this estimator
also enjoys many desirable asymptotic properties.

Recall that D�ðd;Qd; gÞ is the efficient influence curve for the target parameter EP0Yd which treats d as
fixed, and Theorem 2 showed that D�ðd0;Qd0

0 ; g0Þ is the efficient influence curve of the target parameter EYd0

where d0 is the V-optimal rule. The TMLE ðdn;Qdn�
n Þ described in the appendix solves the efficient influence

curve estimating equation:

PnD� dn;Qdn�
n ; gn

� � ¼ 0: ð7Þ
Further, one can show using standard M-estimator analysis that the targeted Qdn�

n proposed in the
appendix maintains the same rate of convergence as the initial estimator Qdn

n under very mild condi-
tions. We do not concern ourselves with these conditions in this paper, and will instead state all
conditions directly in terms of Qdn�

n . The above will be a key ingredient in proving the asymptotic
linearity of the TMLE for ψ0 ¼ EP0Yd0 .
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5 Asymptotic efficiency of the TMLE of the mean outcome
under the V-optimal rule

We now wish to analyze the TMLE ψ�
n ¼ ΨdnðQdn�

n Þ of ψ0 ¼ Ψd0ðQd0
0 Þ ¼ ΨðQ0Þ. We first give a representation

that will allow us to prove the asymptotic linearity of the TMLE under conditions. The result allows Qdn�
n to

be misspecified, even though the intervention mechanism g0 and the rule dn are assumed to be consistent
for g0 and d0, respectively.

Theorem 4. Assume Y 2 ½0; 1�, the strong positivity assumption, condition (5) at P0, D�
n ;D�ðdn;Qdn�

n ; gnÞ falls
in a P0-Donsker class with probability tending to 1, P0fD�

n � D�ðd0;Qd0 ; g0Þg2 converges to zero in probability
for some Qd0 , and

R2ðQn;Q0Þ ¼ oP0ð1=
ffiffiffi
n

p Þ;

where R2 is defined in Theorem 3 and an upper bound is established in Lemma 1. Then

ψ�
n � ψ0 ¼ ðPn � P0ÞD� d0;Qd0 ; g0

� �þ R1dn Qdn
n ;Qdn

0 ; gn; g0
� �

þ oP0 n�
1
2

� �
; ð8Þ

where R1d is defined in Theorem 3.

The proof of the above theorem, which is given in the appendix, makes use of the fact that the TMLE
satisfies (7). We now give two sets of conditions which control the remainder term R1dn in (8) to prove the
asymptotic linearity of the TMLE. The first result is an immediate consequence of the fact that
R1dnðQdn

n ;Qdn
0 ; gn; g0Þ ¼ 0 whenever gn ¼ g0.

Corollary 1. Suppose the conditions of Theorem 4 further suppose that gn ¼ g0 (i.e., RCT). Then:

ψ�
n � ψ0 ¼ ðPn � P0ÞD�ðd0;Qd0 ; g0Þ þ oP0ðn�1=2Þ

That is, ψ�
n is asymptotically linear with influence curve D�ðd0;Qd0 ; g0Þ.

The next corollary is more general in that it applies to situations where the intervention mechanism g0 is
estimated from the data. The above result emerges as a special case.

Corollary 2. Suppose all of the conditions of Theorem 4 hold, and that

R1dn Qdn�
n ;Qdn

0 ; gn; g0
� �

� R1dn Qdn ;Qdn
0 ; gn; g0

� �
¼ oP0ð1=

ffiffiffi
n

p Þ

for some Qdn . In addition, we assume the following asymptotic linearity condition on a smooth functional
of gn:

R1dn Qdn ;Qdn
0 ; gn; g0

� �
¼ ðPn � P0ÞDgðP0Þ þ oP0ð1=

ffiffiffi
n

p Þ; ð9Þ

for some function DgðP0ÞðOÞ 2 L20ðP0Þ; fh : P0h ¼ 0;P0h2 <1g. Then,

ψ�
n � ψ0 ¼ ðPn � P0Þ D�ðd0;Qd0 ; g0Þ þ DgðP0Þ


 �þ oP0ð1=
ffiffiffi
n

p Þ: ð10Þ
If it is also know that gn is an MLE of g0 according to a correctly specified model G for g0 with tangent space
TgðP0Þ at P0, then (9) holds with

DgðP0Þ ¼ �� D� d0;Qd0 ; g0
� �jTgðP0Þ

� �
; ð11Þ

where �ð�jTgðP0ÞÞ denotes the projection operator onto TgðP0Þ 	 L20ðP0Þ in the Hilbert space L20ðP0Þ.
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Equation (11) is a corollary of Theorem 2.3 of van der Laan and Robins [34]. The rest of the theorem is
the result of a simple rearrangement of terms, so the proof is omitted.

Condition (9) is trivially satisfied in a randomized clinical trial without missingness, where we can take
gn ¼ g0 and thus DgðP0Þ is the constant function 0. Nonetheless, (11) suggests that it would be better to
estimate g0 using a parametric model that contains the true (known) intervention mechanism. For example,
at each time point one may use a main terms linear logistic regression with treatment and covariate
histories as predictors. If Qdn

n consistently estimates Qd0
0 , then D�ðd0;Qd0 ; g0Þ is orthogonal to TgðP0Þ and

hence the projection in (11) is the constant function 0. Otherwise the projection will decrease the variance of
ψ�
n � ψ0 without affecting asymptotic bias, thereby increasing the asymptotic efficiency of the estimator.

One can then use an empirical estimate of the variance of D�ðd0;Qd0 ; g0Þ to get asymptotically conservative
confidence intervals for ψ0.

5.1 Asymptotic linearity of TMLE in a SMART setting

Suppose the data is generated by a sequential RCT and there is no missingness so that g0 is known. Further
suppose that (5) holds at P0, that is, that treating at each time point has either a positive or negative effect
with probability 1, regardless of the choice of the regimen at earlier time points. In addition, assume that
Vð0Þ and Vð1Þ are both univariate scores, and assume condition (3) so that the optimal rule d0;Að1Þ based on
ðAð0Þ;Vð0Þ;Vð1ÞÞ is the same as the optimal rule d0;Að1Þ based on Að0Þ;Vð1Þ: for example, Vð1Þ is the same
score as Vð0Þ but measured at the next time point, so that it is reasonable to assume that an effect of Vð0Þ
on Y will be fully blocked by Vð1Þ. Suppose we want to use the data of the RCT to learn the V-optimal rule
d0 and provide statistical inference for EP0Yd0 . Further suppose that the moment conditions in Lemma 1
hold with β1 ¼ β2 ¼ 2. Since both Vð0Þ and Vð1Þ are one-dimensional, using kernel smoothers or sieve-
based estimation to generate a library of candidate estimators for the sequential loss-based super-learner of
the blip functions ð�Q10; �Q20Þ described in our companion paper, we can obtain an estimator �Qn ¼ ð�Q1n; �Q2nÞ
of �Q0 ¼ ð�Q10; �Q20Þ that converges in L2 at a rate such as n�2=5 under the assumption that �Q10; �Q20 are
continuously differentiable with a uniformly bounded derivative, or at a better rate under additional
smoothness assumptions. As a consequence, in this case R2ðQn;Q0Þ ¼ OP0ðn�3=5Þ ¼ oP0ðn�1=2Þ by Lemma
1. As a consequence, all conditions of Theorem 4 hold, and it follows that the proposed TMLE is
asymptotically linear with influence curve D�ðd0;Qd0 ; g0Þ, where Qd0 is the possibly misspecified limit of
Qdn� in the TMLE. To conclude, sequential RCTs allow us to learn V-optimal rules at adaptive optimal rates
of convergence, and allow valid asymptotic statistical inference for EP0Yd0 . If VðjÞ is higher dimensional,
then one will have to rely on enough smoothness assumptions on the blip functions and/or moment
conditions on 1=j�Q10j and 1=j�Q20j from Lemma 1 in order to guarantee that R2ðQn;Q0Þ ¼ oP0ð1=

ffiffiffi
n

p Þ.
If there is right censoring, then g0 ¼ g01g02 factors in a treatment mechanism g01 and censoring

mechanism g02, where g01 is known, but g02 is typically not known. Having a lot of knowledge about
how censoring depends on the observed past might make it possible to obtain a good estimator of g02. In
that case, the above conclusions still apply, but one now estimates the nuisance parameters of the loss
function (e.g., one uses a double robust loss function in which g02 is replaced by an estimator, see our
companion paper).

5.2 Statistical inference

Suppose one wishes to estimate the mean outcome under the optimal rule EP0Yd0 and that (5) holds. Above
we developed the TMLE ψ�

n for EP0Yd0 . By Corollary 1, if gn ¼ g0 is known, this TMLE of ψ0 is asymptotically
linear with influence curve ICðP0Þ ¼ D�ðd0;Qd0 ; g0Þ. If gn is an MLE according to a model with tangent space
TgðP0Þ, then the TMLE is asymptotically linear with influence curve

ICðP0Þ �� ICðP0ÞjTgðP0Þ
� �

;
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so that one could use ICðP0Þ as a conservative influence curve. Let ICn be an estimator of this influence
curve ICðP0Þ obtained by plugging in the available estimates of its unknown components. The asymptotic
variance of the TMLE ψ�

n of ψ0 can now be (conservatively) estimated with

σ2n ¼
1
n

Xn
i¼1

IC2
nðOiÞ:

An asymptotic 95% confidence interval for ψ0 is given by ψ�
n 
 1:96σn=

ffiffiffi
n

p
.

6 Statistical inference for mean outcome under data adaptively
determined dynamic treatment

Let d̂ : M ! D be an estimator that maps an empirical distribution into an individualized treatment rule.
See our companion paper for examples of possible estimators d̂. Let dn ¼ d̂ðPnÞ be the estimated rule. Up
until now we have been concerned with statistical inference for EP0Yd0 , where d0 is the unknown V-optimal
rule while dn is a best estimator of this rule. As a consequence, statistical inference for EP0Yd0 based on the
TMLE relied on consistency of dn to d0, but also relied on the rate of convergence at which dn converges to
d0, that is, R2ðQn;Q0Þ ¼ oP0ð1=

ffiffiffi
n

p Þ. In this section we present statistical inference for the data adaptive
target parameter

ψ0n ¼ ΨdnðP0Þ ¼ EP0Ydjd¼dn
:

That is, we construct an estimator Ψ̂d̂ðPnÞðPnÞ of Ψd̂ðPnÞðP0Þ and a confidence interval so that

lim
n!1PrP0 Ψd̂ðPnÞðP0Þ 2 Ψ̂d̂ðPnÞðPnÞ 
 1:96σ̂ðPnÞ=

ffiffiffi
n

p� �
¼ 0:95;

where σ̂ðPnÞ is a consistent estimator of the standard error of Ψ̂d̂ðPnÞðPnÞ. Note that in this definition of the
confidence interval the target parameter is itself also a random variable through the data Pn.

We do not assume that (5) holds in this section, but we do implicitly make the weaker assumption that
dn ! d1 for some d1 2 D in assumption (12) of Theorem 5. Statistical inference will be based on the same
TMLE of ΨdðP0Þ at d ¼ dn, and our variance estimator will also be the same, but since the target is not
Ψd0ðP0Þ but ΨdnðP0Þ, there will be no need for dn to even be consistent for d0, let alone converge at a
particular rate. As a consequence, this approach is particularly appropriate in cases where V is high
dimensional so that it is not reasonable to expect that dn converges to d0 at the required rate. Another
motivation for this data adaptive target parameter is that, even when statistical inference for EP0Yd0 is
feasible, one might be interested in statistical inference for the mean outcome under the concretely
available rule dn instead of under the unknown rule d0.

As shown in the proof of Theorem 3, P0D�ðdn;Q�
n; gnÞ ¼ ψ0n � ψ�

n þ R1dnðQdn�
n ;Qdn

0 ; gn; g0Þ. Further,
PnD�ðdn;Qdn�

n ; gnÞ ¼ 0, which yields

ψ�
n � ψ0n ¼ ðPn � P0ÞD� dn;Qdn�

n ; gn
� �þ R1dn Qdn�

n ;Qdn
0 ; gn; g0

� �
:

This relation is key to the proof of the following theorem, which is analogous to Theorem 4. Note crucially
that the theorem does not have any conditions on the remainder term R2, nor does it require that dn
converge to the optimal rule d0.

Theorem 5. Assume Y 2 ½0; 1�. Let d̂ ðPnÞ 2 D with probability tending to 1, and assume the strong positivity
assumption. Let ψ0n ¼ ΨdnðP0Þ ¼ EP0Ydjd¼dn

be the data adaptive target parameter of interest. Let R1d be as
defined in Theorem 3.
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Assume D�
n ;D�ðdn;Q�

n; gnÞ falls in a P0 -Donsker class with probability tending to 1,

P0 D�
n � D�ðd1;Qd1 ; g0Þ


 �2 ¼ oP0ð1Þ ð12Þ

for some d1 2 D and Qd1 . Then,

ψ�
n � ψ0n ¼ ðPn � P0ÞD� d1;Qd1 ; g0

� �þ R1dn Qdn�
n ;Qdn

0 ; gn; g0
� �

þ oP0ðn�1=2Þ:

If gn ¼ g0 (i.e., RCT), then R1dnðQdn�
n ;Qdn

0 ; gn; g0Þ ¼ 0, so that ψ�
n is asymptotically linear with influence curve

D�ðd1;Q; g0Þ.
The proof of the above theorem is nearly identical to the proof of Theorem 4 so is omitted. For general gn,
R1dnðQdn�

n ;Qdn
0 ; gn; g0Þ ¼ oP0ðn�1=2Þ under an analogous second-order term condition to the one assumed in

Corollary 1. As in Corollary 2, the asymptotic efficiency may improve (and will not worsen) when a known
intervention mechanism is fit using a correctly specified parametric model. See Theorem 11 in our online
technical report for details [47].

7 Statistical inference for the average of sample-split specific
mean counterfactual outcomes under data adaptively determined
dynamic treatments

Again let d̂ : M ! D be an estimator that maps an empirical distribution into an individualized treatment
rule. Let Bn 2 f0; 1gn denote a random vector for a cross-validation split, and for a split Bn, let P0

n;Bn
be the

empirical distribution of the training sample fi : BnðiÞ ¼ 0g and P1
n;Bn

is the empirical distribution of the
validation sample fi : BnðiÞ ¼ 1g. Consider a J-fold cross-validation scheme. In J-fold cross-validation, the
data is split into J mutually exclusive and exhaustive sets of size approximately n=J uniformly at random.
Each set is then used as the validation set once, with the union of all other sets serving as the training set.
With probability 1=J, Bn has value 1 in all indices in validation set j 2 f1; :::; Jg and 0 for all indices not
corresponding to training set j.

In this section, we present a method that provides an estimator and statistical inference for the data
adaptive target parameter

~ψ0n ¼ EBnΨd̂ðP0
n;Bn

ÞðP0Þ:

Note that ~ψ0n is different from the data adaptive target parameter ψ0n presented in the previous section. In
particular, this target parameter is defined as the average of data adaptive parameters, where the data
adaptive parameters are learned from the training samples of size approximately n=J. In the previous
section, the data adaptive target parameter was defined as the mean outcome under the rule dn which was
estimated on the entire data set. Again the target parameter is a random quantity that relies on the sample
of size n.

One applies the estimator d̂ to each of the J training samples, giving a target parameter value
Ψd̂ðP0

n;Bn
ÞðP0Þ, and our target parameter ~ψ0n is defined as the average across these J target parameters.

Below we present a CV-TMLE ~ψ�
n of this data adaptive target parameter ~ψ0n. As in the previous section,

we will be able to establish statistical inference for our estimate ~ψ�
n without requiring that the estimated

rules converge to d0, nor any rate condition on the estimated rules. Unlike the asymptotic linearity results
in all previous sections, the results in this section do not rely on an empirical process condition (i.e.,
Donsker class condition). That means we obtain valid asymptotic statistical inference under essentially no
conditions in a sequential RCT, even when dn is a highly data adaptive estimator of a V-optimal rule for a
possibly high dimensional V. Under a consistency and rate condition (but no empirical process condition)
on dn, we also get inference for EP0Yd0 .
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The next subsection defines the general CV-TMLE for data adaptive target parameters. We subsequently
present an asymptotic linearity theorem allowing us to construct asymptotic 95% confidence intervals.

7.1 General description of CV-TMLE

Here we give a general overview of the CV-TMLE procedure. In “CV-TMLE of the mean outcome under data
adaptive V-optimal rule” in Appendix B we present a particular CV-TMLE which satisfies all of the proper-
ties described in this section. Denote the realizations of Bn with j ¼ 1; . . . ; J, and let dnj ¼ d̂ðP0

n;jÞ for some
estimator of the optimal rule d̂. Let

að0Þ;�lð1Þ� � 7!Enj Y j�Að1Þ ¼ dnjðað0Þ; vÞ; �Lð1Þ ¼ �lð1Þ� 	
represent an initial estimate of EP0 ½Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ� based on the training sample j. Similarly, let
lð0Þ 7!Enj½Ydnj jLð0Þ ¼ lð0Þ� represent an initial estimate of EP0 ½Ydnj jLð0Þ� based on the training sample j.
Finally, let QLð0Þ;nj represent the empirical distribution of Lð0Þ in validation sample j. We then fluctuate
these three regression functions using the following submodels:

Eð"2Þ
nj ½Y j�Að1Þ ¼ dnjðað0Þ; vÞ; �Lð1Þ ¼ �lð1Þ� : "2 2 R

n o

Eð"1Þ
nj ½Ydnj jLð0Þ ¼ lð0Þ� : "1 2 R

n o

Qð"0Þ
Lð0Þ;nj : "0 2 R

n o
;

where these submodels rely on an estimate gnj of g0 based on training sample j and are such that:

Eð0Þ
nj Y j�Að1Þ ¼ dnjðað0Þ; vÞ; �Lð1Þ

� 	 ¼ Enj Y j�Að1Þ ¼ dnjðað0Þ; vÞ; �Lð1Þ
� 	

Eð0Þ
nj Ydnj jLð0Þ

� 	 ¼ Enj Ydnj jLð0Þ
� 	

Qð0Þ
Lð0Þ;nj ¼ QLð0Þ;nj:

Let Qdnj
nj ð"Þ represent the parameter mapping that gives the three regression functions above fluctuated by

"; ð"0; "1; "2Þ. For a fixed ", Qdnj
nj ð"Þ only relies on P1

nj through the empirical distribution of Lð0Þ in validation
sample j. Let f be a valid loss function for Qd

0 so that Qd
0 ¼ argminQd P0fðQdÞ, and let f and the submodels

above satisfy

D�ðd;Qd; gÞ 2 d
d"

fðQdð"ÞÞ
����
"¼0

� �
;

where hf i ¼ fPj βjfj : βg denotes the linear space spanned by the components of f. We choose "n to
minimize P1

nfðQdnj
nj ð"ÞÞ over " 2 R

3. We then define the targeted estimate Qdnj�
nj ;Qdnj

nj ð"nÞ of Qdnj
0 . We note

that Qdnj�
nj maintains the rate of convergence of Qnj under mild conditions that are standard to M-estimator

analysis. The key property that we need from the "n and the corresponding update Qdnj�
nj is that it

(approximately) solves the cross-validated empirical mean of the efficient influence curve:

EBnP
1
n;Bn

D� dnj;Q
dnj�
nj ; gnj

� �
¼ oP0ð1=

ffiffiffi
n

p Þ: ð13Þ

The CV-TMLE implementation presented in the appendix satisfies this equation with oP0ð1=
ffiffiffi
n

p Þ replaced by
0. The proposed estimator of ~ψ0n is given by

~ψ�
n ;EBnΨdnj Qdnj�

nj

� �
:
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In the current literature we have referred to this estimator as the CV-TMLE [53–56]. We give a concrete CV-
TMLE algorithm for ~ψ�

n in “CV-TMLE of the mean outcome under data adaptive V-optimal rule” in Appendix
B, but note that other CV-TMLE algorithms can be derived using the approach in this section for different
choices of loss function f and submodels.

7.2 Statistical inference based on the CV-TMLE

We now proceed with the analysis of this CV-TMLE ~ψ�
n of ~ψ0n. We first give a representation theorem for the

CV-TMLE that is analogous to Theorem 5.

Theorem 6. Let gnj and dnj represent estimates of g0 and d0 based on training sample j. Let Qdnj�
nj represent a

targeted estimate of Qdnj
0 as presented in Section 7.1 so that Qdnj�

nj satisfies (13). Let R1d be as in Theorem 3.
Further suppose that the supremum norm of maxj D�ðdnj;Qdnj�

nj ; gnjÞ is bounded by some M <1 with probability
tending to 1, and that

max
j2f1;...;Jg

P0 D� dnj;Q
dnj�
nj ; gnj

� �
� D� d1;Qd1 ; g

� �n o2
! 0 in probability

for some d1 2 D and possibly misspecified Qd1 and g. Then:

~ψ�
n � ~ψ0n ¼ ðPn � P0ÞD� d1;Qd1 ; gd1

� �
þ 1

J

XJ

j¼1

R1dnj Qdnj�
nj ;Qdnj

0 ; gnj; g0
� �

þ oP0ðn�1=2Þ:

Note that d1 in the above theorem need not be the same as the optimal rule d0, though later we will
discuss the desirable special case where d1 ¼ d0. The above theorem also does not require that g0 is known,
or even that the limit of our intervention mechanisms g is equal to g0. Nonetheless, we get the following
asymptotic linearity result when g ¼ g0 and gnj satisfies an asymptotic linearity condition on a smooth
functional of gnj.

Corollary 3. Suppose the conditions from Theorem 6 hold with g ¼ g0. Further suppose that:

1
J

XJ

j¼1

R1dnj Qdnj�
nj ;Qdnj

0 ; gnj; g0
� �

� R1dnj Qdnj ;Qdnj
0 ; gnj; g0

� �� �
¼ oP0ðn�1=2Þ;

for some Qdnj and that:

1
J

XJ

j¼1

R1dnj Qdnj�;Qdnj
0 ; gnj; g0

� �
¼ ðPn � P0ÞDgðP0Þ þ oP0ðn�1=2Þ: ð14Þ

We can conclude that:

~ψ�
n � ~ψ0n ¼ ðPn � P0Þ D�ðd1;Qd1 ; g0Þ þ DgðP0Þ

� �þ oP0ðn�1=2Þ:
The proof of the above result is just a rearrangement of terms so is omitted. Consider our setting. Suppose
g0 is known so we can have that gnj ¼ g0 for all j. Consider the estimator

σ2n ¼
1
J

XJ

j¼1

P1
n;j D� dnj;Q

dnj�
nj ; gnj

� �n o2

of the asymptotic variance σ20 ¼ P0fD�ðd1;Qd1 ; g0Þg2 of the CV-TMLE ~ψ�
n. An asymptotic 95% confidence

interval for ~ψ0n is given by ~ψ�
n 
 1:95σn=

ffiffiffi
n

p
. This same variance estimator and confidence interval can be

used for the case that g0 is not known and each gnj is an MLE of g0 according to some model. In that
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case, it is an asymptotically conservative confidence interval (analogous to eq. (11) applied to
Corollary 3).

Now consider the case where d1 from the above theorem is equal to the optimal rule d0 and condition
(5) holds. For simplicity, also assume that g0 is known and gnj ¼ g0. Then R1dnj is equal to 0 for all j, so
Theorem 6 shows that the CV-TMLE for ~ψ0n is asymptotically linear with influence curve
D�ðd1;Qd1 ; g0Þ ¼ D�ðd0;Qd0 ; g0Þ. If

~ψ0n � ψ0 ¼ 1
J

XJ

j¼1

R2ðQnj;Q0Þ

is second order, that is, oP0ðn�1=2Þ, where Qnj is analogous to Qn but only estimated on the training
sample j, then the CV-TMLE is consistent and asymptotically normal estimator of the mean outcome
under the optimal rule. If Qd0 ¼ Qd0

0 , then the CV-TMLE is also asymptotically efficient among all
regular asymptotically linear estimators. One can apply bounds like those in Lemma 1 for each of
the J terms above to understand the behavior of ~ψ0n � ψ0. Note crucially that this result does not
rely on the restrictive empirical process conditions used in the previous sections, although it relies on
a consistency and rate condition for asymptotic linearity with respect to the non-data adaptive para-
meter EP0Yd0 .

8 Simulation methods

We start by presenting two single time point simulations. In earlier technical reports we directly describe
the single time point problem [47, 48]. Here, we instead note that a single time point optimal treatment is a
special case of a two time point treatment when only the second treatment is of interest. In particular, we
can see this by taking Lð0Þ ¼ Vð0Þ ¼ ;, estimating �Q2;0 without any dependence on að0Þ, and correctly
estimating �Q1;0 with the constant function zero. We note that, in this one time point formulation, we do not
need (5) to hold for �Q10, so it may be more natural to view the single time point problem directly and use the
single time point pathwise differentiability result in Theorem 2 of van der Laan and Luedtke [48]. We can
then let IðAð0Þ ¼ dn;Að0ÞðVð0ÞÞÞ ¼ 1 for all Að0Þ;Vð0Þ wherever the indicator appears in our calculations.
Because the first time point is not of interest, we only describe the second time point treatment mechanism
for this simulation. We refer the interested reader to the earlier technical report for a thorough discussion of
the single time point case. We then present a two time point data generating distribution to show the
effectiveness of our proposed method in the longitudinal setting.

8.1 Data

8.1.1 Single time point

We simulate 1,000 data sets of 1,000 observations from an RCT without missingness. We have that:

L1ð1Þ; L2ð1Þ; L3ð1Þ; L4ð1ÞjAð0Þ,iid Nð0; 1Þ

A1ð1ÞjAð0Þ,Bernð1=2Þ

A2ð1ÞjA1ð1Þ;Að0Þ,Bernð1Þ

logit EP0 Y j�Að1Þ; �Lð1Þ;H ¼ 0
� 	

¼ 1� L1ð1Þ2 þ 3L2ð1Þ þ A1ð1Þ 5L3ð1Þ2 � 4:45
� �
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logit EP0 Y j�Að1Þ; �Lð1Þ;H ¼ 1
� 	

¼ �0:5� L3ð1Þ þ 2L1ð1ÞL2ð1Þ þ A1ð1Þ 3jL2ð1Þj � 1:5ð Þ
where Y is a Bernoulli random variable and H is an unobserved Bernð1=2Þ variable independent of
�Að1Þ; �Lð1Þ. The above distribution was selected so that the mean outcomes under static treatments
(treating everyone or no one at the second time point) have approximately the same mean outcome of
0.464.

We consider two choices for Vð1Þ. For the first we consider Vð1Þ ¼ L3ð1Þ, and for the second we consider
Vð1Þ to be the entire covariate history �Lð1Þ. We have shown via Monte Carlo simulation that the optimal rule
has mean outcome EP0Yd0 � 0:536 when Vð1Þ ¼ L3ð1Þ and the optimal rule has mean outcome
EP0Yd0 � 0:563 when Vð1Þ ¼ ðL1ð1Þ; L2ð1Þ; L3ð1Þ; L4ð1ÞÞ. One can verify that the blip function at the second
time point is nonzero with probability 1 for both choices of Vð1Þ.

8.1.2 Two time point

We again simulate 1,000 data sets of 1,000 observations from an RCT without missingness. The observed
variables have the following distribution:

L1ð0Þ; L2ð0Þ ,iid Unifð�1; 1Þ

A1ð0ÞjLð0Þ,Bernð1=2Þ

A2ð0ÞjA1ð0Þ; Lð0Þ,Bernð1Þ

U1;U2jAð0Þ; Lð0Þ ,iid Unifð�1; 1Þ

L1ð1ÞjAð0Þ; Lð0Þ;U1;U2 ,U1ð1:25A1ð0Þ þ 0:25Þ

L2ð1ÞjAð0Þ; Lð0Þ; L1ð1Þ;U1;U2 ,U2ð1:25A1ð0Þ þ 0:25Þ

A1ð1ÞjAð0Þ; �Lð1Þ,Bernð1=2Þ

A2ð1ÞjAð0Þ;A1ð1Þ; �Lð1Þ,Bernð1Þ

Y j�Að1Þ; �Lð1Þ,Bern 0:4þ 0:069bð�Að1Þ; �Lð1ÞÞ� �
;

where

b �Að1Þ; �Lð1Þ� �
; 0:5A1ð0Þ �0:8� 3 sgnðL1ð0ÞÞ þ L1ð0Þð Þ � L2ð0Þ2

� �
þ A1ð1Þ �0:35þ L1ð1Þ � 0:5ð Þ2

� �
þ 0:08A1ð0ÞA1ð1Þ:

Note that EP0 Y j�Að1Þ; �Lð1Þ� 	
is contained in the unit interval by the bounds on �Að1Þ and �Lð1Þ so that Y is

indeed a valid Bernoulli random variable. We will let Vð0Þ ¼ Lð0Þ and Vð1Þ ¼ ðAð0Þ; �Lð1ÞÞ. One can verify
that (5) is satisfied for this choice of V.

Static treatments yield mean outcomes EP0Yð0;1Þ;ð0;1Þ ¼ 0:400, EP0Yð0;1Þ;ð1;1Þ � 0:395, EP0Yð1;1Þ;ð0;1Þ � 0:361,
and EP0Yð1;1Þ;ð1;1Þ � 0:411. The true optimal treatment has mean outcome EP0Yd0 � 0:485.
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8.2 Optimal rule estimation methods

For now suppose we have estimators of the optimal rule with reasonable convergence properties, by
which we mean that the true mean outcome under the fitted rule is close to the mean outcome under
the optimal rule. In our companion paper in this volume we describe these estimators and show
precisely how close these estimators come to achieving the optimal mean outcome. Here we note that
our estimation algorithms correspond to using the full candidate library of weighted classification and
blip function-based estimators proposed in table 2 of our companion paper, with the weighted log loss
function used to determine the convex combination of candidates. We provide oracle inequalities for
this estimator in our companion paper, and argue that it represents a powerful approach to data
adaptively estimate the optimal rule without over- or underfitting the data. For a sample size n,
we denote the rule estimated on the whole sample by dn, and the rule estimated on training sample j
by dnj.

8.3 Inference procedures

We use four procedures to estimate the mean outcome under the fitted rule. All inference procedures rely on
the intervention mechanism g0. We always estimate the intervention mechanism with the true mechanism
g0, as one may do in an RCT without missingness. We do not consider efficiency gains resulting from
estimating the known treatment mechanism here.

The first method uses the TMLE described in “TMLE of the mean outcome under a given rule” in
Appendix B. The second method uses the analogous estimating equation approach that uses the double
robust inverse probability of censoring weighted (DR-IPCW) estimating equation implied by D�ðdn;Qdn

n ; g0Þ,
where Qdn

n represents the unfluctuated initial estimates of Qdn
0 . See van der Laan and Robins [34] for a

general outline of such an estimating equation approach. This approach is valid whenever the TMLE is
valid. We also use the CV-TMLE described in “CV-TMLE of the mean outcome under data adaptive
V-optimal rule” in Appendix B, where we use a 10-fold cross-validation scheme. Finally, we use the
CV-DR-IPCW cross-validated estimating equation implied by

P
j P

1
n;jD

�ðdnj;Qdnj
nj ; g0Þ, where Qdnj

nj represents
the unfluctuated initial estimates of Qdnj

0 . This approach is valid whenever the CV-TMLE is valid.
All inference procedures also rely on an estimate of Qd

0 for some estimated d. For the two time
point case, we use the empirical distribution of Lð0Þ to estimate the marginal distribution of Lð0Þ. We
compare plugging in both of the true values of EP0 Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	

and
EP0 YdjLð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ

� 	
as initial estimates with plugging in the incorrectly specified constant

function 1=2 as initial estimates.
For the single time point case, we compare plugging in the true value of EP0 Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	

with the incorrectly specified constant function 1=2. We always estimate EP0 YdjLð0Þ;Að0Þ ¼ dAð0ÞðVð0ÞÞ
� 	

by
averaging

ðAð0Þ; �Lð1ÞÞ 7!EP0 Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	
over the empirical distribution of Lð1Þ from the entire sample for non-cross-validated methods, and from the
training sample for cross-validated methods. The empirical distribution of Lð0Þ will not play a role for the
single time point case because Lð0Þ ¼ ;.

The procedures used to estimate the optimal rule rely on similar means, and we supply these
estimation procedures with the incorrect value 1=2 for these conditional means whenever we supply
the inference procedures with the incorrect values of the corresponding conditional means, and with the
correct values of the conditional means whenever we supply the inference procedures with the corre-
sponding correct values.
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The simulation was implemented in R [57]. The code used to run the simulations is available upon request.
We are currently looking to implement the methods in this paper and the companion paper in an R package.

8.4 Evaluating performance

We use the coverage of asymptotic 95% confidence intervals to evaluate the performance of the various
methods. As we establish in the earlier parts of this paper, each inference approach yields two interesting
target parameters with respect to which we can compute coverage. All approaches give asymptotically valid
inference for the mean outcome under the optimal rule under conditions, and thus the coverage with
respect to this parameter is assessed across all methods.

The TMLE and DR-IPCW estimating equation-based approaches also estimate the data adaptive target
parameter ψ0n as presented in Section 6. Given a fitted rule dn, we approximate the expected value in this
parameter definition using 106 Monte Carlo simulations for the single time point case and 5� 105 Monte
Carlo simulations for the two time point case. We then assess confidence interval coverage with respect to
this approximation.

The CV-TMLE and cross-validated DR-IPCW estimating equation approaches estimate the data adaptive
target parameter ~ψ0n as presented in Section 7. Given the ten rules estimated on each of the training sets,
the expectation over the sample split random variable Bn becomes an average over ten target parameters,
one for each estimated rule. Again we estimate the expected value of P0 using 106 Monte Carlo simulations
for each of the ten target parameters in the single time point case, and 5� 105 Monte Carlo simulations in
the two time point case.

9 Simulation results

Figure 1 shows that the (CV-)TMLE is more efficient than the (CV-)DR-IPCW estimating equation methods in
our single time point simulation, except for the cross-validated methods when V ¼ L1ð1Þ; . . . ; L4ð1Þ and the
regressions are misspecified. Note that the MSEs relative to EP0Yd0 are the typical EP0ðψn � ψ0Þ2 for an
estimate ψn, while the MSEs relative to the data adaptive parameter are the slightly less typical
EP0ðψn � ψ0nÞ2 for the TMLE and DR-IPCW, and EP0ðψn � ~ψ0nÞ2 for the cross-validated methods. That is,
the target parameters vary for each of the 1,000 data sets considered. We also confirmed that, as is typical
in missing data problems, the methods in which the conditional means were correctly specified were more
efficient than the methods in which the conditional means are incorrectly specified. Figure 2 shows that the
(CV-)TMLE in general has better coverage than the (CV-)DR-IPCW estimating equation approaches in our
single time point simulation, with the only exception being the CV-TMLE for EP0Yd0 when the regressions
are misspecified and V ¼ L1ð1Þ; . . . ; L4ð1Þ.

Figure 3a shows that the (CV-)TMLE is always more efficient than the (CV-)DR-IPCW estimating
equation methods for our two time point simulation. Figure 3b shows that this increased efficiency
does not come at the expense of coverage: the (CV-)TMLE always has better coverage than the (CV-)
DR-IPCW estimators in our two time point simulation. In general, we see that the cross-validated methods
always achieve approximately 95% coverage for the data adaptive parameter. This is to be expected
because the cross-validated methods only learn the optimal rule on validation sets, and thus avoid finite
sample bias when the conditional means of the outcome are averaged over the validation samples.

It may at first be surprising that the TMLE outperforms the DR-IPCW estimating equation method in a
randomized clinical trial, especially given that the CV-TMLE and CV-DR-IPCW achieve similar coverage. In
Appendix C we give intuition as to why this may be the case in a single time point randomized clinical trial.
In short, this difference in coverage appears to occur because our proposed TMLE only fluctuates the
conditional means for individuals who received the fitted treatment, thereby reducing finite sample bias
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that may result from estimating the optimal rule on the same sample that is used to estimate the mean
outcome under this fitted rule.

We also looked at the average confidence interval width across Monte Carlo simulations for each
method and simulation setting. For a given simulation setting, all four estimation methods gave
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Figure 1: Relative efficiency of TMLE and DR-IPCW methods compared to both EP0Yd0 and the data adaptive parameter
EP0 ðψn � ψ0nÞ2 for the TMLE and DR-IPCW, and EP0 ðψn � ~ψ0nÞ2 for the cross-validated methods. Results are provided both for
the cases where the estimate En½Y j�Að1Þ;W � of EP0 ½Y j�Að1Þ;W� is correctly specified and the case where this estimate is
incorrectly specified with the constant function 1/2. Error bars indicate 95% confidence intervals to account for uncertainty
from the finite number of Monte Carlo draws in our simulation. (a) V=L1(1), (b) V=L1(1), … , L4(1).
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approximately the same (
0:002) average confidence interval width: 0.08 for both single time point
simulations, 0.12 for the multiple time point simulation. These average widths show that we can get
informatively small confidence intervals from our relatively small sample size of 1,000 individuals.
Unlike Figures 1 and 3a, these values should not be used to gauge the efficiency of the proposed estimators
since they do not take the true parameter value into account.
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Figure 2: Coverage of 95% confidence intervals from the TMLE and DR-IPCW methods with respect to both EP0Yd0 and the data
adaptive parameter ψ0n for the TMLE and DR-IPCW and ~ψ0n for the cross-validated methods. Results are provided both for the
cases where the estimate En½Yj�Að1Þ;W� of EP0 ½Yj�Að1Þ;W� is correctly specified and the case where this estimate is incorrectly
specified with the constant function 1/2. The (CV-)TMLE outperforms the (CV-)DR-IPCW estimating equation approach for almost
all settings. Error bars indicate 95% confidence intervals to account for uncertainty from the finite number of Monte Carlo draws
in our simulation. (a) V=L1(1), (b) V=L1(1), …, L4(1).
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10 Discussion

This article investigated semiparametric statistical inference for the mean outcome under the V-optimal rule
and statistical inference for the data adaptive target parameter defined as the mean outcome under a data
adaptively determined V-optimal rule (treating the latter as given).

We proved a surprising and useful result stating that the mean outcome under the V-optimal rule
is represented by a statistical parameter whose pathwise derivative is identical to what it would have
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Figure 3: (a) Relative efficiency of TMLE and DR-IPCW methods compared to both EP0Yd0 and the data adaptive parameter
EP0 ðψn � ψ0nÞ2 for the TMLE and DR-IPCW, and EP0 ðψn � ~ψ0nÞ2 for the cross-validated methods. (b) Coverage of 95% confidence
intervals from the TMLE and DR-IPCW methods with respect to both EP0Yd0 and the data adaptive parameter ψ0n for the TMLE
and DR-IPCW and ~ψ0n for the cross-validated methods. Both (a) and (b) give results both for the cases where the estimates of
EP0 ½Yj�Að1Þ ¼ dnðAð0Þ;VÞ; �Lð1Þ� and EP0 ½Ydn jLð0Þ� are correctly specified and the case where these estimates are incorrectly
specified with the constant function 1/2. Error bars indicate 95% confidence intervals to account for uncertainty from the finite
number of Monte Carlo draws in our simulation.
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been if the unknown rule had been treated as known, under the condition that the data is generated
by a non-exceptional law [52]. As a consequence, the efficient influence curve is immediately known,
and any of the efficient estimators for the mean outcome under a given rule can be applied at the
estimated rule. In particular, we demonstrate a TMLE, and present asymptotic linearity results.
However, the dependence of the statistical target parameter on the unknown rule affects the sec-
ond-order terms of the TMLE, and, as a consequence, the asymptotic linearity of the TMLE requires
that a second-order difference between the estimated rule and the V-optimal rule converges to zero at
a rate faster than 1=

ffiffiffi
n

p
. We show that this can be expected to hold for rules that are only a function of

one continuous score (such as a biomarker), but when V is higher dimensional, only strong smooth-
ness assumptions will guarantee this, so that, even in an RCT, we cannot be guaranteed valid
statistical inference for such V-optimal rules.

Therefore, we proceeded to pursue statistical inference for so-called data adaptive target para-
meters. Specifically, we presented statistical inference for the mean outcome under the dynamic
treatment regime we fitted based on the data. We showed that statistical inference for this data adaptive
target parameter does not rely on the convergence rate of our estimated rule to the optimal rule, and in
fact only requires that the data adaptively fitted rule converges to some (possibly suboptimal) fixed rule.
However, even in a sequential RCT, the asymptotic linearity theorem still relies on an empirical process
condition that limits the data adaptivity of the estimator of the rule. So, even though the assumptions
are much weaker, they can still cause problems in finite samples when V is high dimensional, and
possibly even asymptotically.

Therefore, we proceeded with the average of sample split specific target parameters, as in general
proposed by van der Laan et al. [46], where we show that statistical inference can now avoid the empirical
process condition. Specifically, our data adaptive target parameter is now defined as an average across J
sample splits in training and validation sample of the mean outcome under the dynamic treatment fitted on
the training sample. We presented CV-TMLE of this data adaptive target parameter, and we established an
asymptotic linearity theorem that does not require that the estimated rule is consistent for the optimal rule,
let alone at a particular rate. The CV-TMLE also does not require the empirical process condition. As a
consequence, in a sequential RCT, this method provides valid asymptotic statistical inference without
any conditions, beyond the requirement that the estimated rule converges to some (possibly suboptimal)
fixed rule.

We supported our theoretical findings with simulations, both in the single and two time point
settings. Our simulations supported our claim that it is easier to have good coverage of the proposed
data adaptive target parameters than the mean outcome under the optimal rule, though the results for
this harder mean outcome under the optimal rule parameter were also promising. In future work we
hope to apply these methods to actual data sets of interest, generated by observational controlled trial
as well as RCTs.

It might also be of interest to propose working models for the mean outcome EP0 ½Yd0 jS� under the
optimal rule, conditional on some baseline covariates S 	 W . This is now a function of S, but we would
define the target parameter of interest as a projection of this true underlying function on the working
model. It would now be of interest to develop TMLE for this finite dimensional pathwise differentiable
parameter, and we presume that similar results as we found here might appear. Such parameters
provide information about how the mean outcome under the optimal rule are affected by certain
baseline characteristics.

Drawing inferences concerning optimal treatment strategies is an important topic that will hopefully
help guide future health policy decisions. We believe that working with a large semiparametric model is
desirable because it helps to ensure that the projected health benefits from implementing an estimated
treatment strategy are not due to bias from a misspecified model. The TMLEs presented in this article have
many desirable statistical properties and represent one way to get estimates and make inference in this
large model. We look forward to future advances in statistical inference for parameters that involve optimal
dynamic treatment regimes.
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Appendix A

Proofs

Proof of Theorem 1. Let Vd ¼ ðVð0Þ;Vdð1ÞÞ. For a rule in D, we have

EPdYd ¼ EPdEPdðYdjVdÞ
¼ EVd E Yað0Þ;að1ÞjVað0Þ

� �
I að1Þ ¼ dAð1Þ að0Þ;Vað0Þð1Þ

� �� �
Iðað0Þ ¼ dAð0ÞðVð0ÞÞ

� �
:

For each value of að0Þ, Vað0Þ ¼ ðVð0Þ;Vað0Þð1ÞÞ and dAð0ÞðVð0ÞÞ, the inner conditional expectation is max-
imized over dAð1Þðað0Þ;Vað0Þð1ÞÞ by d0;Að1Þ as presented in the theorem, where we used that Vð1Þ includes
Vð0Þ. This proves that d0;Að1Þ is indeed the optimal rule for assignment of Að1Þ. Suppose now that Vð1Þ does
not include Vð0Þ, but the stated assumption holds. Then the optimal rule d0;Að1Þ that is restricted to be a
function of ðVð0Þ;Vð1Þ;Að0ÞÞ is given by Ið�Q20ðAð0Þ;Vð0Þ;Vð1ÞÞ>0Þ, where

�Q20ðað0Þ; vð0Þ; vð1ÞÞ ¼
EP0 Yað0Þ;Að1Þ¼ð1;1Þ � Yað0Þ;Að1Þ¼ð0;1ÞjVað0Þð1Þ ¼ vð1Þ;Vð0Þ ¼ vð0Þ� �

:

However, by assumption, the latter function only depends on ðað0Þ; vð0Þ; vð1ÞÞ through ðað0Þ; vð1ÞÞ,
and equals �Q20ðað0Þ; vð1ÞÞ. Thus, we now still have that d0;Að1ÞðVÞ ¼ ðIð�Q20ðAð0Þ;Vð1ÞÞ>0Þ; 1Þ, and, in
fact, it is now also an optimal rule among the larger class of rules that are allowed to use Vð0Þ
as well.

Given we found d0;Að1Þ, it remains to determine the rule d0;Að0Þ that maximizes

EVd EP Yað0Þ;d0;Að1Þ jVað0Þ
� �

I að0Þ ¼ dAð0ÞðVð0ÞÞ
� �� �

¼ EP0E Yað0Þ;d0;Að1Þ jVð0Þ
� �

I að0Þ ¼ dAð0ÞðVð0ÞÞ
� �

;

where we used the iterative conditional expectation rule, taking the conditional expectation of Vað0Þ, given
Vð0Þ. This last expression is maximized over dAð0Þ by d0;Að0Þ as presented in the theorem. This completes the
proof. □

The following lemma will be useful for proving Theorem 2.

Lemma 1. Recall the definitions of �Q20 and �Q10 in Theorem 1. We can represent ΨðP0Þ ¼ EP0Yd0 as follows:

ΨðP0Þ ¼ EP0Yð0;1Þ;ð0;1Þ þ EP0 d0;Að1Þ ð0; 1Þ;Vð0;1Þð1Þ
� �

�Q20 ð0; 1Þ;Vð0;1Þð1Þ
� �� 	

þEP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ:

where Vð0;1Þð1Þ is drawn under the G-computation distribution for which treatment ð0; 1Þ is given at the first
time point.
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Proof of Lemma A.1. For a point treatment data structure O ¼ ðLð0Þ;Að0Þ;YÞ and binary treatment Að0Þ,
we have for a rule V ! dðVÞ, EP0Yd ¼ EP0Y0 þ EP0dðVÞ�Q0ðVÞ with �Q0ðVÞ ¼ EP0 ½Y1 � Y0jV�. This identity is
applied twice in the following derivation:

ΨðP0Þ ¼ EP0Yð0;1Þ;d0;Að1Þ þ EP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ
¼ EP0EP0 Yð0;1Þ;d0;Að1Þ jVð0;1Þð1Þ

h i
þ EP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ

¼ EP0EP0 Yð0;1Þ;ð0;1ÞjVð0;1Þð1Þ
� 	

þ EP0 I �Q20ðð0; 1Þ;Vð0;1Þð1Þ
� �

>0Þ�Q20ð0;Vð0;1Þð1ÞÞ
þ EP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ

¼ EP0EP0 Yð0;1Þ;ð0;1ÞjVð0;1Þð1Þ
� 	þ EP0d0;Að1Þðð0; 1Þ;Vð0;1Þð1ÞÞ�Q20ð0;Vð0;1Þð1ÞÞ

þ EP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ
¼ EP0Yð0;1Þ;ð0;1Þ þ EP0d0;Að1Þðð0; 1Þ;Vð0;1Þð1ÞÞ�Q20ð0;Vð0;1Þð1ÞÞ
þ EP0d0;Að0ÞðVð0ÞÞ�Q10ðVð0ÞÞ:

□

Proof of Theorem 3. By the definition of R1d we have

P0D�ðQ; gÞ ¼ P0D�ðdQ;Q; gÞ ¼ ΨdQðQdQ
0 Þ �ΨdQðQdQÞ þ R1dQðQdQ ;QdQ

0 ; g; g0Þ
¼ Ψd0ðQd0

0 Þ �ΨdQðQdQÞ þ fΨdQðQdQ
0 Þ �Ψd0ðQd0

0 Þg þ R1dQðQdQ ;QdQ
0 ; g; g0Þ

¼ ΨðQ0Þ �ΨðQÞ þ R2ðQ;Q0Þ þ R1dQðQdQ ;QdQ
0 ; g; g0Þ:

□

Proof of Lemma 1. Below we omit the dependence of dQ;Að0Þ, d0;Að0Þ, �Q1, and �Q10 on Vð0Þ:
R2Að0Þ ¼ EP0 dQ;Að0Þ � d0;Að0Þ

� �
�Q10

� 	
� EP0 dQ;Að0Þ � d0;Að0Þ

� �
�Q10

�� ��
¼ EP0 j dQ;Að0Þ � d0;Að0Þ

� �
�Q10I j�Q10j � j�Q1 � �Q10j

� �j
þ EP0 j dQ;Að0Þ � d0;Að0Þ

� �
�Q10I 0< j�Q10j< j�Q1 � �Q10j

� �j:
The first term in the final equality is always 0 because dQ;Að0Þ ¼ d0;Að0Þ whenever the indicator is 1. In the
second term, dQ;Að0Þ 6¼ d0;Að0Þ whenever the indicator is 1, so:

R2Að0Þ � EP0 j�Q10jI 0< j�Q10j< j�Q1 � �Q10j
� �� 	

� EP0 j�Q10jI 0< j�Q10j
pðβ1þ1Þ
pþβ1 < j�Q1 � �Q10j

pðβ1þ1Þ
pþβ1

� �
I j�Q10j>0
� �� �

� EP0 j�Q1 � �Q10j
pðβ1þ1Þ
pþβ1 j�Q10j�

β1ðp�1Þ
pþβ1 I j�Q10j>0

� �� �

� �Q1 � �Q10


 

pðβ1þ1Þ

pþβ1
p;P0

�Q�1
10 I j�Q10j>0

� �

 

β1ðp�1Þ
pþβ1
β1;P0

ð15Þ

where the final inequality holds by Hölder’s inequality. The above also holds when the limit is taken as
p ! 1, yielding the essential supremum result. The result for R2Að1Þ follows by the same argument. □

Proof of Theorem 4. By Theorem 3, we have

P0D�ðdn;Qdn�
n ; gnÞ ¼ ψ0 �ΨdnðQdn�

n Þ þ Rn;

where Rn ¼ R1dnðQdn
n ;Qdn

0 ; gn; g0Þ þ R2ðQn;Q0Þ. Combining this with the fact that D�
n ;D�ðdn;Qdn�

n ; gnÞ has
empirical mean 0 yields
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ψ�
n � ψ0 ¼ ðPn � P0ÞD�

n þ Rn ¼ ðPn � P0ÞD�ðd0;Qd0 ; g0Þ þ ðPn � P0ÞðD�
n � D�ðd0;Qd0 ; g0ÞÞ þ Rn

The Donsker condition and the mean square consistency of D�
n to D�ðd0;Qd0 ; g0Þ give

ðPn � P0Þ D�
n � D�ðd0;Qd0 ; g0Þ

� � ¼ oP0ðn�1=2Þ;
see, for example, van der Vaart and Wellner [58]. By assumption, R2ðQn;Q0Þ ¼ oP0ðn�1=2Þ. Thus:

ψ�
n � ψ0 ¼ ðPn � P0ÞD� d0;Qd0 ; g0

� �þ R1dn Qdn
n ;Qdn

0 ; gn; g0
� �

þ oP0ðn�1=2Þ

as desired. □

Proof of Theorem 6. For all j ¼ 1; . . . ; J, we have that:

ΨdnjðQdnj�
nj Þ �ΨdnjðQdnj�

0 Þ ¼ � P0D� dnj;Q
dnj�
nj ; gnj

� �
þ R1dnj Qdnj�

nj ;Qdnj�
0 ; gnj; g0

� �
Summing over j and using (13) gives:

~ψ�
n � ~ψ0n ¼ 1

J

XJ

j¼1

P1
n;j � P0

� �
D� dnj;Q

dnj�
nj ; gnj

� �
þ R1dnj Qdnj�

nj ;Qdnj�
0 ; gnj; g0

� �� �
:

We also have that:

1
J

XJ

j¼1

ðP1
n;j � P0Þ D�ðdnj;Qdnj�

nj ; gnjÞ � D�ðd1;Qd1 ; gÞ
� �

¼ oP0ðn�1=2Þ:

The above follows from the first by applying the law of total expectation conditional on the training sample,
and then noting that each Q̂�ðP0

n;Bn
; "nÞ only relies on P0

n;Bn
through the finite dimensional parameter "n.

Because GLM-based parametric classes easily satisfy an entropy integral condition [58], the consistency
assumption on D�ðdnj;Qdnj�

nj ; gnjÞ shows that the above is second order. We refer the reader to Zheng and van
der Laan [55] for a detailed proof of the above result for general cross-validation schemes, including J-fold
cross-validation.

It follows that:

~ψ�
n � ~ψ0n ¼ðPn � P0ÞD�ðd1;Qd1 ; gÞ

þ 1
J

XJ

j¼1

R1dnj Qdnj�
nj ;Qdnj�

0 ; gnj; g0
� �

þ oP0ðn�1=2Þ:
□

Appendix B: Estimators of the mean outcome under the
optimal rule

TMLE of the mean outcome under a given rule

This TMLE for a fixed dynamic treatment rule has been presented in the literature, but for the sake of being
self-contained it will be shortly described here. The TMLE yields a substitution estimator that empirically
solves the estimating equations corresponding to the efficient influence curve, analogous to Theorem 2 for
general d. By substitution estimator, we mean that the TMLE can be written as the mapping Ψ applied to a
particular Q.
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Assume without loss of generality that Y 2 ½0; 1�. In this section we use lower case letters to emphasize
when quantities are the values taken on by random variables rather than the random variables themselves,
for example, our sample is given by ðo1; . . . ; onÞ, where oi ¼ ð�lð1Þi; �að1Þi; yiÞ. The indicator for not being right
censored at time j for individual i is given by a2ðjÞi.

Regress ðyi : a2ð0Þi ¼ a2ð1Þi ¼ 1Þ on ð�að1Þi;�lð1Þi : a2ð0Þi ¼ a2ð1Þi ¼ 1Þ to get an estimate

ða1ð0Þ; a1ð1Þ;�lð1ÞÞ 7!En Y j�Að1Þ ¼ ðða1ð0Þ; 1Þ; ða1ð1Þ; 1ÞÞ; �Lð1Þ ¼ �lð1Þ� 	
: ð16Þ

Note that we have only used individuals who are not right censored at time 1 to obtain this fit. The above
regression can be fitted using a data adaptive technique such as super-learning [59]. To estimate
EP0 ½Y j�Að1Þ ¼ dðað0Þ; vÞ;�lð1Þ�, use

ðað0Þ;�lð1ÞÞ 7!En Y j�Að1Þ ¼ dðað0Þ; vÞ; �Lð1Þ ¼ �lð1Þ� 	
;

where we remind the reader that we are treating the rule d ¼ dn as a known function and that v is a function
of �lð1Þ that sets the indicators for not being censored to 1. Consider the fluctuation submodel

logitEð"2Þ
n Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	
¼ logitEn Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	þ "2H2ðgnÞðOÞ;

where

H2ðgnÞðOÞ ¼
I �Að1Þ ¼ dðAð0Þ;VÞ� �

Q1
j¼0 gn;AðjÞðOÞ

:

Let "2n be the estimate for "2 obtained by running a univariate logistic regression of ðyi : i ¼ 1; . . . ; nÞ on
ðH2ðgnÞðoiÞ : i ¼ 1; . . . nÞ using

logitEn Y j�Að1Þ ¼ dðað0Þi; viÞ; �Lð1Þ ¼ �lð1Þi
� 	

: i ¼ 1; . . . ; n
� �

as offset. This defines a targeted estimate

E�
n Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	

;Eð"2nÞ
n Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	 ð17Þ

of the regression function, where we remind the reader that the targeted estimate is chosen to ensure that
the empirical mean of the component D�

2 is 0 when we plug in the estimate of the intervention mechanism
and the targeted estimate of the regression function for the unknown true quantities.

We now develop a targeted estimator of the second regression function in D�
1 to ensure that the

substitution estimator of D�
1 will have empirical mean 0. Regress

En Y j�Að1Þ ¼ dðað0Þi; viÞ; �Lð1Þ ¼ �lð1Þi
� 	

: a2ð0Þi ¼ 1
� �

on ðlð0Þi; að0Þi : a2ð0Þi ¼ 1Þ to get the regression function

ða1ð0Þ; lð0ÞÞ 7!En En Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	��Að0Þ ¼ ða1ð0Þ; 1Þ; Lð0Þ ¼ lð0Þ� 	
: ð18Þ

One can estimate this quantity using the super-learner algorithm among all individuals who are not right
censored at time 0. For honest cross-validation in the super-learner algorithm, the nuisance parameter
En Y j�Að1Þ ¼ dðAð0Þ;VÞ; �Lð1Þ� 	

should be fit on the training samples in the super-learner algorithm. We refer
the reader to Appendix B of van der Laan and Gruber [41] for a detailed explanation of this procedure. The
same strategy holds for estimating the nuisance parameter g0 when necessary (e.g., in an observational
study).

For an estimate of EP0 ½YdjLð0Þ�, one can use the regression function above, but with að0Þ fixed to
dAð0Þðvð0ÞÞ, which is itself a function of lð0Þ. We will denote this function by lð0Þ 7!En½YdjLð0Þ ¼ lð0Þ�. We
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now wish to fluctuate this initial estimator so that the plug-in estimator of D�
1 ðP0Þ has empirical mean 0. In

particular, we use the submodel

logit Eð"1Þ
n ½YdjLð0Þ� ¼ logit En½YdjLð0Þ� þ "1H1ðgnÞ;

where

H1ðgnÞ ¼
I Að0Þ ¼ dAð0ÞðVð0ÞÞ
� �

gn;Að0ÞðOÞ
:

Let "1n be the estimate for "1 obtained by running a univariate logistic regression of

E�
n Y j�Að1Þ ¼ dðað0Þi; viÞ; �Lð1Þ ¼ �lð1Þi
� 	

: i ¼ 1; . . . ; n
� �

on ðH1ðgnÞðoiÞ : i ¼ 1; . . . ; nÞ using ð logitEn½YdjLð0Þ ¼ lð0Þi� : i ¼ 1; . . . ; nÞ as offset. A targeted estimate of
EP0 ½YdjLð0Þ� is given by

E�
n½YdjLð0Þ�;Eð"1nÞ

n ½YdjLð0Þ� ð19Þ
Plugging the targeted regressions and gn into the expression for D�

1 shows that this estimate of D�
1 has

empirical mean 0.
Let QLð0Þ;n be the empirical distribution of Lð0Þ, and let Qd�

n be the parameter mapping representing the
collection containing QLð0Þ;n and the targeted regression functions in (17) and (19). This concludes the
presentation of the components of the TMLE of EP0Yd. The discussion of properties of this estimator is
continued in the main text.

CV-TMLE of the mean outcome under data adaptive V-optimal rule

Let d̂ : M ! D be an estimator of the V-optimal rule d0. Firstly, without loss of generality we can assume
that Y 2 ½0; 1�. Denote the realizations of Bn with j ¼ 1; . . . ; J, and let dnj ; d̂ðP0

n;jÞ denote the estimated rule
on training sample j. Let

ðað0Þ;�lð1ÞÞ 7!Enj Y j�Að1Þ ¼ dnjðað0Þ; vÞ; �Lð1Þ ¼ �lð1Þ� 	 ð20Þ
represent an initial estimate of EP0 ½Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ� based on the training sample j, obtained
analogously to the estimator in (16). Similarly, let gnj represent the estimated intervention mechanism based
on this training sample P0

n;j, j ¼ 1; . . . ; J. Consider the fluctuation submodel

logit Eð"2Þ
nj Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ

� 	
¼ logit Enj Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ

� 	þ "2H2ðgnjÞðOÞ
where

H2ðgnjÞðOÞ ¼
I �Að1Þ ¼ dnjðAð0Þ;Vð1ÞÞ
� �

Q1
l¼0 gnj;AðlÞðOÞ

:

Note that the fluctuation "2 does not rely on j. Let

"2n ¼ argmin
"2

1
J

XJ

j¼1

P1
n;j
~fðEð"2Þ

nj Þ;

where Eð"2Þ
nj represents the fluctuated function in (20) and

� ~fðf ÞðoÞ ¼ y log f ðoÞ þ ð1� yÞ log 1� f ðoÞð Þ: ð21Þ
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for all f : O ! ð0; 1Þ. For each i ¼ 1; . . . ; n, let jðiÞ 2 f1; . . . ; Jg represent the value of Bn for which element i
is in the validation set. The fluctuation "2n can be obtained by fitting a univariate logistic regression of
ðyi : i ¼ 1; . . . ; nÞ on ðH2ðgnjðiÞÞðoiÞ : i ¼ 1; . . . ; nÞ using

logitEnjðiÞ Y j�Að1Þ ¼ dnjðað0Þi; viÞ; �Lð1Þ ¼ �lð1Þi
� 	

: i ¼ 1; . . . ; n
� �

as offset. Thus each observation i is paired with nuisance parameters that are fit on the training sample
which does not contain observation i. This defines a targeted estimate

E�
nj Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ
� 	

;Eð"2nÞ
nj Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ

� 	 ð22Þ

of EP0 ½Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ�. We note that this targeted estimate only depends on Pn through the
training sample P0

n;j and the one-dimensional "2n.
We now aim to get a targeted estimate of EP0 ½Ydnj jLð0Þ�. We can obtain an estimate

ða1ð0Þ; lð0ÞÞ 7!Enj Enj Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ
� 	��Að0Þ ¼ ða1ð0Þ; 1Þ; Lð0Þ ¼ lð0Þ� 	 ð23Þ

in the same manner as we estimated the quantity in (18), with the caveat that we replace
En½Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ� by Enj½Y j�Að1Þ ¼ dnjðAð0Þ;VÞ; �Lð1Þ� and only fit the regression on samples
that are not right censored at time 0 and are in training set j. For an estimate Enj½Ydnj jLð0Þ� of
EP0 ½Ydnj jLð0Þ�, we can use the regression function above but with að0Þ fixed to dnj;Að0Þðvð0ÞÞ.

Consider the fluctuation submodel

logitEð"1Þ
nj Ydnj jLð0Þ

� 	 ¼ logitEnj Ydnj jLð0Þ
� 	þ "H1ðgnjÞðOÞ;

where

H1ðgnjÞðOÞ ¼
IðAð0Þ ¼ dnj;Að0ÞðVð0ÞÞÞ

gnj;Að0ÞðOÞ
:

Again the fluctuation "1 does not rely on j. Let

"1n ¼ argmin
"1

1
J

XJ

j¼1

P1
n;j
~fðEð"1Þ

nj Þ;

where ~f is defined in (21). For each i ¼ 1; . . . ; n, again let jðiÞ 2 f1; . . . ; Jg represent the value of Bn for which
element i is in the validation set. The fluctuation "1n can be obtained by fitting a univariate logistic
regression of

E�
njðiÞ Y j�Að1Þ ¼ dnjðiÞðað0Þi; viÞ;�lð1Þi

� 	
: i ¼ 1; . . . ; n

� �
on ðH1ðgnjðiÞÞðoiÞ : i ¼ 1; . . . ; nÞ using

logitEnjðiÞ YdnjðiÞ jLð0Þ ¼ lð0Þi
h i

: i ¼ 1; . . . ; n
� �

as offset. This defines a targeted estimate

E�
nj Ydnj jLð0Þ
� 	

;Eð"1nÞ
nj Ydnj jLð0Þ

� 	 ð24Þ

of EP0 ½Ydnj jLð0Þ�. We note that this targeted estimate only depends on Pn through the training sample P0
n;j

and the one-dimensional "1n.
Let QLð0Þ;nj be the empirical distribution of Lð0Þi for the validation sample P1

n;j. For all j ¼ 1; . . . ; J, let
Qdnj�
nj be the parameter mapping representing the collection containing QLð0Þ;nj and the targeted regres-

sions in (22) and (24). This defines an estimator ψ�
nj ¼ P1

n;j
�Q�
1nj of ψdnj0 ¼ ΨdnjðP0Þ for each j ¼ 1; . . . ; J.

CV-TMLE is now defined as ψ�
n ¼ 1

J

PJ
j¼1 ψ

�
nj. This CV-TMLE solves the cross-validated efficient influence

curve equation:

90 M. J. van der Laan and A. R. Luedtke: Targeted Learning of the Mean Outcome



1
J

XJ

j¼1

P1
n;jD

� dnj;Q
dnj�
nj ; gnj

� �
¼ 0:

Further, each Qdnj�
nj only relies on P1

n;j through the univariate parameters "1n and "2n. This will allow us to use
the entropy integral arguments presented in Zheng and van der Laan [55] which show that no restrictive
empirical process conditions are needed on the initial estimates in (20) and (23).

The only modification relative to the original CV-TMLE presented in Zheng and van der Laan [55]
is that in the above description we change our target on each training sample into the training
sample-specific target parameter implied by the fit d̂ðP0

n;Bn
Þ on the training sample, while in the

original CV-TMLE formulation, the target would still be Ψd0ðP0Þ. With this minor twist, the (same)
CV-TMLE is now used to target the average of training sample-specific target parameters averaged
across the J training samples. This utilization of CV-TMLE was already used to estimate the average
(across training samples) of the true risk of an estimator based on a training sample in van der Laan
and Petersen [53] and Díaz and van der Laan [54], so that this just represents a generalization of that
application of CV-TMLE to estimate general data adaptive target parameters as proposed in van der
Laan et al. [46].

Appendix C: Why the TMLE may have better coverage than the
estimating equation approach in a randomized clinical trial

We wrote this section after performing our simulations because we wanted to understand why the TMLE is
outperforming the DR-IPCW estimating equation approach by such a wide margin. The two approaches do
not typically give such disparate estimates in a randomized clinical trial, so it is natural to ask why this is
happening in our simulations. Part of this section is conjecture (which is in line with our simulations), but
we offer some justification to support this conjecture.

We now offer a heuristic explanation of why the TMLE may have better coverage than the DR-IPCW
estimating equation approach when estimating the data adaptive parameter ψ0n. Suppose we have a single
time point data structure O ¼ ðW;A;YÞ drawn according to the distribution P0 in a randomized clinical trial
without missingness. Here we use notation which directly describes the single time point data structure
rather than forcing this problem into the longitudinal context as in Section 8.1.1. Let
d0 ¼ argmaxd EP0EP0 ½Y jA ¼ dðVÞ;W� for some V that is a function of W. Suppose we observe o1; . . . ; on
and let dn be an estimate of d0, which is obtained using the methods in our accompanying technical report
[47]. For any fixed rule d, the efficient influence curve at some P 2 M is given by

EP
IðA ¼ dðVÞÞ
gðAjWÞ Y � EP½Y jA ¼ dðVÞ;W�ð Þ

� �
þ EP½Y jA ¼ dðVÞ;W � � EPEP½Y jA ¼ dðVÞ;W�;

where g is the intervention mechanism under P. Again we have that EP0Yd0 has the same influence curve as
above with d ¼ d0 (see our online technical report). Suppose that g0 ¼ 1=2 is known and we have estimated
EP0 ½Y jA ¼ dðVÞ;W � perfectly, though we continue to work in the model where EP0 ½Y jA ¼ dðVÞ;W � is treated
as unknown so that simply averaging over this quantity is not appropriate if we want inference or
robustness.

For any fixed rule V 7! dðVÞ, it is easy to show that

EP0
IðA ¼ dðVÞÞ
g0ðAjWÞ Y � EP0 ½Y jA ¼ dðVÞ;W�ð Þ

� �
¼ 0;

where g0ðajwÞ represents the probability under P0 that A ¼ a given W ¼ w. Similarly, we expect that
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βdðPnÞ; 1
n

Xn
i¼1

Iðai ¼ dðviÞÞ
g0ðaijwiÞ yi � EP0 ½Y jA ¼ dðviÞ;W ¼ wi�ð Þ � 0:

Further, EP0βdðPnÞ ¼ 0 for fixed d, where the expectation is over the observed sample Pn but not the fixed
rule d. In the first part of this paper we argued that one can learn an estimated rule dn on the entire data set,
and then treat this rule dn as known when estimating EP0Ydn . This is asymptotically valid under the
conditions given in this paper, but even if these conditions hold we may expect some finite sample bias.
In our simulation this finite sample bias is manifested as

EP0
1
n

Xn
i¼1

Iðai ¼ dnðviÞÞ
g0ðaijwiÞ yi � EP0 Y jA ¼ dnðviÞ;W ¼ wi½ �ð Þ

" #
>0;

where the expectation is over the observed sample Pn and the estimated rule dn. For a single time point
simulation with V ¼ L3ð1Þ, this sample average is approximately 0.013 on average across 1,000 simulations.
When V ¼ L1ð1Þ; . . . ; L1ð4Þ, this sample average is approximately 0.040 on average across 1,000 simula-
tions. Because this was a follow-up analysis, we ran these simulations on different Monte Carlo draws than
those used for our results in the main text. We conjecture that the above phenomenon is not specific to our
simulation settings and will occur in more general settings. Our companion paper in this issue explores the
estimation of d0, and a careful look at the mean performance-based loss function presented in that paper
will show that indeed one way to make the empirical risk smaller is to choose dn so that βdnðPnÞ >0.
Nonetheless, selecting dn by a cross-validation selector as we propose in our companion paper should help
mitigate this issue since βdn for dn trained on a training sample should have empirical mean close to 0 in the
validation sample.

The DR-IPCW estimating equation gives the estimator:

Ψ̂dn
EEðPnÞ;ψn;EE ; βdnðPnÞ þ 1

n

Xn
i¼1

EP0 Y jA ¼ dnðViÞ;W ¼ Wi½ �:

This estimator has bias EP0βdnðPnÞ, where the expectation is over the random sample Pn and the estimated
rule dn.

Consider the simple linear TMLE which fluctuates w 7!EP0 ½Y jA ¼ dnðvÞ;W ¼ w� using the submodel:

Eð"Þ
P0

Y jA ¼ dnðVÞ;W½ � ¼ EP0 Y jA ¼ dnðVÞ;W½ � þ "
IðA ¼ dnðVÞÞ

g0ðAjWÞ
where we recall that w 7!EP0 ½Y jA ¼ dnðvÞ;W ¼ v� is being treated as unknown. A valid TMLE is given by
choosing "n to minimize the mean-squared error between Y and Eð"Þ

P0
½Y jA ¼ dnðVÞ;W �. When Y is bounded,

the logistic fluctuations that we have presented in this paper are preferable to the linear fluctuation because
they respect our model constraints. We consider the linear fluctuation here for simplicity. The minimizer "n
is given by

"n ¼

1
n

X
i

Iðai ¼ dnðviÞÞ
g0ðaijwiÞ yi � EP0 Y jA ¼ dnðviÞ;W ¼ wi½ �ð Þ

1
n

X
i

Iðai ¼ dnðviÞÞ
g0ðaijwiÞ2

¼ 1
2

βdnðPnÞ
1
n

X
i

Iðai ¼ dnðviÞÞ
g0ðaijwiÞ

;

if 1
n

P
i
Iðai¼dnðviÞÞ
g0ðaijwiÞ >0 and we take "n ¼ 0 if 1

n

P
i
Iðai¼dnðviÞÞ
g0ðaijwiÞ ¼ 0. The denominator above is the same as the

denominator in a modified Horvitz-Thompson estimator [60] and, more importantly, appears in one of the
terms in the TMLE, which is given by
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ψ�
n;TMLE ;

1
n

Xn
i¼1

Eð"nÞ
P0

Y jA ¼ dnðVÞ;W½ �

¼ 1
n

Xn
i¼1

EP0 Y jA ¼ dnðVÞ;W½ � þ "n
n

Xn
i¼1

IðA ¼ dnðVÞÞ
g0ðAjWÞ

¼ 1
n

Xn
i¼1

EP0 Y jA ¼ dnðVÞ;W½ � þ βdnðPnÞ
2

:

This linear fluctuation TMLE has bias EP0
βdn ðPnÞ

2

h i
, which is half the bias of Ψ̂dn

EEðPnÞ.
The arguments presented in this section are mainly interesting if EP0 ½βdnðPnÞ� 6¼ 0. We have conjectured

that EP0 ½βdnðPnÞ� >0 for many data generating distributions P0 and estimators of the optimal rule, though we
have not analytically justified this claim. If the conditions of Theorem 5 hold, then this bias will only occur
in finite samples. For simplicity we analyzed a different TMLE than the ones presented in this paper. First,
we analyzed a TMLE for the single time point problem. We show in our online technical report that the
single and multiple time point problems are closely related, so we expect that these results carry over to the
two time point case. We have also analyzed a linear rather than logistic fluctuation in this section. We did
this simply so we could get a straightforward expression for the bias of the TMLE without having to worry
about linearizing the fluctuation submodel in a neighborhood of 0. Similar results should hold for the
logistic fluctuations. We also assumed that EP0 ½Y jA ¼ dnðVÞ;W � was estimated perfectly, which of course is
not true in practice. Nonetheless, this assumption makes our results clearer because then we do not have to
worry about a resulting empirical process term.

The term βdnðPnÞ only causes problems because dn is learned from the same data over which the
estimators of EP0Ydn are run. The cross-validated approaches that we have presented in this paper do not
suffer from this conjectured bias because we can condition on the training sample and then treat dn as
known. For fixed d, EP0 ½βdðPnÞ� ¼ 0 and thus βdðPnÞ will not cause problems.
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