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Abstract: The problem of causal inference is to determine if a given probability distribution on observed vari-
ables is compatible with some causal structure. The difficult case is when the causal structure includes latent
variables. We here introduce the inflation technique for tackling this problem. An inflation of a causal struc-
ture is a new causal structure that can containmultiple copies of each of the original variables, but where the
ancestry of each copy mirrors that of the original. To every distribution of the observed variables that is com-
patible with the original causal structure, we assign a family of marginal distributions on certain subsets of
the copies that are compatible with the inflated causal structure. It follows that compatibility constraints for
the inflation can be translated into compatibility constraints for the original causal structure. Even if the con-
straints at the level of inflation are weak, such as observable statistical independences implied by disjoint
causal ancestry, the translated constraints can be strong. We apply this method to derive new inequalities
whose violation by a distribution witnesses that distribution’s incompatibility with the causal structure (of
which Bell inequalities and Pearl’s instrumental inequality are prominent examples). We describe an algo-
rithm for deriving all such inequalities for the original causal structure that follow from ancestral indepen-
dences in the inflation. For three observed binary variables with pairwise common causes, it yields inequali-
ties that are stronger in at least some aspects than those obtainable by existing methods. We also describe an
algorithm that derives a weaker set of inequalities but is more efficient. Finally, we discuss which inflations
are such that the inequalities one obtains from them remain valid even for quantum (and post-quantum)
generalizations of the notion of a causal model.

Keywords: causal inference with latent variables, inflation technique, causal compatibility inequalities,
marginal problem, Bell inequalities, Hardy paradox, graph symmetries, quantum causal models, GPT causal
models, triangle scenario

1 Introduction

Given a joint probability distribution of some observed variables, the problem of causal inference is to de-
termine which hypotheses about the causal mechanism can explain the given distribution. Here, a causal
mechanism may comprise both causal relations among the observed variables, as well as causal relations
among these and a number of unobserved variables, and among unobserved variables only. Causal inference
has applications in all areas of science that use statistical data and for which causal relations are impor-
tant. Examples include determining the effectiveness ofmedical treatments, sussing out biological pathways,
making data-based social policy decisions, and possibly even in developing strong machine learning algo-
rithms [1–5]. A closely related type of problem is to determine, for a given set of causal relations, the set of
all distributions on observed variables that can be generated from them. A special case of both problems is
the following decision problem: given a probability distribution and a hypothesis about the causal relations,
determine whether the two are compatible: could the given distribution have been generated by the hypoth-
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esized causal relations? This is the problem that we focus on. We develop necessary conditions for a given
distribution to be compatible with a given hypothesis about the causal relations.

In the simplest setting, the causal hypothesis consists of a directed acyclic graph (DAG)all ofwhosenodes
correspond to observed variables. In this case, obtaining a verdict on the compatibility of a given distribution
with the causal hypothesis is simple: the compatibility holds if and only if the distribution is Markov with
respect to the DAG, which is to say that the distribution features all of the conditional independence relations
that are implied by d-separation relations among variables in the DAG. The DAGs that are compatible with
the given distribution can be determined algorithmically [1].1

A significantly more difficult case is when one considers a causal hypothesis which consists of a DAG
some of whose nodes correspond to latent (i. e., unobserved) variables, so that the set of observed variables
corresponds to a strict subset of the nodes of the DAG. This case occurs, e. g., in situations where one needs
to deal with the possible presence of unobserved confounders, and thus is particularly relevant for experi-
mental design in applications. With latent variables, the condition that all of the conditional independence
relations among the observed variables that are implied by d-separation relations in the DAG is still a nec-
essary condition for compatibility of a given such distribution with the DAG, but in general it is no longer
sufficient, and this is what makes the problem difficult.

Whenever the observed variables in a DAG have finite cardinality,2 one may also restrict the latent vari-
ables in the causal hypothesis to be of finite cardinality as well, without loss of generality [6]. As such, the
mathematical problemwhichonemust solve to infer thedistributions that are compatiblewith thehypothesis
is a quantifier elimination problem for some finite number of variables, as follows: The probability distribu-
tions of the observed variables can all be expressed as functions of the parameters specifying the conditional
probabilities of each node given its parents,many of which involve latent variables. If one can eliminate these
parameters, then one obtains constraints that refer exclusively to the probability distribution of the observed
variables. This is a nonlinear quantifier elimination problem. The Tarski-Seidenberg theorem provides an in
principle algorithm for an exact solution, but unfortunately the computational complexity of such quantifier
elimination techniques is far too large to be practical, except in particularly simple scenarios [7, 8].3 Most
uses of such techniques have been in the service of deriving compatibility conditions that are necessary but
not sufficient, for both observational [10–13] and interventionist data [14–16].

Historically, the insufficiency of the conditional independence relations for causal inference in the pres-
ence of latent variables was first noted by Bell in the context of the hidden variable problem in quantum
physics [17]. Bell considered an experiment for which considerations from relativity theory implied a very
particular causal structure, and he derived an inequality that any distribution compatible with this structure,
and compatible with certain constraints imposed by quantum theory, must satisfy. Bell also showed that this
inequality was violated by distributions generated from entangled quantum states with particular choices of
incompatible measurements. Later work, by Clauser, Horne, Shimony and Holt (CHSH) derived inequalities
without assuming any facts about quantum correlations [18]; this derivation can retrospectively be under-
stood as the first derivation of a constraint arising from the causal structure of the Bell scenario alone [19].
The CHSH inequality was the first example of a compatibility condition that appealed to the strength of the
correlations rather than simply the conditional independence relations inherent therein. Since then, many
generalizations of the CHSH inequality have been derived for the same sort of causal structure [20]. The idea
that such work is best understood as a contribution to the field of causal inference has only recently been put
forward [19, 21–23], as has the idea that techniques developed by researchers in the foundations of quantum
theory may be usefully adapted to causal inference.4

Independently of Bell’s work, Pearl later derived the instrumental inequality [31], which provides a
necessary condition for the compatibility of a distribution with a causal structure known as the instrumental

1 As illustrated by the vast amount of literature on the subject, the problem can still be difficult in practice, for example due to a
large number of variables in certain applications or due to finite statistics.
2 The cardinality of a variable is the number of possible values it can take.
3 Techniques for finding approximate solutions to nonlinear quantifier elimination may help [9].
4 The current article being another example of the phenomenon [9, 23–30].
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scenario. This causal structure comes up when considering, for instance, certain kinds of noncompliance in
drug trials. More recently, Steudel and Ay [32] derived an inequality whichmust hold whenever a distribution
on n variables is compatible with a causal structure where no set of more than c variables has a common
ancestor, for arbitrary n, c ∈ ℕ. More recent work has focused specifically on the simplest nontrivial case,
with n = 3 and c = 2, a causal structure that has been called the Triangle scenario [21, 33] (Fig. 1).

Recently, Henson, Lal and Pusey [22] have investigated those causal structures for which merely con-
firming that a given distribution on observed variables satisfies all of the conditional independence relations
implied by d-separation relations does not guarantee that this distribution is compatible with the causal
structure. They coined the term interesting for causal structures that have this property. They presented a cat-
alogue of all potentially interesting causal structures having six or fewer nodes in [22, App. E], of which all but
three were shown to be indeed interesting. Evans has also sought to generate such a catalogue [34]. The Bell
scenario, the Instrumental scenario, and the Triangle scenario all appear in the catalogue, togetherwithmany
others. Furthermore,they provided numerical evidence and an intuitive argument in favour of the hypothesis
that the fraction of causal structures that are interesting increases as the total number of nodes increases.
This highlights the need for moving beyond a case-by-case consideration of individual causal structures and
for developing techniques for deriving constraints beyond conditional independence relations that can be
applied to any interesting causal structure. Shannon-type entropic inequalities are an example of such con-
straints [21, 25, 32, 33, 35]. They can be derived for a given causal structure with relative ease, via exclusively
linear quantifier elimination, since conditional independence relations are linear equations at the level of
entropies. They also have the advantage that they apply for any finite cardinality of the observed variables.
Recentwork has also looked at non-Shannon type inequalities, potentially further strengthening the entropic
constraints [26, 36]. However, entropic techniques are still wanting, since the resulting inequalities are often
rather weak. For example, they are not sensitive enough towitness some known incompatibilities, in particu-
lar for distributions that only arise in quantumbut not classicalmodels with a given causal structure [21, 26].5

In order to improve this state of affairs, we here introduce a new technique for deriving necessary condi-
tions for the compatibility of a distribution of observed variableswith a given causal structure, whichwe term
the inflation technique. This technique is frequently capable of witnessing incompatibility whenmany other
causal inference techniques fail. For example, in Example 2 of Sec. 3.2 we prove that the tripartite “W-type”
distribution is incompatible with the Triangle scenario, despite the incompatibility being invisible to other
causal inference tools such as conditional independence relations, Shannon-type [25, 33, 35] or non-Shanon-
type entropic inequalities [26], or covariance matrices [27].

The inflation technique works roughly as follows. For a given causal structure under consideration, one
can construct many new causal structures, termed inflations of this causal structure. An inflation duplicates
one or more of the nodes of the original causal structure, while mirroring the form of the subgraph describ-
ing each node’s ancestry. Furthermore, the causal parameters that one adds to the inflated causal structure
mirror those of the original causal structure. We show that if marginal distributions on certain subsets of the
observed variables in the original causal structure are compatible with the original causal structure, then
the same marginal distributions on certain copies of those subsets in the inflated causal structure are com-
patible with the inflated causal structure (Lemma 4). Similarly, we show that any necessary condition for
compatibility of such distributions with the inflated causal structure translates into a necessary condition for
compatibilitywith the original causal structure (Corollary 6). Thus, applying standard techniques for deriving
causal compatibility inequalities to the inflated causal structure typically results in new causal compatibility
inequalities for the original causal structure. The reader interested in seeing an example of howour technique
works may want to take a sneak peak at Sec. 3.2.

5 It should be noted that non-standard entropic inequalities can be obtained through a fine-graining of the causal scenario,
namely by conditioning on the distinct finite possible outcomes of root variables (“settings”), and these types of inequalities have
proven somewhat sensitive to quantum-classical separations [33, 37, 38]. Such inequalities are still limited, however, in that they
are only applicable to those causal structures which feature observed root nodes. The potential utility of entropic analysis where
fine-graining is generalized to non-root observed nodes is currently being explored by E.W. and Rafael Chaves. Jacques Pienaar
has also alluded to similar considerations as a possible avenue for further research [36].
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Concretely, we consider causal compatibility inequalities for the inflated causal structure that are ob-
tained as follows. One begins by identifying inequalities for themarginal problem, which is the problem of
determiningwhenagiven family ofmarginal distributions on some subsets of variables canarise asmarginals
of a global joint distribution. One then looks for sets of variables within the inflated causal structure which
admit of nontrivial d-separation relations. (We mainly consider sets of variables with disjoint ancestries.)
For each such set, one writes down the appropriate factorization of their joint distribution. These factoriza-
tion conditions are finally substituted into the marginal problem inequalities to obtain causal compatibility
inequalities for the inflated causal structure. Although these constraints are extremely weak, the inflation
technique turns them into powerful necessary conditions for compatibility with the original causal structure.

We show how to identify all relevant factorization conditions from the structure of the inflated causal
structure, and also how to obtain all marginal problem inequalities by enumerating all facets of the associ-
atedmarginal polytope (Sec. 4.2). Translating the resulting causal compatibility inequalities on the inflated
causal structure back to the original causal structure, we obtain causal compatibility conditions in the formof
nonlinear (polynomial) inequalities. As a concrete example of our technique, we present all the causal com-
patibility inequalities that can be derived in this manner from a particular inflation of the Triangle scenario
(Sec. 4.3). In general, we also show how to efficiently obtain a partial set of marginal problem inequalities by
enumerating transversals of a certain hypergraph (Sec. 4.4).

Besides the entropic techniques discussed above, our method is the first systematic tool for causal infer-
encewith latent variables that goes beyond observed conditional independence relationswhile not assuming
any bounds on the cardinality of each latent variable. While our method can be used to systematically gener-
ate necessary conditions for compatibility with a given causal structure, we do not know whether the set of
inequalities thus generated are also sufficient.

We present our technique primarily as a tool for standard causal inference, but we also briefly discuss
applications to quantum causal models [22, 23, 39–43] and causal models within generalized probabilistic
theories [22] (Sec. 5.4). In particular, we discuss when our inequalities are necessary conditions for a distribu-
tion of observed variables to be compatible with a given causal structure within any generalized probabilistic
theory [44, 45] rather than simply within classical probability theory.

2 Basic definitions of causal models and compatibility
A causalmodel consists of a pair of objects: a causal structure anda family of causal parameters.Wedefine
each in turn. First, recall that a directed acyclic graph (DAG) G consists of a finite set of nodes Nodes(G) and
a set of directed edges Edges(G) ⊆ Nodes(G) × Nodes(G), meaning that an edge is an ordered pair of nodes,
such that this directed graph is acylic, which means that there is no way to start and end at the same node by
traversing edges forward. In the context of a causal model, each node X ∈ Nodes(G) will be equipped with a
randomvariable thatwedenote by the same letterX. A directed edgeX → Y corresponds to the possibility of a
direct causal influence from the variable X to the variable Y . In this way, the edges represent causal relations.

Our terminology for the causal relations between the nodes in a DAG is the standard one. The parents of a
nodeX inG are defined as those nodes fromwhich anoutgoing edge terminates atX, i. e.PaG(X) = {Y |Y → X}.
When the graph G is clear from the context, we omit the subscript. Similarly, the children of a node X are
defined as those nodes at which edges originating at X terminate, i. e. ChG(X) = { Y | X → Y }. If X is a set
of nodes, then we put PaG(X) := ⋃X∈X PaG(X) and ChG(X) := ⋃X∈X ChG(X). The ancestors of a set of nodes
X, denoted AnG(X), are defined as those nodes which have a directed path to some node in X, including
the nodes in X themselves.6 Equivalently, An(X) := ⋃n∈ℕ Pa

n(X), where Pan(X) is defined inductively via
Pa0(X) := X and Pan+1(X) := Pa(Pan(X)).

6 The inclusion of a node itself within the set of its ancestors is contrary to the colloquial use of the term “ancestors”. One uses
this definition so that any correlation between two variables can always be attributed to a common “ancestor”. This includes, for
instance, the case where one variable is a parent of the other.
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A causal structure is a DAG that incorporates a distinction between two types of nodes: the set of ob-
served nodes, and the set of latent nodes.7 Following [22], we will depict the observed nodes by triangles and
the latent nodes by circles, as in Fig. 1.8 Henceforth, we will use G to refer to the causal structure rather than
just the DAG, so that G includes a specification of which variables are observed, denotedObservedNodes(G),
and which are latent, denoted LatentNodes(G). Frequently, we will also imagine the causal structure to in-
clude a specification of the cardinalities of the observed variables.While these are finite in all of our examples,
the inflation technique may apply in the case of continuous variables as well. Although we will not do so in
this work, the inflation technique can also be applied in the presence of other types of constraints, e. g., when
all variables are assumed to be Gaussian.

The second component of a causal model is a family of causal parameters. The causal parameters spec-
ify, for each node X, the conditional probability distribution over the values of the random variable X, given
the values of the variables in Pa(X). In the case of root nodes, we have Pa(X) = 0, and the conditional distri-
bution is an unconditioned distribution. We write PY |X for the conditional distribution of a variable Y given
a variable X, while the particular conditional probability of the variable Y taking the value y given that the
variable X takes the values x is denoted9 PY |X(y|x). Therefore, a family of causal parameters has the form

{PX|PaG(X) : X ∈ Nodes(G)}. (1)

Finally, a causal modelM consists of a causal structure together with a family of causal parameters,

M = (G, {PX|PaG(X) : X ∈ Nodes(G)}).

A causal model specifies a joint distribution of all variables in the causal structure via

PNodes(G) = ∏
X∈Nodes(G)

PX|PaG(X), (2)

where∏ denotes the usual product of functions, so that e. g. (PY |X ×PY )(x, y) = PY |X(y|x)PX(x). A distribution
PNodes(G) arises in this way if and only if it satisfies the Markov conditions associated to G [1, Sec. 1.2].

The joint distribution of the observed variables is obtained from the joint distribution of all variables by
marginalization over the latent variables,

PObservedNodes(G) = ∑
{U :U∈LatentNodes(G)}

PNodes(G), (3)

where∑U denotes marginalization over the (latent) variable U, so that (∑U PUV )(v) := ∑u PUV (uv).

Definition 1. A given distribution PObservedNodes(G) is compatible with a given causal structure G if there is
some choice of the causal parameters that yields PObservedNodes(G) via Eqs. (2, 3). A given family of distributions
on a family of subsets of observed variables is compatible with a given causal structure if and only if there
exists some PObservedNodes(G) such that both
1. PObservedNodes(G) is compatible with the causal structure, and
2. PObservedNodes(G) yields the given family as marginals.

7 Pearl [1, Def. 2.3.2] uses the term latent structure when referring to a DAG supplemented by a specification of latent nodes,
whereas here that specification is implicit in our term causal structure.
8 Note that this convention differs from that of [39], where triangles represent classical variables and circles represent quantum
systems.
9 Although our notation suggests that all variables are either discrete or described by densities, we do not make this assumption.
All of our equations can be translated straightforwardly into proper measure-theoretic notation.
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3 The inflation technique for causal inference

3.1 Inflations of a causal model

Wenow introduce the notion of an inflation of a causalmodel. If a causal model specifies a causal structure
G, then an inflation of this model specifies a new causal structure, G�, which we refer to as an inflation of G.
For a given causal structure G, there are many causal structures G� constituting an inflation of G. We denote
the set of such causal structures Inflations(G). The particular choice of G� ∈ Inflations(G) then determines
how to map a causal modelM on G into a causal modelM� on G�, since the family of causal parameters ofM�

will be determined by a functionM� = InflationG→G� (M) that we define below. We begin by defining when a
causal structure G� is an inflation of G, building on some preliminary definitions.

For any subset of nodes X ⊆ Nodes(G), we denote the induced subgraph on X by SubDAGG(X). It con-
sists of the nodes X and those edges of G which have both endpoints in X. Of special importance to us is the
ancestral subgraph AnSubDAGG(X), which is the subgraph induced by the ancestry ofX, AnSubDAGG(X) :=
SubDAGG(AnG(X)).

In an inflated causal structure G�, every node is also labelled by a node of G. That is, every node of the
inflated causal structure G� is a copy of some node of the original causal structure G, and the copies of a node
X of G in G� are denoted X1, . . . ,Xk . The subscript that indexes the copies is termed the copy-index. A copy
is classified as observed or latent according to the classification of the original. Similarly, any constraints on
cardinality or other types of constraints such as Gaussianity are also inherited from the original. When two
objects (e. g. nodes, sets of nodes, causal structures, etc…) are the same up to copy-indices, then we use ∼ to
indicate this, as in Xi ∼ Xj ∼ X. In particular, X ∼ X� for sets of nodes X ⊆ Nodes(G) and X� ⊆ Nodes(G�) if
and only if X� contains exactly one copy of every node in X. Similarly, SubDAGG� (X�) ∼ SubDAGG(X)means
that in addition to X ∼ X�, an edge is present between two nodes in X� if and only if it is present between the
two associated nodes in X.

In order to be an inflation, G� must locally mirror the causal structure of G:

Definition 2. The causal structure G� is said to be an inflation of G, that is, G� ∈ Inflations(G), if and only
if for every Vi ∈ ObservedNodes(G�), the ancestral subgraph of Vi in G� is equivalent, under removal of the
copy-index, to the ancestral subgraph of V in G,

G� ∈ Inflations(G) iff ∀Vi ∈ ObservedNodes(G
�) : AnSubDAGG� (Vi) ∼ AnSubDAGG(V). (4)

Equivalently, the condition can be restated wholly in terms of local causal relationships, i. e.

G� ∈ Inflations(G) iff ∀Xi ∈ Nodes(G
�) : PaG� (Xi) ∼ PaG(X). (5)

In particular, this means that an inflation is a fibration of graphs [46], although there are fibrations that
are not inflations.

To illustrate the notion of inflation, we consider the causal structure of Fig. 1, which is called the Triangle
scenario (for obvious reasons) and which has been studied recently by a number of authors [22 (Fig. E#8),
19 (Fig. 18b), 21 (Fig. 3), 33 (Fig. 6a), 40 (Fig. 1a), 47 (Fig. 8), 32 (Fig. 1b), 25 (Fig. 4b)]. Different inflations of the
Triangle scenario are depicted in Figs. 2 to 6, which will be referred to as the Web, Spiral, Capped, and Cut
inflation, respectively.

We now define the function InflationG→G� , that is, we specify how causal parameters are defined for a
given inflated causal structure in terms of causal parameters on the original causal structure.

Definition 3. Consider causal models M and M� where DAG(M) = G and DAG(M�) = G�, where G� is an in-
flation of G. Then M� is said to be the G → G� inflation of M, that is, M� = InflationG→G� (M), if and only if
for every node Xi in G�, the manner in which Xi depends causally on its parents within G� is the same as the
manner in which X depends causally on its parents within G. Noting that Xi ∼ X and that PaG� (Xi) ∼ PaG(X)
by Eq. (5), one can formalize this condition as:

∀Xi ∈ Nodes(G
�) : PXi|PaG� (Xi) = PX|PaG(X). (6)
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Figure 1: The Triangle scenario.

Figure 2: The Web inflation of the Triangle scenario where each la-
tent node has been duplicated and each observed node has been
quadrupled. The four copies of each observed node correspond to
the four possible choices of parentage given the pair of copies of
each latent parent of the observed node.

Figure 3: The Spiral inflation of the Triangle scenario. Notably, this causal structure is the
ancestral subgraph of the set {A1A2B1B2C1C2} in the Web inflation (Fig. 2).

Figure 4: The Capped inflation of the Triangle scenario; notably also the ancestral subgraph of the
set {A1A2B1C1} in the Spiral inflation (Fig. 3).

Figure 5: The Cut inflation of the Triangle scenario; notably also the ancestral subgraph of the set
{A2B1C1} in the Capped inflation (Fig. 4). Unlike the other examples, this inflation does not contain
the Triangle scenario as a subgraph.
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Figure 6: A different depiction of the Cut inflation of Fig. 5.

For a given triple G, G�, andM, this definition specifies a unique inflation modelM�, resulting in a well-
defined function InflationG→G� .

To sum up, the inflation of a causal model is a new causal model where (i) each variable in the original
causal structure may have counterparts in the inflated causal structure with ancestral subgraphs mirroring
those of the originals, and (ii) the manner in which a variable depends causally on its parents in the inflated
causal structure is given by the manner in which its counterpart in the original causal structure depends
causally on its parents. The operation of modifying a DAG and equipping the modified version with con-
ditional probability distributions that mirror those of the original also appears in the do calculus and twin
networks of Pearl [1], and moreover bears some resemblance to the adhesivity technique used in deriving
non-Shannon-type entropic inequalities (see also Appendix E).

We are now in a position to describe the key property of the inflation of a causalmodel, the one thatmakes
it useful for causal inference. With notation as in Definition 3, let PX and PX� denote marginal distributions
on some X ⊆ Nodes(G) and X� ⊆ Nodes(G�), respectively. Then

if X� ∼ X and AnSubDAGG� (X
�) ∼ AnSubDAGG(X), then PX� = PX . (7)

This follows from the fact that the distributions onX� andX depend only on their ancestral subgraphs and the
parameters defined thereon, which by the definition of inflation are the same for X� and for X. It is useful to
have aname for those sets of observednodes inG�which satisfy the antecedent of Eq. (7), that is, forwhichone
can find a copy-index-equivalent set in the original causal structureGwith a copy-index-equivalent ancestral
subgraph. We call such subsets of the observed nodes of G� injectable sets,

V � ∈ InjectableSets(G�)

iff ∃V ⊆ ObservedNodes(G) : V � ∼ V and AnSubDAGG� (V
�) ∼ AnSubDAGG(V). (8)

Similarly, those sets of observed nodes in the original causal structure G which satisfy the antecedent
of Eq. (7), that is, for which one can find a corresponding set in the inflated causal structure G� with a copy-
index-equivalent ancestral subgraph, we describe as images of the injectable sets under the dropping of
copy-indices,

V ∈ ImagesInjectableSets(G)

iff ∃V � ⊆ ObservedNodes(G�) : V � ∼ V and AnSubDAGG� (V
�) ∼ AnSubDAGG(V). (9)

Clearly, V ∈ ImagesInjectableSets(G) iff ∃V � ⊆ InjectableSets(G�) such that V ∼ V �.
For example in the Spiral inflation of the Triangle scenario depicted in Fig. 3, the set {A1B1C1} is injectable

because its ancestral subgraph is equivalent up to copy-indices to the ancestral subgraph of {ABC} in the
original causal structure, and the set {A2C1} is injectable because its ancestral subgraph is equivalent to that
of {AC} in the original causal structure.

A set of nodes in the inflated causal structure can only be injectable if it contains at most one copy of
any node from the original causal structure. More strongly, it can only be injectable if its ancestral subgraph
contains at most one copy of any observed or latent node from the original causal structure. Thus, in Fig. 3,
{A1A2C1} is not injectable because it contains two copies of A, and {A2B1C1} is not injectable because its an-
cestral subgraph contains two copies of Y .

We can now express Eq. (7) in the language of injectable sets,

PV � = PV if V � ∼ V and V � ∈ InjectableSets(G�). (10)
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In the example of Fig. 3, injectability of the sets {A1B1C1} and {A2C1} thus implies that the marginals on
each of these are equal to the marginals on their counterparts, {ABC} and {AC}, in the original causal model,
so that PA1B1C1 = PABC and PA2C1 = PAC.

3.2 Witnessing incompatibility

Finally, we can explain why inflation is relevant for deciding whether a distribution is compatible
with a causal structure. For a distribution PObservedNodes(G) to be compatible with G, there must be a causal
model M that yields it. Per Definition 1, given a PObservedNodes(G) compatible with G, the family of
marginals of PObservedNodes(G) on the images of the injectable sets of observed variables in G, {PV :
V ∈ ImagesInjectableSets(G)}, are also said to be compatible with G. Looking at the inflation model
M� = InflationG→G� (M), Eq. (10) implies that the family of distributions on the injectable sets given by
{PV � : V

� ∈ InjectableSets(G�)}—where PV � = PV for V � ∼ V — is compatible with G�.
The same considerations apply for any family of distributions such that each set of variables in the fam-

ily corresponds to an injectable set (i. e., when the family of distributions is associated with an incomplete
collection of injectable sets.) Formally,

Lemma 4. Let the causal structure G� be an inflation of G. Let S� ⊆ InjectableSets(G�) be a collection of in-
jectable sets, and let S ⊆ ImagesInjectableSets(G) be the images of this collection under the dropping of copy-
indices. If a distribution PObservedNodes(G) is compatible with G, then the family of distributions {PV : V ∈ S}
is compatible with G per Definition 1. Furthermore the corresponding family of distributions {PV � : V

� ∈ S�},
defined via PV � = PV for V � ∼ V , must be compatible with G�.

We have thereby related a question about compatibility with the original causal structure to one about
compatibility with the inflated causal structure. If one can show that the new compatibility question on G�

is answered in the negative, then it follows that the original compatibility question on G is answered in the
negative as well. Some simple examples serve to illustrate the idea.

Example 1 (Incompatibility of perfect three-way correlation with the Triangle scenario). Consider the follow-
ing causal inference problem. We are given a joint distribution of three binary variables, PABC, where the
marginal on each variable is uniform and the three are perfectly correlated,

PABC =
[000] + [111]

2
, i. e., PABC(abc) = {

1
2 if a = b = c,
0 otherwise,

(11)

and we would like to determine whether it is compatible with the Triangle scenario (Fig. 1). The notation
[abc] in Eq. (11) is shorthand for the deterministic distribution where A, B, and C take the values a, b, and c
respectively; in terms of the Kronecker delta, [abc] := δA,aδB,bδC,c.

Since there are no conditional independence relations among the observed variables in the Triangle sce-
nario, there is no opportunity for ruling out the distribution on the grounds that it fails to satisfy the required
conditional independences.

To solve the causal inference problem, we consider the Cut inflation (Fig. 5). The injectable sets include
{A2C1} and {B1C1}. Their images in the original causal structure are {AC} and {BC}, respectively.

We will show that the distribution of Eq. (11) is not compatible with the Triangle scenario by demonstrat-
ing that the contrary assumption of compatibility implies a contradiction. If the distribution of Eq. (11) were
compatible with the Triangle scenario, then so too would its pair of marginals on {AC} and {BC}, which are
given by:

PAC = PBC =
[00] + [11]

2
.

By Lemma 4, this compatibility assumption would entail that the marginals

PA2C1 = PB1C1 =
[00] + [11]

2
(12)
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are compatible with the Cut inflation of the Triangle scenario. We now show that the latter compatibility
cannot hold, thereby obtaining our contradiction. It suffices to note that (i) the only joint distribution that ex-
hibits perfect correlation between A2 and C1 and between B1 and C1 also exhibits perfect correlation between
A2 and B1, and (ii) A2 and B1 have no common ancestor in the Cut inflation and hence must be marginally
independent in any distribution that is compatible with it.

We have therefore certified that the distribution PABC of Eq. (11) is not compatible with the Triangle sce-
nario, recovering a result originally proven by Steudel and Ay [32].

Example 2 (Incompatibility of the W-type distribution with the Triangle scenario). Consider another causal
inference problem on the Triangle scenario, namely, that of determining whether the distribution

PABC =
[100] + [010] + [001]

3
, i. e., PABC(abc) = {

1
3 if a + b + c = 1,
0 otherwise.

(13)

is compatible with it. We call this theW-type distribution.10 To settle this compatibility question, we consider
the Spiral inflation of the Triangle scenario (Fig. 3). The injectable sets in this case include {A1B1C1}, {A2C1},
{B2A1}, {C2B1}, {A2}, {B2} and {C2}.

Therefore, we turn our attention to determining whether the marginals of the W-type distribution on the
images of these injectable sets are compatible with the Triangle scenario. These marginals are:

PABC =
[100] + [010] + [001]

3
, (14)

PAC = PBA = PCB =
[10] + [01] + [00]

3
, (15)

PA = PB = PC =
2
3
[0] + 1

3
[1]. (16)

By Lemma 4, this compatibility holds only if the associated marginals for the injectable sets, namely,

PA1B1C1 =
[100] + [010] + [001]

3
, (17)

PA2C1 = PB2A1
= PC2B1 =

[10] + [01] + [00]
3

, (18)

PA2
= PB2 = PC2 =

2
3
[0] + 1

3
[1], (19)

are compatible with the Spiral inflation (Fig. 3). Eq. (18) implies that C1=0 whenever A2=1. It similarly implies
that A1=0 whenever B2=1, and that B1=0 whenever C2=1,

A2=1 â⇒ C1=0,

B2=1 â⇒ A1=0,

C2=1 â⇒ B1=0. (20)

The Spiral inflation is such that A2, B2 and C2 have no common ancestor and consequently are marginally
independent in any distribution compatible with it. Together with the fact that each value of these variables
has a nonzero probability of occurrence (by Eq. (19)), this implies that

Sometimes A2=1 and B2=1 and C2 = 1. (21)

10 The name stems from the fact that this distribution is reminiscent of the famous quantum state appearing in [48], called the
W state.
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Finally, Eq. (20) together with Eq. (21) entails

Sometimes A1=0 and B1=0 and C1=0. (22)

This, however, contradicts Eq. (17). Consequently, the family ofmarginals described in Eqs. (17–19) is not com-
patible with the causal structure of Fig. 3. By Lemma 4, this implies that the family of marginals described in
Eqs. (14–16)—and therefore the W-type distribution of which they are marginals—is not compatible with the
Triangle scenario.

To our knowledge, this is a new result. In fact, the incompatibility of the W-type distribution with the
Triangle scenario cannot be derived via any of the existing causal inference techniques. In particular:
1. Checking conditional independence relations is not relevant here, as there are no conditional indepen-

dence relations between any observed variables in the Triangle scenario.
2. The relevant Shannon-type entropic inequalities for the Triangle scenario have been classified, and they

do not witness the incompatibility [25, 33, 35].
3. Moreover, no entropic inequality can witness the W-type distribution as unrealizable. Weilenmann and

Colbeck [26] have constructed an inner approximation to the entropic cone of the Triangle causal struc-
ture, and the entropies of theW-distribution form a point in this cone. In other words, a distribution with
the same entropic profile as the W-type distribution can arise from the Triangle scenario.

4. The newly-developed method of covariance matrix causal inference due to Kela et al. [27], which gives
tighter constraints than entropic inequalities for the Triangle scenario, also cannot detect the incompat-
ibility.

Therefore, in this case at least, the inflation technique appears to be more powerful.
We have arrived at our incompatibility verdict by combining inflation with reasoning reminiscent of

Hardy’s version of Bell’s theorem [49, 50]. Sec. 4.4 will present a generalization of this kind of argument and
its applications to causal inference.

Example 3 (Incompatibility of PR-box correlations with the Bell scenario). Bell’s theorem [17, 18, 20, 51] con-
cerns the question of whether the distribution obtained in an experiment involving a pair of systems that are
measured at space-like separation is compatible with a causal structure of the form of Fig. 7. Here, the ob-
served variables are {A,B,X,Y}, and Λ is a latent variable acting as a common cause of A and B. We shall term
this causal structure the Bell scenario. While the causal inference formulation of Bell’s theorem is not the tra-
ditional one, several recent articles have introduced and advocated this perspective [19 (Fig. 19), 22 (Fig. E#2),
23 (Fig. 1), 33 (Fig. 1), 52 (Fig. 2b), 53 (Fig. 2)].

Figure 7: The Bell scenario causal structure. The local outcomes, A and B, of a pair of measure-
ments are assumed to each be a function of some latent common cause and their independent
local experimental settings, X and Y .

We consider the distribution PABXY = PAB|XYPXPY , where PX and PY are arbitrary full-support distribu-
tions on {0, 1},11 and

PAB|XY =

{{{{{{
{{{{{{
{

1
2 ([00] + [11]) if x=0, y=0
1
2 ([00] + [11]) if x=1, y=0
1
2 ([00] + [11]) if x=0, y=1
1
2 ([01] + [10]) if x=1, y=1

, i. e., PAB|XY (ab|xy) = {
1
2 if a ⊕ b = x ⋅ y,
0 otherwise.

(23)

11 In the literature on the Bell scenario, the variables X and Y are termed “settings”. Generally, we may think of observed root
variables as settings, coloring them light green in the figures. They are natural candidates for variables to condition on.
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Figure 8: An inflation of the Bell scenario causal structure, where both local
settings and outcome variables have been duplicated.

This conditional distribution was discovered by Tsirelson [54] and later independently by Popescu and
Rohrlich [55, 56]. It has become known in the field of quantum foundations as the PR-box after the latter
authors.12

The Bell scenario implies nontrivial conditional independences13 among the observed variables, namely,
X ⊥⊥ Y , A ⊥⊥ Y |X, and B ⊥⊥ X|Y , as well as those that can be generated from these by the semi-graphoid ax-
ioms [19]. It is straightforward to check that these conditional independence relations are respected by the
PABXY resulting from Eq. (23). It is well-known that this distribution is nonetheless incompatible with the
Bell scenario, since it violates the CHSH inequality. Here we present a proof of incompatibility in the style of
Hardy’s proof of Bell’s theorem [49] in terms of the inflation technique, using the inflation of the Bell scenario
depicted in Fig. 8.

We begin by noting that {A1B1X1Y1}, {A2B1X2Y1}, {A1B2X1Y2}, {A2B2X2Y2}, {X1}, {X2}, {Y1}, and {Y2} are all
injectable sets. By Lemma 4, it follows that any causal model that recovers PABXY inflates to a model that
results in marginals

PA1B1X1Y1 = PA2B1X2Y1 = PA1B2X1Y2 = PA2B2X2Y2 = PABXY , (24)

PX1 = PX2 = PX , PY1 = PY2 = PY . (25)

Using the definition of conditional probability, we infer that

PA1B1|X1Y1 = PA2B1|X2Y1 = PA1B2|X1Y2 = PA2B2|X2Y2 = PAB|XY . (26)

Because {X1}, {X2}, {Y1}, and {Y2} have no common ancestor in the inflated causal structure, these variables
must be marginally independent in any distribution compatible with it, so that PX1X2Y1Y2 = PX1PX2PY1PY2 .
Given the assumption that the distributions PX and PY have full support, it follows from Eq. (25) that

Sometimes X1 = 0 and X2 = 1 and Y1 = 0 and Y2 = 1. (27)

On the other hand, from Eq. (26) together with the definition of PR-box, Eq. (23), we conclude that

X1=0, Y1=0 â⇒ A1 = B1,
X1=0, Y2=1 â⇒ A1 = B2,
X2=1, Y1=0 â⇒ A2 = B1,
X2=1, Y2=1 â⇒ A2 ̸= B2. (28)

Combining this with Eq. (27), we obtain

Sometimes A1 = B1 and A1 = B2 and A2 = B1 and A2 ̸= B2. (29)

No values of A1, A2, B1, and B2 can jointly satisfy these conditions. So we have reached a contradiction,
showing that our original assumption of compatibility of PABXY with the Bell scenario must have been false.

12 ThePR-box is of interest because it represents amanner inwhich experimental observations could deviate from the predictions
of quantum theory while still being consistent with relativity.
13 Recall that variables X and Y are conditionally independent given Z if PXY |Z (xy|z) = PX|Z (x|z)PY |Z (y|z) for all z with PZ (z) > 0.
Such a conditional independence is denoted by X ⊥⊥ Y | Z.
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The structure of this argument parallels that of standard proofs of the incompatibility of the PR-box with
the Bell scenario. Standard proofs focus on a set of variables {A0A1B0B1}whereAx is the value ofAwhenX = x
and By is the value of Bwhen Y = y. Note that the distribution∑

Λ
PA0|ΛPA1|ΛPB0|ΛPB1|ΛPΛ is a joint distribution

of these four variables for which the marginals on pairs {A0B0}, {A0B1}, {A1B0} and {A1B1} are those that can
arise in the Bell scenario. The existence of such a joint distribution rules out the possibility of having A1 = B1,
A1 = B2, A2 = B1 but A2 ̸= B2, and therefore shows that the PR-box distribution is incompatible with the Bell
scenario [57, 58]. In light of our use of Eq. (27), the reasoning based on the inflation of Fig. 8 is really the same
argument in disguise.

Appendix G shows that the inflation of the Bell scenario depicted in Fig. 8 is sufficient to witness the
incompatibility of any distribution that is incompatible with the Bell scenario.

3.3 Deriving causal compatibility inequalities

The inflation technique canbeusednot only towitness the incompatibility of a givendistributionwith a given
causal structure, but also to derive necessary conditions that a distributionmust satisfy to be compatiblewith
the given causal structure. These conditions can always be expressed as inequalities, andwewill refer to them
as causal compatibility inequalities.14 Formally, we have:

Definition 5. Let G be a causal structure and let S be a family of subsets of the observed variables of G, S ⊆
2ObservedNodes(G). Let IS denote an inequality that operates on the corresponding family of distributions, {PV :
V ∈ S}. Then IS is a causal compatibility inequality for the causal structure G whenever it is satisfied by
every family of distributions {PV : V ∈ S} that is compatible with G.

While violation of a causal compatibility inequality witnesses the incompatibility with the causal struc-
ture, satisfaction of the inequality does not guarantee compatibility. This is the sense in which it merely pro-
vides a necessary condition for compatibility.

The inflation technique is useful for deriving causal compatibility inequalities because of the following
consequence of Lemma 4:

Corollary 6. Suppose that G� is an inflation of G. Let S� ⊆ InjectableSets(G�) be a family of injectable sets and
S ⊆ ImagesInjectableSets(G) the images of members of S� under the dropping of copy-indices. Let IS� be a
causal compatibility inequality for G� operating on families {PV � : V

� ∈ S�}. Define an inequality IS as follows: in
the functional form of IS� , replace every occurrence of a term PV � by PV for the unique V ∈ S with V ∼ V �. Then
IS is a causal compatibility inequality for G operating on families {PV : V ∈ S}.

Proof. Suppose that the family {PV : V ∈ S} is compatible with G. By Lemma 4, it follows that the family
{PV � : V

� ∈ S�}where PV � := PV for V � ∼ V is compatible with G�. Since IS� is a causal compatibility inequality
for G�, it follows that {PV � : V

� ∈ S�} satisfies IS� . But by the definition of IS, its evaluation on {PV : V ∈ S} is
equal to IS� evaluated on {PV � : V

� ∈ S�}. It therefore follows that {PV : V ∈ S} satisfies IS. Since {PV : V ∈ S}
was an arbitrary family compatible with G, we conclude that IS is a causal compatibility inequality for G.

We now present some simple examples of causal compatibility inequalities for the Triangle scenario that
one can derive from the inflation technique via Corollary 6. Some terminology and notation will facilitate
their description. We refer to a pair of nodes which do not share any common ancestor as being ancestrally
independent. This is equivalent to being d-separated by the empty set [1–4]. Given that the conventional
notation for X and Y being d-separated by Z in a DAG is X ⊥d Y |Z, we denote X and Y being ancestrally
independent within G as X ⊥d Y . Generalizing to sets, X ⊥d Y indicates that no node in X shares a common

14 Note that we can include equality constraints for causal compatibility within the framework of causal compatibility inequali-
ties alone; it suffices to note that an equality constraint can always be expressed as a pair of inequalities, i. e., satisfying x = y is
equivalent to satisfying both x ≤ y and x ≥ y. The requirement that a distribution must be Markov (or Nested Markov) relative to
a DAG is usually formulated as a set of equality constraints.
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ancestor with any node in Y within the causal structure G,

X ⊥d Y iff AnG(X) ∩ AnG(Y) = 0. (30)

Ancestral independence is closed under union; that is, X ⊥d Y and X ⊥d Z implies X ⊥d (Y ∪ Z). Conse-
quently, pairwise ancestral independence implies joint factorizability; i. e., ∀i ̸=jX i ⊥d X j implies that P∪iX i

=
∏i PX i

.

Example 4 (A causal compatibility inequality in terms of correlators). As in Example 1 of the previous subsec-
tion, consider the Cut inflation of the Triangle scenario (Fig. 5), where all observed variables are binary. For
technical convenience, we assume that they take values in the set {−1,+1}, rather than taking values in {0, 1}
as was presumed in the last subsection.

The injectable sets that we make use of are {A2C1}, {B1C1}, {A2}, and {B1}. From Corollary 6, any causal
compatibility inequality for the inflated causal structure that operates on themarginal distributions of {A2C1},
{B1C1}, {A2}, and {B1}will yield a causal compatibility inequality for the original causal structure that operates
on the marginal distributions on {AC}, {BC}, {A}, and {B}. We begin by noting that for any distribution on
three binary variables {A2B1C1}, that is, regardless of the causal structure in which they are embedded, the
marginals on {A2C1}, {B1C1} and {A2B1} satisfy the following inequality for expectation values [59–63],

E[A2C1] + E[B1C1] ≤ 1 + E[A2B1]. (31)

This is an example of a constraint on pairwise correlators that arises from the presumption that they are con-
sistent with a joint distribution. (The problem of deriving such constraints is themarginal constraint problem,
discussed in detail in Sec. 4.)

But in the Cut inflation of the Triangle scenario (Fig. 5), A2 and B1 have no common ancestor and con-
sequently any distribution compatible with this inflated causal structure must make A2 and B1 marginally
independent. In terms of correlators, this can be expressed as

A2 ⊥d B1 â⇒ A2 ⊥⊥ B1 â⇒ E[A2B1] = E[A2]E[B1]. (32)

Substituting this into Eq. (31), we have

E[A2C1] + E[B1C1] ≤ 1 + E[A2]E[B1]. (33)

This is an example of a simple but nontrivial causal compatibility inequality for the causal structure of Fig. 5.
Finally, by Corollary 6, we infer that

E[AC] + E[BC] ≤ 1 + E[A]E[B] (34)

is a causal compatibility inequality for the Triangle scenario. This inequality expresses the fact that as long as
A andB are not completely biased, there is a tradeoff between the strength ofAC correlations and the strength
of BC correlations.

Given the symmetry of the Triangle scenario under permutations and sign flips of A, B and C, it is clear
that the image of inequality (34) under any such symmetry is also a valid causal compatibility inequality.
Together, these inequalities constitute a type of monogamy15 of correlations in the Triangle scenario with
binary variables: if any two observed variables with unbiased marginals are perfectly correlated, then they
are both independent of the third.

Moreover, since inequality (31) is valid even for continuous variables with values in the interval [−1,+1],
it follows that the polynomial inequality (34) is valid in this case as well.

15 We are here using the term “monogamy” in the same sort of manner in which it is used in the context of entanglement the-
ory [64].
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Note that inequality (31) serves as a robust witness certifying the incompatibility of 3-way perfect correla-
tion (described inEq. (11))with the Triangle scenario. Inequality (31) is robust in the sense that it demonstrates
the incompatibility of distributions close to 3-way perfect correlation.

One might be curious as to how close to perfect correlation one can get while still being compatible with
the Triangle scenario. To partially answer this question, we used Eq. (31) to rule out many distributions close
to perfect correlation and we also pursued explicit model-construction to rule in various distributions suffi-
ciently far from perfect correlation. Explicitly, we found that distributions of the form

PABC = α
[000] + [111]

2
+ (1 − α) [else]

6
, i. e., PABC(abc) = {

α
2 if a = b = c,
1−α
6 otherwise,

(35)

where [else] denotes any point distribution [abc] other than [000] or [111], are incompatible for the range
5
8 = 0.625 < α ≤ 1 as a consequence of Eq. (31). On the other hand, we found a family of explicit models
allowing us to certify the compatibility of distributions for 0 ≤ α ≤ 1

2 .
The presence of this gap between our inner and outer constructions could reflect either the inadequacy of

our limited model constructions or the inadequacy of relatively small inflations of the Triangle causal struc-
ture to generate suitably sensitive inequalities. We defer closing the gap to future work.16

Example 5 (A causal compatibility inequality in terms of entropic quantities). One way to derive constraints
that are independent of the cardinality of the observed variables is to express these in terms of the mutual
information between observed variables rather than in terms of correlators. The inflation technique can also
be applied to achieve this. To see how this works in the case of the Triangle scenario, consider again the Cut
inflation (Fig. 5).

One can follow the same logic as in the preceding example, but starting from a different constraint on
marginals. For any distribution on three variables {A2B1C1} of arbitrary cardinality (again, regardless of the
causal structure in which they are embedded), the marginals on {A2C1}, {B1C1} and {A2B1} satisfy the inequal-
ity [35, Eq. (29)]

I(A2 : C1) + I(C1 : B1) ≤ H(C1) + I(A2 : B1), (36)

where H(X) denotes the Shannon entropy of the distribution of X, and I(X : Y) denotes the mutual informa-
tion between X and Y with respect to themarginal joint distribution on the pair of variables X and Y . The fact
that A2 and B1 have no common ancestor in the inflated causal structure implies that in any distribution that
is compatible with it, A2 and B1 are marginally independent. This is expressed entropically as the vanishing
of their mutual information,

A2 ⊥d B1 â⇒ A2 ⊥⊥ B1 â⇒ I(A2 : B1) = 0. (37)

Substituting the latter equality into Eq. (36), we have

I(A2 : C1) + I(C1 : B1) ≤ H(C1). (38)

This is another example of a nontrivial causal compatibility inequality for the causal structure of Fig. 5. By
Corollary 6, it follows that

I(A : C) + I(C : B) ≤ H(C) (39)

is also a causal compatibility inequality for the Triangle scenario. This inequality was originally derived
in [21]. Our rederivation in terms of inflation coincides with the proof found by Henson et al. [22].

16 Using the Web inflation of the Triangle as depicted in Fig. 2 we were able to slightly improve the range of certifiably incom-
patible α, namely we find that PABC is incompatible with the Triangle scenario for all 3√3

2 − 2 ≈ 0.598 < α. The relevant causal
compatibility inequality justifying the improved bound is 6E[_, _] + E[_, _]2 − 4E[_]2 ≤ 3, where E[_, _] := E[AB]+E[BC]+E[AC]3 and
E[_] := E[A]+E[B]+E[C]3 .
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Standard algorithms already exist for deriving entropic casual compatibility inequalities given a causal
structure [25, 33, 35]. We do not expect the methodology of causal inflation to offer any computation advan-
tage in the task of deriving entropic inequalities. The advantage of the inflation approach is that it provides
a narrative for explaining an entropic inequality without reference to unobserved variables. As elaborated in
Sec. 5.4, this consequently has applications to quantum information theory. A further advantage is the po-
tential of the inflation approach to give rise to non-Shannon type inequalities, starting from Shannon type
inequalities; see Appendix E for further discussion.

Example 6 (A causal compatibility inequality in terms of joint distributions). Consider the Spiral inflation of
the Triangle scenario (Fig. 3) with the injectable sets {A1B1C1}, {A1B2}, {B1C2}, {A1,C2}, {A2}, {B2}, and {C2}.
We derive a causal compatibility inequality under the assumption that the observed variables are binary,
adopting the convention that they take values in {0, 1}.

Webeginbynoting that the following is a constraint that holds for any joint distributionof {A1B1C1A2B2C2},
regardless of the causal structure,

PA2B2C2 (111) ≤ PA1B2C2 (111) + PB1C2A2
(111) + PA2C1B2 (111) + PA1B1C1 (000). (40)

Toprove this claim, it suffices to check that the inequality holds for each of the 26 deterministic assignments of
outcomes to {A1B1C1A2B2C2}, from which the general case follows by convex linearity. A more intuitive proof
will be provided in Sec. 4.4.

Next, we note that certain sets of variables have no common ancestors with other sets of variables in the
inflated causal structure, which implies the marginal independence of these sets. Such independences are
expressed in the language of joint distributions as factorizations,

A1B2 ⊥d C2 â⇒ PA1B2C2 = PA1B2PC2 ,

B1C2 ⊥d A2 â⇒ PB1C2A2
= PB1C2PA2

,

A2C1 ⊥d B2 â⇒ PA2C1B2 = PA2C1PB2 ,

A2 ⊥d B2 ⊥d C2 â⇒ PA2B2C2 = PA2
PB2PC2 .

(41)

Substituting these factorizations into Eq. (40), we obtain the polynomial inequality

PA2
(1)PB2 (1)PC2 (1) ≤ PA1B2 (11)PC2 (1) + PB1C2 (11)PA2

(1) + PA2C1 (11)PB2 (1) + PA1B1C1 (000). (42)

This, therefore, is a causal compatibility inequality for the inflated causal structure. Finally, by Corollary 6,
we infer that

PA(1)PB(1)PC(1) ≤ PAB(11)PC(1) + PBC(11)PA(1) + PAC(11)PB(1) + PABC(000) (43)

is a causal compatibility inequality for the Triangle scenario.
What is distinctive about this inequality is that—through the presence of the term PABC(000)—it takes

into account genuine three-way correlations, while the inequalities we derived earlier only depend on the
two-variable marginals. This inequality is strong enough to demonstrate the incompatibility of the W-type
distribution of Eq. (13) with the Triangle scenario: for this distribution, the right-hand side of the inequality
vanishes while the left-hand side does not.

Of the known techniques for witnessing the incompatibility of a distribution with a causal structure or
deriving necessary conditions for compatibility, the most straightforward one is to consider the constraints
implied by ancestral independences among the observed variables of the causal structure. The constraints
derived in the last two sections have all made use of this basic technique, but at the level of the inflated causal
structure rather than the original causal structure. The constraints that one thereby infers for the original
causal structure reflect facts about it that cannot be expressed in terms of ancestral independences among
its observed variables. The inflation technique exposes these facts in the ancestral independences among
observed variables of the inflated causal structure.
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In the rest of this article, we shall continue to rely only on the ancestral independences among observed
variables within the inflated causal structure to derive examples of compatibility constraints on the original
causal structure. Nonetheless, it seems plausible that the inflation technique can also amplify the power of
other techniques that do not merely consider ancestral independences among the observed variables. We
consider some prospects in Sec. 5.

4 Systematically witnessing incompatibility and deriving
inequalities

This section considers the problem of how to generalize the above examples of causal inference via the in-
flation technique to a systematic procedure. We start by introducing the crucial concept of an expressible set,
which figures implicitly in our earlier examples. By reformulating Example 1, we sketch our general method
and explain why solving amarginal problem is an essential subroutine of our method. Subsequently, Sec. 4.1
explains how to systematically identify, for a given inflated causal structure, all of the sets that are expressible
by virtue of ancestral independences. Sec. 4.2 describes how to solve any sort of marginal problem. This may
involve determining all the facets of themarginal polytope, which is computationally costly (Appendix A). It
is therefore useful to also consider relaxations of the marginal problem that are more tractable by deriving
valid linear inequalities which may or may not bound the marginal polytope tightly. We describe one such
approach based on possibilistic Hardy-type paradoxes and the hypergraph transversal problem in Sec. 4.4.

As far as causal compatibility inequalities are concerned, we limit ourselves to those expressed in terms
of probabilities,17 as these are generally the most powerful. However, essentially the same techniques can be
used to derive inequalities expressed in terms of entropies [35], as demonstrated in Example 5.

In the examples from the previous section, the initial inequality—a constraint upon marginals that is
independent of the causal structure—involves sets of observed variables that are not all injectable sets. How-
ever, the Markov conditions on the inflated causal structures nevertheless allowed us to express the distribu-
tion on these sets in terms of the known distributions on the injectable sets. For instance, in Example 4, the
set {A2B1} is not injectable, but it can be partitioned into the singleton sets {A2} and {B1}which are ancestrally
independent, so that one has PA2B1 = PA2

PB1 = PAPB in every inflated causal model. This motivates us to de-
fine the notion of an expressible set of variables in an inflated causal structure as one for which the joint
distribution can be expressed as a function of distributions over injectable sets by making repeated use of
the conditional independences implied by d-separation relations as well as marginalization. More formally,

Definition 7. Consider an inflation G� of a causal structure G. Sufficient conditions for a set of variables
V � ⊂ ObservedNodes(G�) to be expressible include V � ∈ InjectableSets(G�), or if V � can be obtained from a
collection of injectable sets by recursively applying the following rules:
1. ForX�,Y �,Z� ⊆ ObservedNodes(G�), ifX� ⊥d Y � |Z� andX�∪Z� andY �∪Z� are expressible, thenX�∪Y �∪Z�

is also expressible. This follows by constructing

PX�Y �Z� (xyz) =
{
{
{

PX�Z� (xz)PY�Z� (yz)
PZ� (z)

if PZ� (z) > 0,

0 if PZ� (z) = 0.

2. If V � ⊆ ObservedNodes(G�) is expressible, then so is every subset of V �. This follows by marginalization.

An expressible set ismaximal if it is not a proper subset of another expressible set.
Expressible sets are important since in an inflated model, the distribution of the variables making up an

expressible set can be computed explicitly from the known distributions on the injectable sets, by repeatedly

17 Or, for binary variables, equivalently in terms of correlators, as in the first example of Sec. 3.3.
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using the conditional independences implied by d-separation and taking marginals. Appendix D.1 provides
a good example.

With the exception of Appendix D, in the remainder of this article we will limit ourselves to working with
expressible sets of a particularly simple kind and leave the investigation of more general expressible sets to
future work.

Definition 8. A set of nodes V � ⊆ ObservedNodes(G�) is ai-expressible if it can be written as a union of
injectable sets that are ancestrally independent,

V � ∈AI-ExpressibleSets(G�)

iff ∃{X�i ∈ InjectableSets(G
�)} s. t. V � =⋃

i
X�i and ∀i ̸=j : X

�
i ⊥d X

�
j in G
�. (44)

An ai-expressible set ismaximal if it is not a proper subset of another ai-expressible set.

Because ancestral independence inG� implies statistical independence for any compatible distribution, it
follows that ifV � is an ai-expressible set with ancestrally independent and injectable componentsV �1, . . . ,V

�
n,

then we have the factorization

PV � = PV �1 ⋅ ⋅ ⋅PV �n (45)

for any distribution compatible with G�. The situation, therefore, is this: for any constraint that one can de-
rive for the marginals on the ai-expressible sets based on the existence of a joint distribution—and hence
without reference to the causal structure—one can infer a constraint that does refer to the causal structure
by substituting within the derived constraint a factorization of the form of Eq. (45). This results in a causal
compatibility inequality on G� of a very weak form that only takes into account the independences between
observed variables.

As a build-up to our exposition of a systematic application of the inflation technique, we now revisit Ex-
ample 1. As before, to demonstrate the incompatibility of thedistributionof Eq. (11)with the Triangle scenario,
we assume compatibility and derive a contradiction. Given the distribution of Eq. (11), Lemma 4 implies that
the marginal distributions on the injectable sets of the Cut inflation of the Triangle scenario are

PA2C1 = PB1C1 =
1
2
[00] + 1

2
[11], (46)

and

PA2
= PB1 =

1
2
[0] + 1

2
[1]. (47)

From the fact thatA2 andB1 are ancestrally independent in the Cut inflation,we also infer that the distribution
on the ai-expressible set {A2B1}must be

PA2B1 = PA2
PB1 = (

1
2
[0] + 1

2
[1]) × ( 1

2
[0] + 1

2
[1]) = 1

4
[00] + 1

4
[01] + 1

4
[10] + 1

4
[11]. (48)

But there is no three-variable distribution PA2B1C1 that would have as its two-variable marginals the distri-
butions of Eqs. (46, 48). For as we noted in our prior discussion of this example, the perfect correlation be-
tween A2 and C1 exhibited by PA2C1 and the perfect correlation between B1 and C1 exhibited by PB1C1 would
entail perfect correlation between A2 and B1 as well, which is at odds with (48). We have therefore derived a
contradiction and consequently can infer the incompatibility of the distribution of Eq. (11) with the Triangle
scenario.

Generalizing to an arbitrary causal structure, therefore, the procedure is as follows:
1. Based on the inflation under consideration, identify the ai-expressible sets and how they each partition

into ancestrally independent injectable sets.
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2. From the given distribution on the original causal structure, infer the family of distributions on the ai-
expressible sets of the inflated causal structure as follows: the distribution on any injectable set is equal
to the corresponding distribution on its image in the original causal structure; the distribution on any
ai-expressible set is the product of the distributions on the injectable sets into which it is partitioned.

3. Determine whether the family of distributions obtained in step 2 are the marginals of a single joint distri-
bution. If not, then the original distribution is incompatible with the original causal structure.

We have just described how to test a specified joint distribution for compatibility with a given causal structure
by means of considering an inflation of that causal structure. Passing the inflation-based test is a necessary
but not sufficient requirement for the specified joint distribution to be compatible with a given causal struc-
ture. The procedure is to focus on a particular family of marginals (on the images of injectable sets) of the
given joint distribution, then fromproducts of these, obtain the distribution on each of the ai-expressible sets.
Finally, one asks simply whether the family of distributions on the ai-expressible sets are consistent in the
sense of all being marginals of a single joint distribution. By analogous logic, the following technique allows
one to systematically derive causal compatibility inequalities: find the constraints that any family of distri-
butions on the ai-expressible sets must satisfy if these are to be consistent in the sense of all being marginals
of a single joint distribution. Next, express each distribution of this family as a product of distributions on
the injectable sets, according to Eq. (45), and rewrite the constraints in terms of the family of distributions
on the injectable sets. These constraints constitute causal compatibility inequalities for the inflated causal
structure. Finally, one can rewrite the constraints in terms of the family of distributions on the images of the
injectable sets, using Corollary 6, to obtain causal compatibility inequalities for the original causal structure.

In summary, we have used the contrapositive of Lemma 4 in order to show:

Theorem 9. Let G� be an inflation of G. Let a distribution PObservedNodes(G) be given. Consider the family of dis-
tributions {PV � : V

� ∈ AI-ExpressibleSets(G�)}. Following Eq. (45), each distribution in that set factorizes ac-
cording to PV � = ∏

n
i=1 PV �i , where the variable subsets V

�
1 ⋅ ⋅ ⋅V

�
n associated with the factorization are precisely

the injectable components of the ai-expressible set V �. Additionally, for every injectable set V �i , let PV �i = PV i

where PV i
is the marginal on V i of PObservedNodes(G), and where V �i ∼ V i. If the family of distributions {PV � : V

� ∈
AI-ExpressibleSets(G�)} does not arise as the family of marginals of some joint distribution, then the original
distribution PObservedNodes(G) is not compatible with G.

The ai-expressible sets play a crucial role in linking the original causal structure with the inflated causal
structure. They are precisely those sets of variables whose joint distributions in the inflation model are fully
specified by the causal model on the original causal structure, as they can be computed using Eq. (45) and
Lemma 4. So we begin with the problem of identifying the ai-expressible sets systematically.

4.1 Identifying the AI-expressible sets

To identify the ai-expressible sets of an inflated causal structure G�, we must first identify the injectable sets.
This problem can be reduced to identifying the injectable pairs of nodes, because if all of the pairs in a set
of nodes are injectable, then so too is the set itself. This can be proven as follows. Let φ : G� → G be the
projection map from G� to the original causal structure G, corresponding to removing copy-indices. Then φ
has the characteristic feature that it preserves and reflects edges: if A→ B in G�, then also φ(A)→ φ(B) in G,
and vice versa; this follows from the assumption that G� is an inflation of G. A set V ⊆ ObservedNodes(G�) is
injectable if and only if the restriction of φ to An(V) is an injective map. But now injectivity of a map means
precisely that no two different elements of the domain get mapped to the same element of the codomain. So
if V is injectable, then so is each of its two-element subsets; conversely, if V is not injectable, then φ maps
two nodes among the ancestors of V to the same node, which means that there are two nodes in the ancestry
that differ only by copy-index. Each of these two nodes must be an ancestor of at least some node in V ; if one
chooses two such descendants, then one gets a two-element subset of V such that φ is not injective on the
ancestry of that subset, and therefore this two-element set of observed nodes is not injectable.
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Figure 9: The injection graph corresponding to the Spiral inflation of the Triangle scenario
(Fig. 3), wherein the cliques are the injectable sets.

Figure 10: The ai-expressibility graph corresponding to the Spiral inflation of the Tri-
angle scenario (Fig. 3), wherein two injectable sets are adjacent iff they are ancestrally
independent. A set of nodes is ai-expressible iff it arises as a union of sets that form a
clique in this graph.

To enumerate the injectable sets, it is therefore useful to encode certain features of the inflated causal
structure in an undirected graph which we call the injection graph. The nodes of the injection graph are the
observed nodes of the inflated causal structure, and a pair of nodes Ai and Bj share an edge if the pair {AiBj}
is injectable. For example, Fig. 9 shows the injection graph of the Spiral inflation of the Triangle scenario
(Fig. 3). The property noted above states that the injectable sets are precisely the cliques18 of the injection
graph. While for many other applications only the maximal cliques are of interest, our application of the
inflation technique requires knowledge of all nonempty cliques.

Given a list of the injectable sets, the ai-expressible sets can be read off from the ai-expressability graph.
The nodes of the ai-expressibility graph are taken to be the injectable sets in G�, and two nodes share an edge
if the associated injectable sets are ancestrally independent. Fig. 10 depicts an example. The ai-expressible
sets correspond to the cliques of the ai-expressibility graph: the union of all the injectable sets that make up
the nodes of a clique is an ai-expressible set, while the individual nodes already give us the partition into
injectable sets relevant for the factorization relation of Eq. (45). For our purposes, it is sufficient to enumerate
themaximal ai-expressible sets, so that oneonlyneeds to consider themaximal cliquesof the ai-expressibility
graph.

From Figs. 9 and 10, we easily infer the injectable sets and the maximal ai-expressible sets, as well as the
partition of the maximal ai-expressible sets into ancestrally independent subsets. For the Spiral example,
this results in:

{A1}, {B1}, {C1},
{A2}, {B2}, {C2},
{A1B1}, {A1C1}, {B1C1},
{A1B2}. {A2C1}, {B1C2},
{A1B1C1}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

The injectable sets

{A1B1C1}
{A1B2C2}
{B1C2A2}
{C1A2B2}
{A2B2C2}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
The maximal

ai-expressible sets

{A1B2} ⊥d {C2}
{B1C2} ⊥d {A2}
{C1A2} ⊥d {B2}
{A2} ⊥d {B2} ⊥d {C2}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

The relevant
ancestral independences

(49)

Having identified the ai-expressible sets and how they partition into injectable sets, we now infer the
factorization relations implied by ancestral independences, which is Eq. (41) in the Spiral example. Next, we
discuss the other ingredient of our systematic procedure: the marginal problem.

4.2 The marginal problem and its solution

The third step in our procedure is determining whether the given distributions on ai-expressible sets can
arise as marginals of one joint distribution on all observed nodes of the inflated causal structure. In gen-

18 A clique is a set of nodes in an undirected graph any two of which share an edge.
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Figure 11: The simplicial complex of ai-expressible sets for the Spiral inflation of the Triangle
scenario (Fig. 3). The 5 facets correspond to the maximal ai-expressible sets, namely {A1B1C1},
{A1B2C2}, {A2B1C2}, {A2B2C1} and {A2B2C2}.

eral, the problem of determining whether a given family of distributions can arise as marginals of some joint
distribution is known as the marginal problem.19 In order to derive causal compatibility inequalities, one
must solve the closely related problem of determining necessary and sufficient constraints that a family of
marginal distributions must satisfy in order for the marginal problem to have a solution. For better clarity,
we distinguish these two variants of the marginal problem as themarginal satisfiability problem and the
marginal constraint problem. The genericmarginal problem will be used as an umbrella term referring
to both types.

To specify either sort of marginal problem, onemust specify the full set of variables to be considered, de-
noted V , together with a family of subsets of S, denoted (V 1, . . . ,Vn) and called contexts. The family of con-
texts can be visualized through the simplicial complex that it generates, as illustrated in Fig. 11. Amarginal
scenario consists of a specification of contexts together with a specification of the cardinality of each vari-
able. Every joint distribution PV defines a family of marginal distributions (PV 1

, . . . ,PVn
) through marginal-

ization, PV i
:= ∑V\V i

PV . Themarginal problem concerns the converse inference. In themarginal satisfiability
problem, a concrete family of distributions (PV 1

, . . . ,PVn
) is given, and one wants to decide whether there ex-

ists a joint distribution P̂V such that PV i
= ∑V\V i

P̂V for all i. In the marginal constraint problem, one seeks
to find conditions on the family of distributions (PV 1

, . . . ,PVn
), considered as parameters, for when a joint

distribution P̂V exists which reproduces these as marginals, PV i
= ∑V\V i

P̂V for all i.
In order for P̂V to exist, distributions on different contexts must be consistent on the intersection of con-

texts, that is, marginalizing PV i
to those variables in the intersection V i ∩V j must result in the same distribu-

tion as marginalizing PV j
to that intersection. In many cases, this is not sufficient;20 indeed, we have already

seen examples of additional constraints, namely, the inequalities (31), (36) and (40) from Sec. 3.3. So what
are the necessary and sufficient conditions? To answer this question, it helps to realize two things:
– The set of all valid (positive, normalized) distributions PV is precisely the convex hull of the deterministic

assignments of values to V (the deterministic distributions), and
– Themap PV Ü→ (PV 1

, . . . ,PVn
), describingmarginalization to each of the contexts in (V 1, . . . ,Vn), is linear.

Hence the image of the set of possibilities for the distribution PV under the map PV Ü→ (PV 1
, . . . ,PVn

) is ex-
actly the convex hull of the deterministic assignments of values to (V 1, . . . ,Vn) which are consistent where
these contexts overlap. Since there are only finitely many such deterministic assignments, this convex hull
is a polytope; it is called themarginal polytope [68]. Together with the above equations on coinciding sub-
marginals, the facet inequalities of this polytope solve the marginal constraint problem. The marginal satis-
fiability problem asks about membership in the polytope; by the above, this becomes a linear program with
the joint probabilities PV as the unknowns.

To express thismore concretely,wewrite themarginal satisfiability problem in the formof a generic linear
program.

19 For further references and an outline of the long history of the marginal problem, see [35]. An alternative account using the
language of presheaves can also be found in [65].
20 Depending on how the contexts intersect with one another, this may be sufficient. A precise characterization for when this
occurs has been found by Vorob’ev [66]. See also Budroni et al. [67, Thm. 2] for an application of this characterization enabling
computationally significant shortcuts in solving the marginal constraint problem.
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Let the joint distribution vector v be the vector associated with the joint probability distribution PV ,
that is, the vector whose components are the probabilities PV (v). Let the marginal distribution vector b
be the vector that is the concatenation over i of the vectors associated with the distributions PV i

. Finally,
let the marginal description matrix M be the matrix representation of the linear map corresponding to
marginalization on each of the contexts, that is, PV → (PV 1

, . . . ,PVn
) where PV i

= ∑V\V i
PV . The components

ofM all take the value zero or one.
In this notation, the marginal satisfiability problem consists of determining whether, for a given vector

b, the following constraints are feasible:

∃ v : v ≥ 0, Mv = b, (50)

where the component-wise inequality v ≥ 0 enforces the constraint that PV is a nonnegative probability
distribution. This is clearly a linear program.

In the example of Fig. 11 with binary variables, M is a 48 × 64 matrix, so that Mv = b represents 48
equations and v ≥ 0 represents 64 inequalities; explicit representationsofM, v, andb for the simpler example
of the Cut inflation can be found in Appendix B. A single linear program can then assess whether there is a
solution in v for a given marginal distribution vector b. If this is not the case, then the marginal satisfiability
problem has a negative answer.

Since linear programming is quite easy, probing specificdistributions for compatibility for a given inflated
causal structure is computationally inexpensive. For instance, using theWeb inflation of the Triangle scenario
(Fig. 2), which contains a large number of observed variables, our numerical computations have reproduced
the result of [21, Theorem2.16], that a certain distribution considered therein is incompatiblewith the Triangle
scenario.21

In the case of the marginal constraint problem, the vector b is not given, but one rather wants to find
conditions on b that hold if and only if Eq. (50) has a solution. As per the above, this is a problem of facet
enumeration22 for the marginal polytope. Equivalently, it is the problem of linear quantifier elimination23

for the system of Eq. (50): one tries to find a system of linear equations and inequalities in b such that some
b satisfies the system if and only if Eq. (50) has a solution. There is a unique minimal system achieving this,
and it consists of the constraints of consistency on the intersections of contexts (mentioned above), together
with the facet inequalities of the marginal polytope. Taken together, these form a system of linear equations
and inequalities that is equivalent to Eq. (50), but does not contain any quantifiers. In our application, the
equations expressing consistency on the intersections of contexts are guaranteed to hold automatically, so
that only the facet inequalities are of interest to us.

In terms of Eq. (50), a valid inequality for the marginal distribution vector b—such as a facet inequality
of the marginal polytope—can always be expressed as yTb ≥ 0 for some vector y. Validity of an inequality
yTb ≥ 0means precisely that yTM ≥ 0, since the columns ofM are the vertices of the marginal polytope. The
marginal satisfiability problem for a givenvectorb0 hasno solution if andonly if there is a vector y that yields a
valid inequality but forwhich yTb0 < 0. Necessity follows by noting that if Eq. (50) does have a solution v for a
given vector b0, then the fact that yTM ≥ 0 and the fact that v ≥ 0 implies that yTb0 = yTMv ≥ 0. Sufficiency
follows from Farkas’ lemma. Most linear programming tools are capable of returning a Farkas infeasibility
certificate [69] whenever a linear program has no solution. In our case, if the marginal problem is infeasible
for a vector b0, then the certificate is a vector y that yields a valid inequality but for which yTb0 < 0.24

21 This distribution is, however, quantum-compatible with the Triangle scenario (Sec. 5.4).
22 In Appendix A, we provide an overview of techniques for facet enumeration.
23 Linear quantifier elimination has already been used in causal inference for deriving entropic causal compatibility inequalities
[25, 33]. In that task, however, the unknowns being eliminated are entropies on sets of variables of which one or more is latent.
By contrast, the unknowns being eliminated above are all probabilities on sets of variables all of which are observed—but on the
inflated causal structure rather than the original causal structure.
24 Farkas infeasibility certificates are available in Mosek, Gurobi, and CPLEX, as well as by accessing dual variables in
cvxr/cvxopt.

http://docs.mosek.com/8.0/pythonapi/optimizer-task-gety.html
https://www.gurobi.com/documentation/6.5/refman/farkasdual.html
http://www-01.ibm.com/support/docview.wss?uid=swg21400058
http://cvxr.com/cvx/doc/basics.html#dual-variables
http://cvxopt.org/userguide/coneprog.html#linear-cone-programs
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Upon substituting the factorization relations of Eq. (45) and deleting copy indices, any valid inequality
for the marginal problem turns into a causal compatibility inequality. This applies both to facet inequalities
of the marginal polytope, and to Farkas infeasibility certificates. In the latter case, one obtains an explicit
causal compatibility inequality which witnesses the given distribution as incompatible with the given causal
structure. In other words, if a given distribution is witnessed as incompatible with a causal structure using
the technique we have described, then with little additional numerical effort, one can also obtain a causal
compatibility inequality that exhibits the incompatibility. This may have applications to problems where the
facet enumeration is computationally intractable.

Summarizing, we have shown how to leverage the marginal satisfiability problem to witness causal
incompatibility of particular distributions, and how to leverage the marginal constraint problem to derive
causal compatibility inequalities.

4.3 A list of causal compatibility inequalities for the triangle scenario

As an example of the abovemethod, we have considered the Triangle scenariowith binary observed variables
and derived all causal compatibility inequalities which follow bymeans of using ancestral independences in
the Spiral inflation (Fig. 3). We found that there are 4884 inequalities corresponding to the facets of the rele-
vant marginal polytope, which results in 4884 polynomial causal compatibility inequalities for the Triangle
scenario.

However,most inequalities in this set have turned out to be redundant, where an inequality is considered
redundant if there is no distribution that violates this inequality but none of the others. We thus have looked
for a subset of inequalities that is irredundant (does not contain any redundant inequality) but nevertheless
complete (defines the same set of distributions as the full set). While a finite system of linear inequalities
always has a unique irredundant complete subset, this need not be the case for finite systems of polyno-
mial inequalities; we therefore speak of “a” complete irredundant set instead of “the” complete irredundant
set.

We exploited linear programming techniques to quickly identify a 1433-inequalities complete subset of
our original 4884 inequalities; concretely, the copy isomorphisms of Appendix C yield an additional list of
linear equations satisfied by all inflation models, and from every set of inequalities that differ by merely
a linear combination of these equations we choose one representative. To further prune away redundant
inequalities, we successively employed nonlinear constrained maximization on each inequality’s left-hand-
side, to determine numerically if it could be violated pursuant to all the other inequalities as constraints.
An inequality is found to be redundant if the solution to the constrained maximization does not exceed the
inequality’s right-hand side. Such an inequality was immediately dropped from the set before testing the
next candidate for redundancy.25 This post-processing led us to identify 60 irredundant inequalities which
defines the same set of satisfying distributions as the original 4884. Of the remaining 60, we recognized 8 as
uninteresting positivity inequalities, PABC(abc) ≥ 0, so that our irredundant complete system consists of 52
polynomial inequalities.

To present those inequalities in an efficientmanner, we further grouped them into four symmetry classes.
In Eqs. (51–54) we present one representative from each class; the multiplicity of inequalities contained in
each symmetry class is marked in parentheses. The symmetry group for any causal structure with finite-
cardinality observed variables is generated by those permutations of the observed variables which can be
extended to automorphisms of the (original) DAG, as well as any permutation among the discrete values as-
signed to an individual observed variable (i. e., bijections on the sample space of that variable). In the case
of the Triangle scenario with binary observed variables, the symmetry group therefore has 48 elements, com-
prised of the 6 permutations of the three observed variables, the three local binary-value relabellings, and all
their compositions (48 = 6 × 2 × 2 × 2).

25 It is advantageous to group the inequalities into symmetry classes prior to pruning away redundant inequalities, so that entire
classes of inequalities can be discarded when finding that a single representative is redundant to the other classes.
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We choose to express our inequalities in terms of correlators (where the two possible values of each vari-
ables to be {−1,+1}), rather than in terms of joint probabilities, because such a presentation is more compact:

0 ≤ 1 − E[AC] − E[BC] + E[A]E[B] (×12) (51)

0 ≤ 3 − E[A] − E[B] − E[C] + 2E[AB] + 2E[AC] + 2E[BC]

+ E[ABC] + E[A]E[B] + E[A]E[C] + E[B]E[C]

− E[A]E[BC] − E[B]E[AC] − E[C]E[AB] + E[A]E[B]E[C] (×8) (52)

0 ≤ 4 + 2E[C] − 2E[AB] − 3E[AC] − 2E[BC] − E[ABC] + E[A]E[B]E[C]

+ 2E[A]E[B] + E[A]E[C] − E[A]E[BC] − E[C]E[AB] (×24) (53)

0 ≤ 4 − 2E[AB] − 2E[AC] − 2E[BC] − E[ABC]

+ 2E[A]E[B] + 2E[A]E[C] + 2E[B]E[C]

− E[A]E[BC] − E[B]E[AC] − E[C]E[AB] (×8) (54)

All the inequalities (51–54) have no slack in the sense that they can be saturated by distributions compat-
ible with the Triangle scenario. Indeed, all the inequalities are saturated by the deterministic distribution
E[A]=E[B]=E[C]=1, except for Eq. (52) which is saturated by the deterministic distribution E[A]=E[B]= −
E[C]=1. Generally speaking, any polynomial inequality generated by a facet of the marginal polytope (i. e.
corresponding to some linear inequality in the variables of the inflated causal structure) will be saturated by
some deterministic distribution.

A machine-readable and closed-under-symmetries version of this list of inequalities may be found in
Appendix F.

4.4 Causal compatibility inequalities via hardy-type inferences from logical
tautologies

Enumerating all the facets of the marginal polytope is computationally feasible only for small examples.
But our method transforms every inequality that bounds the marginal polytope into a causal compatibil-
ity inequality. We now present a general approach for deriving a special type of such inequalities very
quickly.

In the literature onBell inequalities, it has beennoticed that incompatibilitywith theBell causal structure
can sometimes bewitnessed bymerely looking at which joint outcomes have zero probability andwhich ones
have nonzero probability. In other words, instead of considering the probability of an outcome, the inconsis-
tency of some marginal distributions can be evident from considering only the possibility or impossibility of
each outcome. This insight is originally due to Hardy [49], and versions of Bell’s theorem that are based on
the violation of such possibilistic constraints are known as Hardy-type paradoxes [57, 70–73]; a partial
classification of these can be found in [50]. Themethod that we describe in the second half of this section can
be used to compute a complete classification of possibilistic constraints for any marginal problem.

Possibilistic constraints follow fromaconsiderationof logical relations that canhold amongdeterministic
assignments to the observed variables. Such logical constraints can also be leveraged to derive probabilistic
constraints instead of possibilistic ones, as shown in [60, 74]. This results in a partial solution to any given
(probabilistic)marginal problem.Essentially,we solve apossibilisticmarginal problem [50], thenupgrade the
possibilistic constraints into probabilistic inequalities, resulting in a set of probabilistic inequalities whose
satisfaction is a necessary but insufficient condition for satisfying the corresponding probabilistic marginal
problem. We now demonstrate how to systematically derive all inequalities of this type.

We have already provided a simple example of a Hardy-type argument in Example 2, in the logic used
to demonstrate that the family of distributions of Eqs. (17–19) cannot arise as the marginals of a single joint
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distribution. For our present purposes, it is useful to recast that argument into anewbutmanifestly equivalent
form. First, for the family of distributions in question, we have

A2=1 â⇒ C1=0,

B2=1 â⇒ A1=0,

C2=1 â⇒ B1=0,

Never A1=0 and B1=0 and C1=0.

(55)

From the last constraint one infers that at least one of A1, B1 and C1 must be 1, which from the three other
constraints implies that at least one of A2, B2 and C2 must be 0, so that it is not the case that all of A2, B2 and
C2 are 1. Thus Eq. (55) implies

Never A2=1 and B2=1 and C2=1. (56)

However, the Spiral inflation (Fig. 3) is such that A2, B2, and C2 have no common ancestor and consequently
the distribution on the ai-expressible set {A2B2C2} is the product of the distributions on A2, B2 and C2. Since
each of the latter has full support (Eq. (19)), it follows that the distribution on {A2B2C2} also has full support,
which contradicts Eq. (56).

We are here interested in recasting the argument in amanner amenable to systematic generalization. This
is done as follows.Wework in amarginal scenariowhere the contexts are {A2B2C2}, {A2C1}, {B2A1}, {C2B1}, and
{A1B1C1}, and all variables are binary. The first step of the argument is to note that26

¬[A2=1,C1=1]⋀¬[B2=1,A1=1]⋀¬[C2=1,B1=1]⋀¬[A1=0,B1=0,C1=0]

â⇒ ¬[A2=1,B2=1,C2=1]. (57)

is a logical tautology for binary variables. It can be understood as a constraint on marginal deterministic
assignments, which can be thought of as a logical counterpart of a linear inequality bounding the marginal
polytope. The second and final step of the argument notes that the givenmarginal distributions are such that
the antecedent is always true, while the consequent is sometimes false.

To see how to translate this into a constraint on marginal distributions, we rewrite Eq. (57) in its contra-
positive form,

[A2=1,B2=1,C2=1] â⇒ [A2=1,C1=1] ∨ [B2=1,A1=1] ∨ [C2=1,B1=1] ∨ [A1=0,B1=0,C1=0]. (58)

Next, we note that if a logical tautology can be expressed as

E0 â⇒ E1 ∨ . . . ∨ En, (59)

then by applying the union bound—which asserts that the probability of at least one of a set of events occur-
ring is no greater than the sum of the probabilities of each event occurring—one obtains

P(E0) ≤
n
∑
j=1

P(Ej). (60)

Applying this to Eq. (58) in particular yields

PA2B2C2 (111) ≤ PA1B2 (11) + PB1C2 (11) + PA2C1 (11) + PA1B1C1 (000), (61)

which is a constraint on the marginal distributions.

26 Here, ∧, ∨ and ¬ denote conjunction, disjunction and negation respectively.
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This inequality allows one to demonstrate the incompatibility of the family of distributions of Eqs. (17–19)
with the Spiral inflation just as easily as one can with the tautology of Eq. (57). The fact that A2, B2 and C2
are ancestrally independent in the Spiral inflation implies that PA2B2C2 = PA2

PB2PC2 . It then suffices to note
that for the given family of distributions, the probability on the left-hand side of Eq. (61) is nonzero (which
corresponds to the consequent of Eq. (57) being sometimes false) while every probability on the right-hand
side is zero (which corresponds to the antecedent of Eq. (57) being always true). But, of course, the inequality
can witness many other incompatibilities in addition to this one.

As another example, consider the marginal problem where the variables are A, B and C, with each being
binary, and the contexts are the pairs {AB}, {AC}, and {BC}. The following tautology provides a constraint on
marginal deterministic assignments27:

[A=0,C=0] â⇒ [A=0,B=0] ∨ [B=1,C=0]. (62)

Applying the union bound, one obtains a constraint on marginal distributions,28

PAC(00) ≤ PAB(00) + PBC(10).

In this section, we seek to determine, for any marginal scenario, the set of all inequalities that can be
derived in this manner. We do so by enumerating the full set of tautologies of the form of Eqs. (57, 62). This
boils down to solving the possibilistic version of the marginal constraint problem.

We now describe the general procedure. As before, we express a constraint on marginal deterministic
assignments as a logical implication, having a valuation (assignment of outcomes) on one context as the an-
tecedent and a disjunction over valuations on contexts as the consequent. In the following, we explain how
to generate all such implications which are tight in the sense that the consequent is minimal, i. e., involves
as few terms as possible in the disjunction.

First, we fix the antecedent by choosing some context and a joint valuation of its variables. In order
to generate all constraints on marginal deterministic assignments, one will have to perform this procedure
for every context as the antecedent and every choice of valuation thereon. For the sake of concreteness, we
take the above Spiral inflation example with [A2=1,B2=1,C2=1] as the antecedent. Each logical implication
we consider is required to have the property that any variable that appears in both the antecedent and the
consequent must be given the same value in both.

To formally determine all valid consequents, it is useful to introduce two hypergraphs associated to the
problem. Recall the definition of the incidence matrix of a hypergraph: if vertex i is contained in edge j of the
hypergraph, the component in the ith row and jth column of the matrix is 1; otherwise it is 0.

The first hypergraphwe consider is the one whose incidencematrix is themarginal descriptionmatrixM
for themarginal problem being considered, as introduced near Eq. (50). Each vertex in this hypergraph corre-
sponds to a valuation on some particular context. Each hyperedge corresponds to a possible joint valuation of
all the variables. A hyperedge contains a vertex if the valuation represented by the hyperedge is an extension
of the valuation represented by the vertex. For example, the hyperedge [A1=0,A2=1,B1=0,B2=1,C1=1,C2=1]
contains the vertex [A1=0,B2=1,C2=1]. In our example following Fig. 11, this initial hypergraph has 5 ⋅ 23 = 40
vertices and 26 = 64 hyperedges.

The secondhypergraph is a subhypergraphof the first one.Wedelete from thefirst hypergraph all vertices
and hyperedges which contradict the outcomes supposed by the antecedent. In our example, because the
vertex [A2=1,B2=0,C1=1] contradicts the antecedent [A2=1,B2=1,C2=0], we delete it.We also delete the vertex
corresponding to the antecedent itself. In our example, this second hypergraph has 23 + 3 ⋅ 21 = 14 vertices
and 23 = 8 hyperedges.

All valid (minimal) consequents are (minimal) transversals of this latter hypergraph. A transversal is a
set of vertices which has the property that it intersects every hyperedge in at least one vertex. In order to get

27 This is a tautology since E ∧ F â⇒ E ∧ F ∧ (G ∨ ¬G) = (E ∧ F ∧ G) ∨ (E ∧ F ∧ ¬G) â⇒ (E ∧ G) ∨ (F ∧ ¬G).
28 This inequality is equivalent to Eq. (31).



E. Wolfe et al., The Inflation Technique for Causal Inference with Latent Variables | 27

implications which are as tight as possible, it is sufficient to enumerate only the minimal transversals. Doing
so is a well-studied problem in computer sciencewith various natural reformulations and for whichmanifold
algorithms have been developed [75].

In our example, it is not hard to check that the consequent of

[A2=1,B2=1,C2=1] â⇒ [A1=1,B2=1,C2=1] ∨ [A2=1,B1=1,C2=1]

∨ [A2=1,B2=1,C1=1] ∨ [A1=0,B1=0,C1=0] (63)

is such a minimal transversal: every assignment of values to all variables which extends the assignment on
the left-hand side satisfies at least one of the terms on the right, but this ceases to hold as soon as one removes
any one term on the right.

We convert these implications into inequalities in the usual way via the union bound (i. e., replacing
“⇒” by “≤” at the level of probabilities and the disjunction by summation). Thus Eq. (63) translates into the
constraint on marginal distributions

PA2B2C2 (111) ≤ PA1B2C2 (111) + PA2B1C2 (111) + PA2B2C1 (111) + PA1B1C1 (000). (64)

This inequality constitutes a strengthening of Eq. (61) that we had used as Eq. (40) as the starting point for
deriving a causal compatibility inequality for the Triangle scenario, Eq. (43).

Inequalities that one derives from hypergraph transversals are generally weaker than those that result
from a complete solution of the marginal problem. Nevertheless, many Bell inequalities are of this form,
the CHSH inequality among them [74]. So it seems that this method is still sufficiently powerful to generate
plenty of interesting inequalities. At the same time, the method is significantly less computationally costly
than the full-fledged facet enumeration, even if one does it for every possible antecedent. Interestingly, all
of the irredundant polynomial inequalities represented in Eqs. (51–54) are found to be derivable by means of
hypergraph transversals.

In conclusion, facet enumeration is the preferredmethod for deriving inequalities for the marginal prob-
lem when it is computationally tractable. When it is not, enumerating hypergraph transversals presents a
good alternative.

5 Further prospects for the inflation technique

Lemma 4 and Corollary 6 state that any causal inference technique on an inflated causal structure G� can
be transferred to the original causal structure G. In the previous section, we have found that even extremely
weak techniques on G�—namely the constraints implied by the existence of a joint distribution together with
ancestral independences—can lead to significant and new results for causal inference on G. In the following
three subsections, we consider some additional possibilities for constraints that might be exploited in this
way to enhance the power of inflation further.

5.1 Appealing to d-separation relations in the inflated causal structure beyond
ancestral independance

In Sec. 4, we considered the inflation technique using sets of observed variables on the inflated causal struc-
ture that were ai-expressible, that is, that can bewritten as a union of injectable sets that are ancestrally inde-
pendent. However, it is standard practicewhenderiving causal compatibility conditions for a causal structure
tomake use not just of ancestral independences, but of arbitrary d-separation relations among variables, and
for this reason we had also introduced the notion of expressible set in Sec. 4. We now comment on the utility
of general expressible sets for the inflation technique.
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In a given causal structure, if sets of variables X and Y are d-separated29 by Z, denoted X ⊥d Y |Z, then a
distribution is compatible with that causal structure only if it satisfies the conditional independence relation
X ⊥⊥ Y |Z, that is, ∀xyz : PXY |Z(xy|z) = PX|Z(x|z)PY |Z(y|z). In terms of unconditioned probabilities, this
reads

∀xyz : PXYZ(xyz)PZ(z) = PXZ(xz)PYZ(yz). (65)

For Z = 0, d-separation of X and Y relative to Z is simply ancestral independence of X and Y , and we infer
factorization of the distribution on X and Y . So it is natural to ask: can the inflation technique make use of
arbitrary d-separation relations among sets of observed variables?

The answer is that it can. Consider an inflation G� whereinX� and Y � are d-separated by Z� andmoreover
where the sets X� ∪ Z�, Y � ∪ Z� and Z� are injectable. In such an instance, the distribution on ∪X� ∪ Y � ∪ Z�

can be inferred exclusively from distributions on injectable sets,

PX�Y �Z� (xyz) =
{
{
{

PX�Z� (xz)PY�Z� (yz)
PZ� (z)

if PZ� (z) > 0,

0 if PZ� (z) = 0.
(66)

It follows that if one includes expressible sets such as X� ∪Y � ∪Z� in the set of contexts defining the marginal
problem, then this simply increases the number of given marginal distributions, and one can solve the
marginal problem as before by linear programming techniques. In the case where one derives inequalities
on the marginal distributions, these remain linear inequalities, but ones that now include the joint prob-
abilities PX�Y �Z� (xyz). Upon substituting conditional independence relations such as Eq. (66) in order to
derive causal compatibility inequalities, one still ends up with polynomial inequalities, as in the case of
using ai-expressible sets only, after multiplying by the denominators. As before, these causal compatibility
inequalities for the inflation are translated into polynomial causal compatibility inequalities for the original
causal structure per Corollary 6.

In Appendix D, we provide a concrete example of how a d-separation relation distinct from ancestral
independence can be useful both for the problem of witnessing the incompatibility of a specific distribution
with a causal structure and for the problem of deriving causal compatibility inequalities.

Per Definition 7, the notion of expressibility is recursive: The set X� ∪Y � ∪ Z� is expressible if X� ⊥d Y �|Z�

andX�∪Z�,Y �∪Z� andZ� are all expressible. In general, one can obtain stronger causal compatibility inequal-
ities, and stronger witnessing power when testing the compatibility of a specific distribution, by determining
the maximal expressible sets instead of restricting attention to the maximal ai-expressible sets.

5.2 Imposing symmetries from copy-index-equivalent subgraphs of the inflated
causal structure

By the definition of an inflation model (Definition 3), if two variables in the inflated causal structure G� are
copy-index-equivalent, Ai ∼ Aj, then each depends on its parents in the same fashion as A depends on its
parents in the original causal structure G, meaning that PAi|PaG� (Ai) = PA|PaG(A) and PAj|PaG� (Aj) = PA|PaG(A). Thus
by transitivity, also Ai and Aj have the same dependence on their parents,

PAi|PaG� (Ai) = PAj|PaG� (Aj). (67)

The ancestral subgraphs of Ai and Aj are also equivalent, and consequently equations like Eq. (67) also hold
for all of the ancestors of Ai and Aj. We conclude that the marginal distributions of Ai and Aj must also be
equal, PAi

= PAj
. More generally, it may be possible to find pairs of contexts in G� of any size such that con-

straints of the form of Eq. (67) imply that the marginal distributions on these two contexts must be equal.

29 The notion of d-separation is treated at length in [1, 3, 19, 22], so we elect not to review it here.
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For example, consider the pair of contexts {A1A2B1} and {A1A2B2} for themarginal scenario defined by the
Spiral inflation (Fig. 3). Neither of these two contexts is an injectable set. Nonetheless, because of Eq. (67), we
can conclude that their marginal distributions coincide in any inflation model,

∀aa�b : PA1A2B1 (aa
�b) = PA1A2B2 (aa

�b). (68)

We can similarly conclude that in the inflation model these marginal distributions satisfy PA1A2B1 = PA2A1B2—
where now the order of A1 and A2 is opposite on the two sides of the equation—or equivalently,

∀aa�b : PA1A2B1 (aa
�b) = PA1A2B2 (a

�ab). (69)

These constraints entail thatPA1A2B2 must be symmetric under exchange ofA1 andA2, which in itself is another
equation of the type above.

Parameters such as PA1A2B1 (a1a2b), PA1A2B2 (a1a2b) and PA1A2
(a1a2) can each be expressed as sums of the

unknowns PA1A2B1B2C1C2 (a1a2b1b2c1c2), so that each equation like Eqs. (68, 69) can be added to the system of
equations and inequalities that constitute the starting point of the satisfiability problem (if one is seeking to
test the compatibility of a given distribution with the inflated causal structure) or the quantifier elimination
problem (if one is seeking to derive causal compatibility inequalities for the inflated causal structure). If any
such additional relation yields stronger constraints at the level of the inflated causal structure, then one may
obtain stronger constraints at the level of the original causal structure.

The general problem of finding pairs of contexts in the inflated causal structure for which relations of
copy-index-equivalence imply equality of the marginal distributions, and the conditions under which such
equalities may yield tighter inequalities, are discussed in more detail in Appendix C.

5.3 Incorporating nonlinear constraints

In deriving causal compatibility inequalities and in witnessing causal incompatibility of a specific distribu-
tion, we restricted ourselves to starting from themarginal problemwhere the contexts are the (ai-)expressible
sets, and wherein one imposes only linear constraints derived from the marginal problem. In this approach,
facts about the causal structure only get incorporated in the construction of themarginal distribution on each
expressible set, and the quantifier elimination step of the computational algorithm is linear. However, one
can also incorporate facts about the causal structure as constraints on the quantifier elimination problem at
the cost making the quantifier elimination problem nonlinear.

Take the Spiral inflation of the Triangle scenario as an example. There is an ancestral independence
therein that we did not use in our previous application of the inflation technique, namely, A1A2 ⊥d C2. It was
not used because {A1A2C2} is not an expressible set. Nonetheless, we can incorporate this ancestral indepen-
dence as an additional constraint in the quantifier elimination problem, namely,

∀a1a2c2 : PA1A2C2 (a1a2c2) = PA1A2
(a1a2)PC2 (c2). (70)

Recall that in the marginal problem, one seeks to eliminate the unknowns PA1A2B1B2C1C2 (a1a2b1b2c1c2) from a
set of linear equalities that define the marginal distributions, such as for instance

PA2B2 (a2b2) =∑a1b1c1c2
PA1A2B1B2C1C2 (a1a2b1b2c1c2), (71)

together with linear inequalities expressing the nonnegativity of the PA1A2B1B2C1C2 (a1a2b1b2c1c2). We can
incorporate the ancestral independence A1A2 ⊥d C2 as an additional constraint by defining a variant of
the marginal problem wherein the set of linear equations such as Eq. (71) is supplemented by the nonlinear
Eq. (70)when one replaces every term thereinwith the corresponding sumover thePA1A2B1B2C1C2 (a1a2b1b2c1c2).
We can then proceed with quantifier elimination as we did before, eliminating the unknowns
PA1A2B1B2C1C2 (a1a2b1b2c1c2) from the system of equations in order to obtain constraints that involve only joint
probabilities on expressible sets.
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One can incorporate any d-separation relation in the inflated causal structure in this manner.
For instance, if X ⊥d Y |Z, then this implies the conditional independence relation of Eq. (65), which
can be incorporated as an additional nonlinear equality constraint when eliminating the unknowns
PA1A2B1B2C1C2 (a1a2b1b2c1c2). For instance, in the Spiral inflation of the Triangle scenario (Fig. 3), the d-sepa-
ration relation A1 ⊥d C2|A2B2 implies the conditional independence relation

∀a1a2b2c2 : PA1A2B2C2 (a1a2b2c2)PA2B2 (a2b2) = PA1A2B2 (a1a2b2)PA2B2C2 (a2b2c2). (72)

However, because {A1A2B2C2} is not an expressible set, the method of Sec. 4 does not take this d-separation
relation into account. However, it can be incorporated if Eq. (72) is included as an additional nonlinear con-
straint in the quantifier elimination problem.

On the one hand, manymodern computer algebra systems do have functions capable of tackling nonlin-
ear quantifier elimination symbolically.30 Currently, however, it is generally not practical to perform nonlin-
ear quantifier elimination on large polynomial systems with many unknowns to be eliminated. It may help to
exploit results on the concrete algebraic-geometric structure of these particular systems [11].

If one is seeking merely to assess the compatibility of a given distribution with the causal structure, then
one can avoid the quantifier elimination problem and simply try and solve an existence problem: after sub-
stituting the values that the given distribution prescribes for the outcomes on ai-expressible sets into the
polynomial system in terms of the unknown global joint probabilities, onemust only determine whether that
system has a solution. Most computer algebra systems can resolve such satisfiability questions quite easily.31

It is also possible to use amixed strategy of linear andnonlinear quantifier elimination, such asChaves [9]
advocates. The explicit results of [9] are directly causal implications of the original causal structure, achieved
by applying amixed quantifier elimination strategy. Perhaps further causal compatibility inequalities will be
derivable by applying such a mixed quantifier elimination strategy to the inflated causal structure.

5.4 Implications of the inflation technique for quantum physics and generalized
probabilistic theories

This specialized subsection is intended specifically for those readers already somewhat proficient with fun-
damental concepts in quantum theory. Non-physicists may wish to skip ahead to the conclusions (Sec. 6).

Recentworkhas sought to explore quantumgeneralizations of thenotion of a causalmodel, termed quan-
tum causal models [22, 23, 39–43]. We here use the quantum generalization that is implied by the approach
of [22] and closely related to the one of [23].

The causal structures are still represented by DAGs, supplemented with a distinction between observed
and latent nodes. However, the latent nodes are now associated with families of quantum channels and the
observed nodes are now associated with families of quantum measurements. Observed nodes are still la-
belled by random variables, which represent the outcome of the associated measurement. One also makes
a distinction between edges in the DAG that carry classical information and edges that carry quantum infor-
mation.32 An observed node can have incoming edges of either type: those that come from other observed
nodes carry classical information, while those that come from latent nodes carry quantum information. Each
quantum measurement in the set that is associated to an observed node acts on the collection of quantum
systems received by this node (i. e., on the tensor product of the Hilbert spaces associated to the incoming
edges). The classical variables that are received by the node act collectively as a control variable, determin-
ing whichmeasurement in the set is implemented. Finally, the random variable that is associated to the node

30 For exampleMathematica™’s Resolve command, Redlog’s rlposqe, orMaple™’s RepresentingQuantifierFreeFormula.
31 For exampleMathematica™’s Reduce`ExistsRealQ function. Specialized satisfiability software such as SMT-LIB’s check-sat
[76] are particularly apt for this purpose.
32 In many cases this notion of quantum causal model can also be formulated in a manner that does not require a distinction
between two kinds of edges [23].

http://reference.wolfram.com/language/ref/Resolve.html
http://www.redlog.eu/documentation/reals/rlqe.php
http://maplesoft.com/support/help/Maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/RepresentingQuantifierFreeFormula
http://reference.wolfram.com/language/Experimental/ref/ExistsRealQ.html
http://smtlib.cs.uiowa.edu/solvers.shtml
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encodes the outcome of the measurement. All of the outgoing edges of an observed node are classical and
simply broadcast the outcome of the measurement to the children nodes. A latent node can also have incom-
ing edges that carry classical variables as well as incoming edges that carry quantum systems. Each quantum
channel in the set that is associated to a latent node takes the collection of quantum systems associated to
the incoming edges as its quantum input and the collection of quantum systems associated to the outgoing
edges as its quantum output (the input and output spaces need not have the same dimension). The classical
variables that are received by the node act collectively as a control variable, determining which channel in
the set is implemented.

A quantum causal model is still ultimately in the service of explaining joint distributions of observed
classical variables. The joint distribution of these variables is the only experimental data with which one can
confront a given quantum causal model. The basic problem of causal inference for quantum causal models,
therefore, concerns the compatibility of a joint distribution of observed classical variables with a given causal
structure,where themodel supplementing the causal structure is allowed to be quantum, in the sense defined
above. If this happens, we say that the distribution is quantumly compatible with the causal structure.

One motivation for studying quantum causal models is that they offer a new perspective on an old prob-
lem in the field of quantum foundations: that of establishing precisely which of the principles of classical
physics must be abandoned in quantum physics. It was noticed by Fritz [21] and Wood and Spekkens [19]
that Bell’s theorem [51] states that there are distributions on observed nodes of the Bell causal structure that
are quantumly compatible but not classically compatible with it. Moreover, it was shown in [19] that these
distributions cannot be explained by any causal structure while complying with the additional principle that
conditional independences should not be fine-tuned, i. e., while demanding that any observed conditional
independence should be accounted for by a d-separation relation in theDAG. These results suggest that quan-
tum theory is perhaps best understood as revising our notions of the nature of unobserved entities, and of
how one represents causal dependences thereon and incomplete knowledge thereof, while nonetheless pre-
serving the spirit of causality and the principle of no fine-tuning [39, 84, 85].

Another motivation for studying quantum causal models is a practical one. Violations of Bell inequali-
ties have been shown to constitute resources for information processing [86–88]. Hence it seems plausible
that if one can find more causal structures for which there exist distributions that are quantumly compati-
ble but not classically so, then this quantum-classical separation may also find applications to information
processing. For example, it has been shown that in addition to the Bell scenario, such a quantum-classical
separation also exists in the bilocality scenario [47] and the Triangle scenario [21], and it is likely that many
more causal structures with this property will be found, somewith potential applicability to information pro-
cessing.

So for both foundational and practical reasons, there is good reason to find examples of causal structures
that exhibit a quantum-classical separation. However, this is by no means an easy task. The set of distribu-
tions that are quantumly compatible with a given causal structure is quite hard to separate from the set of
distributions that are classically compatible [21, 22]. For example, both the classical and quantum sets re-
spect the conditional independence relations among observed nodes that are implied by the d-separation
relations of the DAG [22], and entropic inequalities are only of very limited use [21, 89]. We hope that the
inflation technique will provide better tools for finding such separations.

In addition to quantum generalizations of causal models, one can define generalizations for other opera-
tional theories that are neither classical nor quantum [22, 23]. Such generalizations are formalized using the
framework of generalized probabilistic theories (GPTs) [90, 91], which is sufficiently general to describe any
operational theory that makes statistical predictions about the outcomes of experiments and passes some
basic sanity checks. Some constraints on compatibility can be proven to be theory-independent in that they
apply not only to classical and quantum causal models, but to any kind of generalized probabilistic causal
model [22]. For example, the classically-valid conditional independence relations that hold among observed
variables in a causal structure are all also valid in the GPT framework. Another example is the entropic
monogamy inequality Eq. (39), which was proven in [22] to be GPT valid as well. These kinds of constraints
are of interest because they clarify what any conceivable theory of physics must satisfy on a given causal
structure.
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The essential element in deriving such constraints is to only make reference to the observed nodes, as
done in [22]. In fact, we now understand the argument of [22] to be an instance of the inflation technique.
Nonetheless, we have seen that the inflation technique often yields inequalities that hold for the classical
notion of compatibility, while having quantum and GPT violations, such as the Bell inequalities of Example 3
of Sec. 3.2 and Appendix G. In fact, inflation can be used to derive inequalities with quantum violations for
the Triangle scenario as well [92].

Sowhat distinguishes applications of the inflation technique that yield inequalities for GPT compatibility
from those that yield inequalities for classical compatibility? The distinction rests on a structural feature of
the inflation:

Definition 10. In G� ∈ Inflations(G), an inflationary fan-out is a latent node that has two or more children
that are copy-index equivalent.

The Web and Spiral inflations of the Triangle scenario, depicted in Fig. 2 and Fig. 3 respectively, contain
one or more inflationary fan-outs, as does the inflation of the Bell causal structure that is depicted in Fig. 8.
On the other hand, the simplest inflation of the Triangle scenario that we consider in this article, the Cut
inflation depicted in Fig. 5, does not contain any inflationary fan-outs.

Our main observation is that if one uses an inflation without an inflationary fan-out, then the resulting
inequalities derived by the inflation technique will all be GPT valid. In other words, one can only hope to
detect a GPT-classical separation if one uses an inflation that has at least one inflationary fan-out. We now
explain the intuition for why this is the case. In the classical causal model obtained by inflation, the copy-
index-equivalent children of an inflationary fan-out causally depend on their parent node in precisely the
sameway as their counterparts in the original causal structure do. For example, this dependencemay be such
that these two children are exact copies of the inflationary fan-out node. So when one tries to write down a
GPT version of our notion of inflation, one quickly runs into trouble: in quantum theory, the no-broadcasting
theorem shows that such duplication is impossible in a strong sense [93], and an analogous theorem holds
for GPTs [94]. This is why in the presence of an inflationary fan-out, one cannot expect our inequalities to
hold in the quantum or GPT case, which is consistent with the fact that they often do have quantum and GPT
violations.

On the other hand, for any inflation that does not contain an inflationary fan-out, the notion of an infla-
tionmodel generalizes to all GPTs; we sketch how this works for the case of quantum theory. By the definition
of inflation, any node in G� has a set of incoming edges equivalent to its counterpart in G, while by the as-
sumption that the inflated causal structure does not contain any inflationary fan-outs, any node in G� has
either the equivalent set of outgoing edges as its counterpart in G, or some pruning of this set. In the former
case, one associates to this node the same set of quantum channels (if it is a latent node) or measurements (if
it is an observed node) that are associated to its counterpart. In the latter case, one simply applies the partial
trace operation on the pruned edges (if it is a latent node) or a marginalization on the pruned edges (if it is
an observed node). That these prescriptions make sense depends crucially on the assumption that G� is an
inflation of G, so that the ancestries of any node in G� mirrors the ancestry of the corresponding node in G
perfectly. Hence for inflations G� without inflationary fan-outs, we have quantum analogues of Lemma 4 and
Corollary 6. The problem of quantum causal inference on G therefore translates into the corresponding prob-
lem on G�, and any constraint that we can derive on G� translates back to G. In particular, our Examples 1, 4
and 5 also hold for quantum causal inference: perfect correlation is not only classically incompatible with the
Triangle scenario, it is quantumly incompatible as well, and the inequalities Eqs. (34, 39) have no quantum
violations.

All of these assertions about inflations that do not contain any inflationary fan-outs apply not only to
quantum causal models, but to GPT causal models as well, using the definition of the latter provided in [22].

In the remainder of this section, we discuss the relation between the quantum and the GPT case. Since
quantum theory is a particular generalized probabilistic theory, quantum compatibility trivially implies GPT
compatibility. Through the work of Tsirelson [54] and Popescu and Rohrlich [55], it is known that the con-
verse is not true: the Bell scenario manifests a GPT-quantum separation. The identification of distributions
witnessing this difference, and the derivation of quantum causal compatibility inequalities with GPT viola-
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tions, has been a focus of much foundational research in recent years. Traditionally, the foundational ques-
tion has always been: why does quantum theory predict correlations that are stronger than one would expect
classically? But now there is a new question being asked: why does quantum theory only allow correlations
that are weaker than those predicted by other GPTs? There has been some interesting progress in identifying
physical principles that can pick out the precise correlations that are exhibited by quantum theory [95–103].
Further opportunities for identifying such principles would be useful. This motivates the problem of classify-
ing causal structures into thosewhichhaveaquantum-classical separation, thosewhichhaveaGPT-quantum
separation and those which have both. Similarly, one can try to classify causal compatibility inequalities into
those which are GPT-valid, those which are GPT-violable but quantumly valid, and those which are quantum-
violable but classically valid.

The problemof deriving inequalities that are GPT-violable but quantumly valid is particularly interesting.
Chaves et al. [40] have derived some entropic inequalities that can do so. At present, however, we do not see
a way of applying the inflation technique to this problem.

6 Conclusions
We have described the inflation technique for causal inference in the presence of latent variables.

We have shown how many existing techniques for witnessing incompatibility and for deriving causal
compatibility inequalities can be enhanced by the inflation technique, independently of whether these per-
tain to entropic quantities, correlators or probabilities. The computational difficulty of achieving this en-
hancement depends on the seed technique. We summarize the computational difficulty of the approaches
that we have considered in Table 1. A similar table could be drawn for the satisfiability problem, with relative
difficulties preserved, but where none of the variants of the problem are computationally hard.

Table 1: A comparison of different approaches for deriving constraints on compatibility at the level of the inflated causal struc-
ture, which then translate into constraints on compatibility at the level of the original causal structure.

Type of constraints imposed on the joint
distribution over all observed variables
in the inflated graph

General problem → Standard algorithm(s) Difficulty

Marginal compatibility, i. e., the
joint distribution should recover
all expressible (or
ai-expressible) distributions as
marginals (Sec. 5.1)

Facet enumeration of marginal
polytope (Sec. 4.2)

→ see Appendix A Hard

Finding possibilistic constraints
by identifying hypergraph
transversals (Sec. 4.4)

→ see Eiter et al. [75] Very easy

Whenever two
equivalent-up-to-copy-indices sets of
observed variables have ancestral
subgraphs which are also
equivalent-up-to-copy-indices, then the
marginals over said variables must
coincide (Sec. 5.2)

Marginal problem with
additional equality constraints,
therefore linear quantifier
elimination (Appendix C)

→ Fourier-Motzkin
elimination [77–81],
Equality set projection
[82, 83]

Hard

The joint distribution should satisfy all
conditional independence relations
implied by d-separation conditions on
the observed variables (Sec. 5.3)

Real (nonlinear) quantifier
elimination

→ Cylindrical algebraic
decomposition [9]

Very hard
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Especially in Sec. 4, we have focused on one particular seed technique: the existence of a joint distribu-
tion on all observed nodes together with ancestral independences. We have shown how a complete or partial
solution of themarginal problem for the ai-expressible sets of the inflated causal structure can be leveraged to
obtain criteria for causal compatibility, both at the level ofwitnessingparticular distributions as incompatible
and deriving causal compatibility inequalities. These inequalities are polynomial in the joint probabilities of
the observed variables. They are capable of exhibiting the incompatibility of theW-type distribution with the
Triangle scenario, while entropic techniques cannot, so that our polynomial inequalities are stronger than
entropic inequalities in at least some cases (see Example 2 of Sec. 3.2). As far as we can tell, our inequalities
are not related to the nonlinear causal compatibility inequalities which have been derived specifically to con-
strain classical networks [28–30], nor to the nonlinear inequalities which account for interventions to a given
causal structure [53, 104].

We have shown that some of the causal compatibility inequalities we derive by the inflation technique
are necessary conditions not only for compatibility with a classical causal model, but also for compatibility
with a causal model in any generalized probabilistic theory, which includes quantum causal models as a
special case. It would be enlightening to understand the general extent to which our polynomial inequalities
for a given causal structure can be violated by a distribution arising in a quantum causal model. A variety of
techniques exist for estimating the amount bywhich aBell inequality [105, 106] is violated in quantum theory,
but evenfinding a quantumviolation of one of ourpolynomial inequalities for causal structures other than the
Bell scenario presents a new task for which we currently lack a systematic approach. Nevertheless, we know
that there exists a difference between classical and quantum also beyond Bell scenarios [21, Theorem 2.16],
and we hope that our polynomial inequalities will perform better in probing this separation than entropic
inequalities do [22, 40].

We have shown that the inflation technique can also be used to derive causal compatibility inequalities
that hold for arbitrary generalized probabilistic theories, a significant generalization of the results of [22].
Such inequalities are also very significant insofar as they constitute a restriction on the sorts of statistical
correlations that could arise in a given causal scenario even if quantum theory is superseded by some alter-
native physical theory. As long as the successor theory falls within the framework of generalized probabilistic
theories, the restriction will hold.

Finally, an interesting question is whether it might be possible tomodify ourmethods somehow to derive
causal compatibility inequalities that hold for quantum theory and are violated by someGPT. Since the initial
drafting of this manuscript, such a modification has been identified [107].

A single causal structure has an unlimited number of potential inflations. Selecting a good inflation from
which strong polynomial inequalities can be derived is an interesting challenge. To this end, it would be
desirable to understand how particular features of the original causal structure are exposed when different
nodes in the causal structure are duplicated. By isolating which features are exposed in each inflation, we
could conceivably quantify the utility for causal inference of each inflation. In so doing, we might find that
inflations beyond a certain level of variable duplication need not be considered. The multiplicity beyond
which further inflation is irrelevantmay be related to themaximumdegree of those polynomialswhich tightly
characterize a causal scenario. Presently, however, it is not clear how to upper bound either number, though
a finite upper bound on the maximum degree of the polynomials follows from the semialgebraicity of the
compatible distributions, per Ref. [6].

Causal compatibility inequalities are, by definition, merely necessary conditions for compatibility. De-
pending on what kind of causal inference methods one uses at the level of an inflated causal structure G�,
one may or may not obtain sufficient conditions. An interesting question is: if one only uses the existence of
a joint distribution and ancestral independences at the level of G�, then does one obtain sufficient conditions
as G� varies? In other words: if a given distribution is such that for every inflation G�, the marginal problem of
Sec. 4 is solvable, then is the distribution compatible with the original causal structure? This occurs for the
Bell scenario, where it is enough to consider only one particular inflation (Appendix G).

Significantly, since the initial drafting of this manuscript, Ref. [108] has proven that the inflation tech-
nique indeed gives necessary and sufficient conditions for causal compatibility: any incompatible distribu-
tion is witnessed as incompatible by a suitably large inflation. Ref. [108] also provides other interesting re-
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sults, such as a prescription for how to generate all relevant inflations, as well as an explicit demonstration
of the inflation technique as applied to Pearl’s instrumental scenario.
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Appendix A. Algorithms for solving the marginal constraint
problem

By solving themarginal constraint problem, what wemean is to determine all the facets of themarginal poly-
tope for a given marginal scenario. Since the vertices of this polytope are precisely the deterministic assign-
ments of values to all variables, which are easy to enumerate, solving the marginal constraint problem is an
instance of a facet enumeration problem: given the vertices of a convex polytope, determine its facets. This
is a well-studied problem in combinatorial optimization for which a variety of algorithms are available [109].

A generic facet enumeration problem takes a matrix V ∈ ℝd×n, which lists the vertices as its columns,
and asks for an inequality description of the set of vectors b ∈ ℝd that can bewritten as a convex combination
of the vertices using weights x ∈ ℝn that are nonnegative and normalized,

{ b ∈ ℝd
!!!!!!!!
∃x ∈ ℝn : b = Vx, x ≥ 0, ∑

i
xi = 1 } . (A.1)

To solve the marginal problem one uses the marginal description matrix introduced in Sec. 4.2 as the input
to the facet enumeration algorithm, i. e. V = M, see Eq. (50).

The oldest-known method for facet enumeration relies on linear quantifier elimination in the form of
Fourier-Motzkin (FM) elimination [77, 78]. This refers to the fact that one starts with the system b = Vx,
x ≥ 0 and ∑ixi = 1, which is the half-space representation of a convex polytope (a simplex), and then one
needs to project onto b-space by eliminating the variables x to which the existential quantifier ∃x refers. The
Fourier-Motzkin algorithm is a particular method for performing this quantifier elimination one variable at a
time; when applied to Eq. (A.1), it is equivalent to the double description method [78, 110]. Linear quantifier
elimination routines are available in many software tools.33 The authors found it convenient to custom-code
a linear quantifier elimination routine inMathematica™.

Other algorithms for facet enumeration that are not based on linear quantifier elimination include the
following. Lexicographic reverse search (LRS) [112] explores the entire polytope by repeatedly pivoting from
one facet to an adjacent one, and is implemented in lrs. Equality Set Projection (ESP) [82, 83] is also based

33 For example MATLAB™’s MPT2/MPT3, Maxima’s fourier_elim, lrs’s fourier, or Maple™’s (v17+) LinearSolve and Projec-

tion. The efficiency of most of these software tools, however, drops off markedly when the dimension of the final projection is
much smaller than the initial space of the inequalities. Fast facet enumeration aided by Chernikov rules [79, 111] is implemented in
cdd, PORTA, qskeleton, and skeleton. In the authors experience skeleton seemed to be themost efficient. Additionally, the package
polymake offers multiple algorithms as options for computing convex hulls.

http://people.ee.ethz.ch/~mpt/2/docs/refguide/mpt/@polytope/projection.html
http://ellipsoids.googlecode.com/svn-history/r2740/branches/issue_119_vrozova/tbxmanager/toolboxes/mpt/3.0.14/all/mpt3-3_0_14/mpt/modules/geometry/sets/@Polyhedron/projection.m
http://maxima.sourceforge.net/docs/manual/de/maxima_75.html
http://cgm.cs.mcgill.ca/~avis/C/lrslib/USERGUIDE.html#fourier
http://www.maplesoft.com/support/help/maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/LinearSolve
http://www.maplesoft.com/support/help/Maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/Projection
http://www.maplesoft.com/support/help/Maple/view.aspx?path=RegularChains/SemiAlgebraicSetTools/Projection
https://www.inf.ethz.ch/personal/fukudak/cdd_home/
http://comopt.ifi.uni-heidelberg.de/software/PORTA/
http://sbastrakov.github.io/qskeleton/
http://www.uic.unn.ru/~zny/skeleton/
http://www.uic.unn.ru/~zny/skeleton/
https://polymake.org/doku.php/researchdata/polymakeilp
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on pivoting from facet to facet, though its implementation is less stable.34 These algorithms could be inter-
esting to use in practice, since each pivoting step churns out a new facet; by contrast, Fourier-Motzkin type
algorithms only generate the entire list of facets at once, after all the quantifiers have been eliminated one by
one, see Ref. [113] for a recent comparative review.

It may also be possible to exploit special features of marginal polytopes in order to facilitate their facet
enumeration, such as their high degree of symmetry: permuting the outcomes of each variable maps the
polytope to itself, which already generates a sizeable symmetry group, and oftentimes there are additional
symmetries given by permuting some of the variables. This simplifies the problem of facet enumeration [114,
115], and it may be interesting to apply dedicated software35 to the facet enumeration problem of marginal
polytopes [116–118].

Appendix B. Explicit marginal description matrix of the cut
inflation with binary observed variables
The three maximal ai-expressible sets of the Cut inflation (Fig. 5) are {A2B1}, {B1C1}, and {A2C1}. Taking the
variables to be binary, each ai-expressible set corresponds to 22 = 4 equations pertinent to the marginal
problem. The three sets of equations which relate the marginal probabilities to a posited joint distribution
are given by

∀a2b1 : PA2B1 (a2b1) =∑c1
PA2B1C1 (a2b1c1),

∀b1c1 : PB1C1 (b1c1) =∑a2
PA2B1C1 (a2b1c1),

∀a2c1 : PA2C1 (a2c1) =∑b1
PA2B1C1 (a2b1c1).

(B.1)

As we noted in the main text, such conditions can be expressed in terms of a single matrix equality, Mv =
b where v is the joint distribution vector, b is the marginal distribution vector and M is the marginal
descriptionmatrix. In the Cut inflation example, the joint distribution vector v has 8 elements, whereas the
marginal distribution vector b has 12, i. e.

v =

((((((((

(

PA2B1C1 (000)
PA2B1C1 (001)
PA2B1C1 (010)
PA2B1C1 (011)
PA2B1C1 (100)
PA2B1C1 (101)
PA2B1C1 (110)
PA2B1C1 (111)

))))))))

)

, b =

(((((((((((((((((

(

pA2B1 (00)
pA2B1 (01)
pA2B1 (10)
pA2B1 (11)
pA2C1 (00)
pA2C1 (01)
pA2C1 (10)
pA2C1 (11)
pB1C1 (00)
pB1C1 (01)
pB1C1 (10)
pB1C1 (11)

)))))))))))))))))

)

=

(((((((((((((((((

(

PA2B1C1 (00_)
PA2B1C1 (01_)
PA2B1C1 (10_)
PA2B1C1 (11_)
PA2B1C1 (0_0)
PA2B1C1 (0_1)
PA2B1C1 (1_0)
PA2B1C1 (1_1)
PA2B1C1 (_00)
PA2B1C1 (_01)
PA2B1C1 (_10)
PA2B1C1 (_11)

)))))))))))))))))

)

, (B.2)

and hence the marginal description matrixM is a 12 × 8 matrix of zeroes and ones, i. e.

34 ESP [81–83] is supported by MPT2 but not MPT3, and by the (undocumented) option of projection in the polytope (v0.1.2 2016-07-
13) python module.
35 Such as PANDA, Polyhedral, or SymPol. The authors found SymPol to be rather effective for some small test problems, using
the options “./sympol -a --cdd”.

http://people.ee.ethz.ch/~mpt/2/docs/refguide/mpt/@polytope/projection.html
http://people.ee.ethz.ch/~mpt/3/
https://github.com/tulip-control/polytope/blob/master/polytope/polytope.py#L1412
https://pypi.python.org/pypi/polytope
http://comopt.ifi.uni-heidelberg.de/software/PANDA/
http://mathieudutour.altervista.org/Polyhedral/
http://www.math.uni-rostock.de/~rehn/software/sympol.html
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M =

(((((((((((((((((

(

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1
1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

)))))))))))))))))

)

(B.3)

such thatMv = b per Eq. (50).

Appendix C. Constraints on marginal distributions from copy-index
equivalence relations
In Sec. 5.2, we noted that every copy of a variable in an inflation model has the same probabilistic depen-
dence on its parents as every other copy. It followed that for certain pairs of marginal contexts, the marginal
distributions in any inflation model are necessarily equal. We now describe not only how to identify all such
pairs of contexts, but also how to identify weak pairs, who’s corresponding symmetry imposition cannot help
strengthen the final constraints.

Given X,Y ⊆ Nodes(G�) in an inflated causal structure G�, let us say that a map φ : X → Y is a copy
isomorphism if it is a graph isomorphism36 between SubDAG(X) and SubDAG(Y) such that φ(X) ∼ X for all
X ∈ X, meaning that φ maps every node X ∈ X to a node Y=φ(X) ∈ Y such that Y is equivalent to X under
dropping the copy-index.

Furthermore, we say that a copy isomorphism φ : X → Y is an inflationary isomorphism whenever it
can be extended to a copy isomorphismon the ancestral subgraphs,Φ : An(X)→ An(Y). A copy isomorphism
Φ : An(X) → An(Y) defines an inflationary isomorphism φ : X → Y if and only if Φ(X) = Y . So in practice,
one can either start with φ : X → Y and try to extend it to Φ : An(X)→ An(Y), or start with such a Φ and see
whether it maps X to Y and thereby restricts to a φ.

For given observed V 1 and V 2, a sufficient condition for equality of their marginal distributions in an in-
flationmodel is that there exists an inflationary isomorphism between them. BecauseV 1 andV 2 might them-
selves contain several variables that are copy-index equivalent (recall the examples of Sec. 5.2), equating the
distribution PV 1

with the distribution PV 2
in an unambiguous fashion requires one to specify a correspon-

dence between the variables that make up V 1 and those that make up V 2. This is exactly the data provided
by the inflationary isomorphism φ. This result is summarized in the following lemma.

Lemma 11. Let G� be an inflation of G, and let V 1,V 2 ⊆ ObservedNodes(G�). Then every inflationary isomor-
phism φ : V 1 → V 2 induces an equality PV 1

= PV 2
for inflation models, where the variables in V 1 are identified

with those in V 2 according to φ.

This applies in particular whenV 1 = V 2, in which case the statement is that the distribution PV 1
is invari-

ant under permuting the variables according to φ.
Lemma 11 is best illustrated by returning to our example from Sec. 5.2 which considered the Spiral infla-

tion of Fig. 3 and the pair of contexts V 1 = {A1A2B1} and V 2 = {A1A2B2}. The map

36 A graph isomorphism is a bijective map between the nodes of one graph and the nodes of another, such that both the map
and its inverse take edges to edges.
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φ : A1 Ü→ A1, A2 Ü→ A2, B1 Ü→ B2 (C.1)

is a copy isomorphism between V 1 and V 2 because it trivially implements a graph isomorphism (both sub-
graphs are edgeless), and it maps each variable in V 1 to a variable in V 2 that is copy-index equivalent. There
is a unique choice to extend φ to a copy isomorphism Φ : An(V 1) → An(V 2), namely, by extending Eq. (C.1)
to the ancestors via

Φ : X1 Ü→ X1, Y1 Ü→ Y1, Y2 Ü→ Y2, Z1 Ü→ Z2, (C.2)

which is again a copy isomorphism. Therefore φ is indeed an inflationary isomorphism. From Lemma 11, we
then conclude that any inflation model satisfies PA1A2B1 = PA1A2B2 .

Similarly, the map

φ� : A1 Ü→ A2, A2 Ü→ A1, B1 Ü→ B2 (C.3)

is also easily verified to be a copy isomorphism between SubDAG(V 1) and SubDAG(V 2), and there is again
a unique choice to extend φ� to a copy isomorphism Φ� : AnSubDAG(V 1) → AnSubDAG(V 2), by extend-
ing Eq. (C.3) with

Φ� : X1 Ü→ X1, Y1 Ü→ Y2, Y2 Ü→ Y1, Z1 Ü→ Z2, (C.4)

so that φ� too is verified to be an inflationary isomorphism. From Lemma 11, we then conclude that every in-
flationmodel also satisfies PA1A2B1 = PA2A1B2 . (And this in turn implies that for the context {A1A2}, themarginal
distribution satisfies the permutation invariance PA1A2

= PA2A1
.)

In order to avoid any possibility of confusion, we emphasize that it is not a plain copy isomorphism
between the subgraphs of V 1 and V 2 themselves which results in coinciding marginal distributions, nor a
copy isomorphism between the ancestral subgraphs of V 1 and V 2. Rather, it is an inflationary isomorphism
between the subgraphs, i. e., a copy isomorphism between the ancestral subgraphs that restricts to a copy
isomorphism between the subgraphs. To see why a copy isomorphism between ancestral subgraphs by itself
may not be sufficient for deriving equality of marginal distributions, we offer the following example. Take as
the original causal structure the instrumental scenario of Pearl [31], and consider the inflation depicted in
Fig. 13. Consider the pair of contexts V 1 = {X1Y2Z1} and V 2 = {X1Y2Z2} on the inflated causal structure. Since
SubDAG(V 1) and SubDAG(V 2) are not isomorphic, there is no copy isomorphism between the two. On the
other hand, the ancestral subgraphs are both given by the causal structure of Fig. 14, so that the identity map
is a copy isomorphism between AnSubDAG(X1Y2Z1) and AnSubDAG(X1Y2Z2).

One can try to make use of Lemma 11 when deriving polynomial inequalities with inflation via solving
the marginal problem, by imposing the resulting equations of the form PV 1

= PV 2
as additional constraints,

one constraint for each inflationary isomorphismφ : V 1 → V 2 between sets of observed nodes. This is advan-
tageous to speed up to the linear quantifier elimination, since one can solve each of the resulting equations
for one of the unknown joint probabilities and thereby eliminate that probability directly without Fourier-
Motzkin elimination. Moreover, one could hope that these additional equations also result in tighter con-
straints on the marginal problem, which would in turn yield tighter causal compatibility inequalities. Our
computations have so far not revealed any example of such a tightening.

Figure 12: The instrumental scenario of Pearl [31].
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Figure 13: An inflation of the instrumental scenario which illustrates why coinciding ancestral
subgraphs doesn’t necessarily imply coinciding marginal distributions.

Figure 14: The ancestral subgraph of Fig. 13 for either {X1Y2Z1} or {X1Y2Z2}.

In some cases, this lack of impact canbe explained as follows. Suppose thatφ : V 1 → V 2 is an inflationary
isomorphism such that φ can be extended to a copy automorphism Φ� : G� → G�, which maps the entirety of
the inflated causal structure onto itself. An inflationary isomorphism can always be extended to some copy
isomorphism between the ancestral subgraphs Φ : AnSubDAG(V 1) → AnSubDAG(V 2) by definition, but not
every inflationary isomorphism can also be extended to a full copy automorphism ofG�. In those cases where
φ can be extended to a copy automorphism, the irrelevance of the additional constraint PV 1

= PV 2
to the

marginal problem for inflation models can be explained by the following argument.
Suppose that some joint distribution PObservedNodes(G�) solves the unconstrained marginal problem,

i. e., without requiring PV 1
= PV 2

. Now apply the automorphism Φ� to the variables in PObservedNodes(G�),
switching the variables around, to generate a new distribution P�ObservedNodes(G�) := PΦ�(ObservedNodes(G�)). Be-
cause the set of marginal distributions that arise from inflation models is invariant under this switching of
variables, we conclude that P� is also a solution to the unconstrained marginal problem. Taking the uniform
mixture of P and P� is therefore still a solution of the unconstrained marginal problem. But this uniformmix-
ture also satisfies the supplementary constraint PV 1

= PV 2
. Hence the supplementary constraint is satisfiable

whenever the unconstrained marginal problem is solvable, which makes adding the constraint irrelevant.
This argument does not apply when the inflationary isomorphism φ : V 1 → V 2 cannot be extended to a

copy automorphism of the entire inflated causal structure. It also does not apply if one uses d-separation con-
ditions beyond ancestral independence on the inflated causal structure as additional constraints (Sec. 5.1),
because in this case the set of compatible distributions is not necessarily convex. In either of these cases, it
is unclear whether or not constraints arising from copy-index equivalence could yield tighter inequalities.

Appendix D. Using the inflation technique to certify a causal
structure as “interesting”

By considering all possible d-separation relations on the observed nodes of a causal structure, one can infer
the set of all conditional independence (CI) relations that must hold in any distribution compatible with it.
Due to the presence of latent variables, satisfying these CI relations is generally not sufficient for compatibil-
ity. Henson, Lal and Pusey (HLP) [22] introduced the term interesting for those causal structures for which
this happens, and derived a partial classification of causal structures into interesting and non-interesting
ones by finding necessary criteria for a causal structure to be interesting, and they also conjectured their
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criteria to be sufficient. As evidence in favour of this conjecture, they enumerated all possible isomorphism
classes of causal structure with up to six nodes satisfying their criteria, which resulted in only 21 equivalence
classes of potentially interesting causal structures. Of those 21, they further proved that 18 were indeed in-
teresting by writing down explicit distributions which are incompatible despite satisfying the observed CI
relations. Incompatibility was certified by means of entropic inequalities.

That left three classes of causal structures as potentially interesting (Figs. 15–17). For each of these, HLP
derived both: (i) the set of Shannon-type entropic inequalities that take into account the CI relations among
the observed variables, and (ii) the set of Shannon-type entropic inequalities that also take into account CI
relations among latent variables. Finding the second set to be larger than the first constitutes evidence that
the causal structure is interesting. The evidence is not conclusive, however, because the Shannon-type in-
equalities that are included in the second set but not the first might be non-Shannon-type inequalities that
merely follow from the CI relations among the observed variables [22].

One way to close this loophole would be to show that the novel Shannon-type inequalities imply con-
straints beyond some inner approximation to the genuine entropic cone corresponding to the CI relations
among observed variables, perhaps along the lines of [26]. Another is to use causal compatibility inequalities
beyond entropic inequalities to identify some CI-respecting but incompatible distributions. Pienaar [36] ac-
complished precisely this by considering the different values that an observed root variable may take. In the
following, we demonstrate how the inflation technique can be used for the same purpose.

D.1 Certifying that Henson-Lal-Pusey’s causal structure #16 is “interesting”

Pienaar [36] identified a distribution which satisfies the only CI relation that must hold among the observed
variables in HLP’s causal structure #16 (Fig. 16), namely, C ⊥⊥ Y , but which is nonetheless incompatible with

Figure 15: Causal structure #15 in [22]. The d-separation relations are C ⊥d Y and A ⊥d B | Y .

Figure 16: Causal structure #16 in [22]. The only d-separation relation is C ⊥d Y .

Figure 17: Causal structure #20 in [22]. The d-separation relations are C ⊥d Y and A ⊥d Y |B.
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Figure 18: The Russian dolls inflation of Fig. 16.

it:

PPienaarABCY :=
[0000] + [0110] + [0001] + [1011]

4
, i. e., PPienaarABCY (abcy) = {

1
4 if y ⋅ c = a and (y ⊕ 1) ⋅ c = b,
0 otherwise.

(D.1)

It is useful to compute the conditional on Y ,

PPienaarABC|Y (⋅ ⋅ ⋅|y) = {
1
2 ([000] + [011]) if y=0,
1
2 ([000] + [101]) if y=1.

(D.2)

This makes it evident that the distribution can be described as follows: if Y = 0, then A = 0 while B and C are
uniformly random and perfectly correlated, while if Y = 1, then B = 0 and A and C are uniformly random and
perfectly correlated.

Here, we will establish the incompatibility of Pienaar’s distribution with HLP’s causal structure #16 (re-
produced in Fig. 16 here) using the inflation technique. To do so, we use the inflation depicted in Fig. 18,
which we term the Russian dolls inflation. We will make use of the fact that {A1C1Y1}, {B2C2Y2} and {B2C1Y2}
are injectable sets, together with the fact that {A1C2Y1} is an expressible set.

We begin by demonstrating how the d-separation relations in the Russian dolls inflation imply that
{A1C2Y1} is expressible. First, we note that the set {A1B1C2Y1} is expressible because the d-separation rela-
tion A1 ⊥d C2 |B1Y1 implies that

PA1B1C2Y1 =
PA1B1Y1PC2B1Y1

PB1Y1
, (D.3)

and the sets {A1B1Y1}, {C2B1Y1}, and {B1Y1} are injectable. The expressibility of {A1C2Y1} then follows from
the expressibility of {A1B1C2Y1} and the fact that the distribution on the former can be obtained from the
distribution on the latter by marginalization,

PA1C2Y1 (acy) =∑
b
PA1B1C2Y1 (abcy). (D.4)

It follows that the distribution PA1C2Y1 in the inflation model associated to the Pienaar distribution can be
computed by first writing down the distributions on the relevant injectable sets,

PB2C2Y2 (bcy) = P
Pienaar
BCY (bcy),

PA1C1Y1 (acy) = P
Pienaar
ACY (acy),

PB2C1Y2 (bcy) = P
Pienaar
BCY (bcy),

(D.5)

and from Eq. (D.4) and (D.3), as well as the injectability of {A1B1Y1}, {C2B1Y1}, and {B1Y1}, we infer that

PA1C2Y1 (acy) =∑
b

PPienaarABY (aby)P
Pienaar
CBY (cby)

PPienaarBY (by)
. (D.6)
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We are now in a position to derive a contradiction. Our derivation will begin by setting Y2 = 0 and Y1 = 1.
It is therefore convenient to condition on Y1 and Y2 in the distributions of interest and set them equal to these
values, and to express these in terms of the conditioned Pienaar distribution via Eq. (D.5),

PB2C2|Y2 (bc|0) = P
Pienaar
BC|Y (bc|0)

PA1C1|Y1 (ac|1) = P
Pienaar
AC|Y (ac|1)

PB2C1|Y2 (bc|0) = P
Pienaar
BC|Y (bc|0)

(D.7)

and similarly from Eq. (D.6),

PA1C2|Y1 (ac|1) =∑
b

PPienaarAB|Y (ab|1)P
Pienaar
CB|Y (cb|1)

PPienaarB|Y (b|1)
. (D.8)

From these and Eq. (D.2), we infer

PB2C2|Y2 (⋅ ⋅ |0) =
1
2
([00] + [11]), (D.9)

PA1C1|Y1 (⋅ ⋅ |1) =
1
2
([00] + [11]), (D.10)

PB2C1|Y2 (⋅ ⋅ |0) =
1
2
([00] + [11]), (D.11)

PA1C2|Y1 (⋅ ⋅ |1) =
1
4
([00] + [01] + [10] + [11]). (D.12)

Henceforth, we leave the condition that Y2 = 0 and Y1 = 1 implicit. From Eq. (D.11), we have

With probability 1/2, B2 = 0 and C1 = 0. (D.13)

From Eq. (D.9), we have

If B2 = 0 then C2 = 0. (D.14)

From Eq. (D.10), we have

If C1 = 0 then A1 = 0. (D.15)

These three statements imply that

The probability that C2 = 0 and A1 = 0 is ≥ 1/2. (D.16)

However, Eq. (D.12) implies that the probability of C2 = 0 and A1 = 0 is only p = 1/4. We have therefore
arrived at a contradiction. This establishes the incompatibility of the Pienaar distribution with HLP’s causal
structure #16. Our reasoning is again a form of the Hardy-type arguments from Sec. 4.4.

D.2 Deriving a causal compatibility inequality for HLP’s causal structure #16

We can also turn the above argument into an inequality. Using the methods of Sec. 4.4, it is straightforward
to show that the assumption of a joint distribution on {A1B2C1Y1Y2} implies the inequality on marginals,

PB2C1Y1Y2 (0010) ≤ PB2C2Y1Y2 (0110) + PA1C1Y1Y2 (1010) + PA1C2Y1Y2 (0010). (D.17)

From the following four ancestral independences in the inflated causal structure,B2C1Y2 ⊥d Y1,B2C2Y2 ⊥d Y1,
A1C1Y1 ⊥d Y2, and A1C2Y1 ⊥d Y2, we infer, respectively, the following factorization conditions:
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PB2C1Y2Y1 = PB2C1Y2PY1 ,

PB2C2Y2Y1 = PB2C2Y2PY1 ,

PA1C1Y1Y2 = PA1C1Y1PY2 ,

PA1C2Y1Y2 = PA1C2Y1PY2 .

(D.18)

Substituting these into Eq. (D.17), we obtain:

PB2C1Y2 (000)PY1 (1) ≤ PB2C2Y2 (010)PY1 (1) + PA1C1Y1 (101)PY2 (0) + PA1C2Y1 (001)PY2 (0). (D.19)

This is a nontrivial causal compatibility inequality for the inflated causal structure. However, in this form, it
cannot be translated into one for the observed variables in the original causal structure: the sets {B2C1Y2},
{B2C2Y2} and {A1C1Y1} are injectable, and the singleton sets {Y1} and {Y2} are injectable (by the definition of
inflation), the set {A1C2Y1} ismerely expressible. Therefore,wemust substitute the expression forPA1C2Y1 given
by Eqs. (D.3, D.4) into Eq. (D.19), to obtain

PB2C1Y2 (000)PY1 (1) ≤ PB2C2Y2 (010)PY1 (1) + PA1C1Y1 (101)PY2 (0) +∑
b

PA1B1Y1 (0b1)PB1C2Y1 (0b1)
PB1Y1 (b1)

PY2 (0). (D.20)

This is also a nontrivial causal compatibility inequality for the inflated causal structure, but now it refers
exclusively to distributions on injectable sets. As such, we can directly translate it into a nontrivial causal
compatibility inequality for the original causal structure, namely,

PBCY (000)PY (1) ≤ PBCY (010)PY (1) + PACY (101)PY (0) +∑
b

PABY (0b1)PBCY (0b1)
PBY (b1)

PY (0). (D.21)

Dividing by PY (0)PY (1), and using the definition of conditional probabilities, this inequality can be expressed
in the form

PBC|Y (00|0) ≤ PBC|Y (01|0) + PAC|Y (10|1) +∑
b

PAB|Y (0b|1)PBC|Y (0b|1)
PB|Y (b|1)

. (D.22)

This inequality is strong enough to witness the incompatibility of Pienaar’s distribution Eq. (D.1) with HLP’s
causal structure #16.

D.3 Certifying that Henson-Lal-Pusey’s causal structures #15 and #20 are
“interesting”

Any distribution PABCY that is incompatible with HLP’s causal structure #16 (Fig. 16 here) is also incompatible
with HLP’s causal structures #15 (Fig. 15 here) and #20 (Fig. 17 here) because the causal models defined by
HLP’s causal structures #15 and #20 are included among the causal models defined by HLP’s causal structure
#16. Consequently, Eq. (D.22) is also a valid causal compatibility inequality for HLP’s causal structure #15 and
for HLP’s causal structure #20.

It follows that if one can find a distribution that exhibits all of the observable CI relations implied by
either of HLP’s causal structures #15 and #20, namely, C ⊥⊥ Y (per #15 and #16), A ⊥⊥ B |Y (per #15), and
A ⊥⊥ Y |B (per #20), andwhichmoreover is not compatible withHLP’s causal structure #16, then this proves—
in one go—that HLP’s causal structures #15, #16 and #20 are interesting. Any distribution PABCY with the
conditional37

PABC|Y (abc|y) := {
1
4 ([000] + [111] + [011] + [100]) if y=0,
1
4 ([000] + [111] + [010] + [101]) if y=1,

(D.23)

achieves this because it satisfies the required CI relations while also violating Eq. (D.22).

37 We take the definition of the conditional PABC|Y from the distribution PABCY as also implying PY (0) > 0 and PY (1) > 0.
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Appendix E. The copy lemma and non-Shannon type entropic
inequalities

The inflation technique may also be useful outside beyond causal inference. As we argue in the following,
inflation is secretly what underlies theCopy Lemma in the derivation of non-Shannon type entropic inequal-
ities [119, Chapter 15]. The following formulation of the Copy Lemma is the one of Kaced [120].

Lemma 12. Let A, B and C be random variables with joint distribution PABC . Then there exists a fourth random
variable A� and joint distribution PAA�BC such that:
1. PAB = PA�B,
2. A� ⊥⊥ AC | B.

The proof via inflation is as follows.

Proof. Fig. 20. Every joint distribution PABC is compatible with the causal structure of Fig. 19. This follows
from the fact that one may take X to be any sufficient statistic for the joint variable (A,C) given B, such as
X := (A,B,C). Next, we consider the inflation of Fig. 19 depicted in Fig. 20. The maximal injectable sets are
{A1B1C1} and {A2B1}. By Lemma 4, because PABC is assumed to be compatible with Fig. 19, it follows that the
family of marginals {PA1B1C1 ,PA2B1 }, where PA1B1C1 := PABC and PA2B1 := PAB, is compatible with the inflation
of Fig. 20. The resulting joint distribution PA1A2B1C1 has marginals PA1B1 = PA2B1 = PAB and satisfies the condi-
tional independence relation A2 ⊥⊥ A1C1 | B1, since A2 is d-separated from A1C1 by B1 in

While it is also not hard to write down the distribution constructed in the proof explicitly as PA1A2B1C1 :=
PA1B1C1PA2B1P

−1
B1 [119, Lemma 15.8], the fact that one can reinterpret it using the inflation technique is signifi-

cant. For one, all the non-Shannon type inequalities derived byDougherty et al. [121] are obtained by applying
some Shannon-type inequality to the distribution derived from the Copy Lemma. Our result shows, therefore,
that one can understand these non-Shannon type inequalities for a causal structure as arising fromShannon-
type inequalities applied to an inflated causal structure. We thus speculate that the inflation technique may
be a more general-purpose tool for deriving non-Shannon-type entropic inequalities. A natural direction for
future research is to explore whether more sophisticated applications of the inflation technique might result
in new examples of such inequalities.

Figure 19: A causal structure that is compatible with any distribution PABC .

Figure 20: An inflation of Fig. 19.
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Appendix F. Causal compatibility inequalities for the triangle
scenario in machine-readable format
Table 2 lists the fifty twonumerically irredundant polynomial inequalities resulting fromconsistentmarginals
of the Spiral inflation of Fig. 3. Stronger inequalities can be derived be considering larger inflations, such
as the Web inflation of Fig. 2. Each row in the table specifies the coefficient of the corresponding correlator
monomial. As noted previously, these inequalities also follow from the hypergraph transversals technique
per Sec. 4.4.

Table 2: A machine-readable and closed-under-symmetries version of the table in Sec. 4.3.

constant E[A] E[B] E[C] E[AB] E[AC] E[BC] E[ABC] E[A]E[B] E[A]E[C] E[B]E[C] E[A]E[BC] E[AC]E[B] E[AB]E[C] E[A]E[B]E[C]

1 0 0 0 -1 -1 0 0 0 0 1 0 0 0 0
1 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0
1 0 0 0 1 -1 0 0 0 0 -1 0 0 0 0
1 0 0 0 1 1 0 0 0 0 1 0 0 0 0
1 0 0 0 -1 0 -1 0 0 1 0 0 0 0 0
1 0 0 0 -1 0 1 0 0 -1 0 0 0 0 0
1 0 0 0 1 0 -1 0 0 -1 0 0 0 0 0
1 0 0 0 1 0 1 0 0 1 0 0 0 0 0
1 0 0 0 0 -1 -1 0 1 0 0 0 0 0 0
1 0 0 0 0 -1 1 0 -1 0 0 0 0 0 0
1 0 0 0 0 1 -1 0 -1 0 0 0 0 0 0
1 0 0 0 0 1 1 0 1 0 0 0 0 0 0
3 -1 -1 -1 2 2 2 1 1 1 1 -1 -1 -1 1
3 -1 -1 1 2 -2 -2 -1 1 -1 -1 1 1 1 -1
3 -1 1 -1 -2 2 -2 -1 -1 1 -1 1 1 1 -1
3 -1 1 1 -2 -2 2 1 -1 -1 1 -1 -1 -1 1
3 1 -1 -1 -2 -2 2 -1 -1 -1 1 1 1 1 -1
3 1 -1 1 -2 2 -2 1 -1 1 -1 -1 -1 -1 1
3 1 1 -1 2 -2 -2 1 1 -1 -1 -1 -1 -1 1
3 1 1 1 2 2 2 -1 1 1 1 1 1 1 -1
4 -2 0 0 -3 -2 -2 1 1 0 2 1 1 0 -1
4 -2 0 0 -3 2 2 -1 1 0 -2 -1 -1 0 1
4 -2 0 0 3 -2 2 -1 -1 0 -2 -1 -1 0 1
4 -2 0 0 3 2 -2 1 -1 0 2 1 1 0 -1
4 2 0 0 -3 -2 -2 -1 1 0 2 -1 -1 0 1
4 2 0 0 -3 2 2 1 1 0 -2 1 1 0 -1
4 2 0 0 3 -2 2 1 -1 0 -2 1 1 0 -1
4 2 0 0 3 2 -2 -1 -1 0 2 -1 -1 0 1
4 0 -2 0 -2 -2 -3 1 0 2 1 0 1 1 -1
4 0 -2 0 -2 2 3 -1 0 -2 -1 0 -1 -1 1
4 0 -2 0 2 -2 3 1 0 2 -1 0 1 1 -1
4 0 -2 0 2 2 -3 -1 0 -2 1 0 -1 -1 1
4 0 2 0 -2 -2 -3 -1 0 2 1 0 -1 -1 1
4 0 2 0 -2 2 3 1 0 -2 -1 0 1 1 -1
4 0 2 0 2 -2 3 -1 0 2 -1 0 -1 -1 1
4 0 2 0 2 2 -3 1 0 -2 1 0 1 1 -1
4 0 0 -2 -2 -3 -2 1 2 1 0 1 0 1 -1
4 0 0 -2 -2 3 2 1 2 -1 0 1 0 1 -1
4 0 0 -2 2 -3 2 -1 -2 1 0 -1 0 -1 1
4 0 0 -2 2 3 -2 -1 -2 -1 0 -1 0 -1 1
4 0 0 2 -2 -3 -2 -1 2 1 0 -1 0 -1 1
4 0 0 2 -2 3 2 -1 2 -1 0 -1 0 -1 1
4 0 0 2 2 -3 2 1 -2 1 0 1 0 1 -1
4 0 0 2 2 3 -2 1 -2 -1 0 1 0 1 -1
4 0 0 0 -2 -2 -2 -1 2 2 2 -1 -1 -1 0
4 0 0 0 -2 -2 -2 1 2 2 2 1 1 1 0
4 0 0 0 -2 2 2 -1 2 -2 -2 -1 -1 -1 0
4 0 0 0 -2 2 2 1 2 -2 -2 1 1 1 0
4 0 0 0 2 -2 2 -1 -2 2 -2 -1 -1 -1 0
4 0 0 0 2 -2 2 1 -2 2 -2 1 1 1 0
4 0 0 0 2 2 -2 -1 -2 -2 2 -1 -1 -1 0
4 0 0 0 2 2 -2 1 -2 -2 2 1 1 1 0
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Appendix G. Recovering the Bell inequalities from the inflation
technique

To further illustrate the power of the inflation technique, we nowdemonstrate how to recover all Bell inequal-
ities [18, 20, 51] via our method. To keep things simple we only discuss the case of a bipartite Bell scenario
with two values for both “settings” and “outcome” variables, but the case of more parties and/or more values
per settings or outcome variable is totally analogous.

The causal structure associated to the Bell [17, 18, 20, 51] scenario [22 (Fig. E#2), 19 (Fig. 19), 33 (Fig. 1),
23 (Fig. 1), 52 (Fig. 2b), 53 (Fig. 2)] is depicted in Fig. 7. The observed variables areA, B, X, Y , and Λ is the latent
common cause of A and B. One traditionally works with the conditional distribution PAB|XY , to be understood
as an array of distributions indexed by the possible values ofX andY , instead ofwith the original distribution
PABXY , which is what we do.

In the inflation of Fig. 8, the maximal ai-expressible sets are

{A1B1X1X2Y1Y2},

{A1B2X1X2Y2Y2},

{A2B1X1X2Y2Y2},

{A2B2X1X2Y2Y2}, (G.1)

where notably every maximal ai-expressible set contains all “settings” variables X1 to Y2. The marginal dis-
tributions on these ai-expressible sets are then specified by the original observed distribution via

∀abx1x2y1y2 :

{{{{{{{{{
{{{{{{{{{
{

PA1B1X1X2Y1Y2 (abx1x2y1y2) = PABXY (abx1y1)PX(x2)PY (y2),
PA1B2X1X2Y1Y2 (abx1x2y1y2) = PABXY (abx1y2)PX(x2)PY (y1),
PA2B1X1X2Y1Y2 (abx1x2y1y2) = PABXY (abx2y1)PX(x1)PY (y2),
PA2B2X1X2Y1Y2 (abx1x2y1y2) = PABXY (abx2y2)PX(x1)PY (y1),

PX1X2Y1Y2 (x1x2y1y2) = PX(x1)PX(x2)PY (y1)PY (y2).

(G.2)

By dividing each of the first four equations by the fifth, we obtain

∀abx1x2y1y2 :

{{{{{{
{{{{{{
{

PA1B1|X1X2Y1Y2 (ab|x1x2y1y2) = PAB|XY (ab|x1y1),
PA1B2|X1X2Y1Y2 (ab|x1x2y1y2) = PAB|XY (ab|x1y2),
PA2B1|X1X2Y1Y2 (ab|x1x2y1y2) = PAB|XY (ab|x2y1),
PA2B2|X1X2Y1Y2 (ab|x1x2y1y2) = PAB|XY (ab|x2y2).

(G.3)

The existence of a joint distribution of all six variables—i. e. the existence of a solution to the marginal
problem—implies in particular

∀abx1x2y1y2 : PA1B1|X1X2Y1Y2 (ab|x1x2y1y2) =∑a� ,b� PA1A2B1B2|X1X2Y1Y2 (aa
�bb�|x1x2y1y2), (G.4)

and similarly for the other three conditional distributions under consideration. For compatibility with the
Bell scenario, Eq. (G.3) therefore implies that the original distribution must satisfy in particular

∀ab :

{{{{{{
{{{{{{
{

PAB|XY (ab|00) = ∑a� ,b� PA1A2B1B2|X1X2Y1Y2 (aa
�bb�|0101)

PAB|XY (ab|10) = ∑a� ,b� PA1A2B1B2|X1X2Y1Y2 (a
�abb�|0101)

PAB|XY (ab|01) = ∑a� ,b� PA1A2B1B2|X1X2Y1Y2 (aa
�b�b|0101)

PAB|XY (ab|11) = ∑a� ,b� PA1A2B1B2|X1X2Y1Y2 (a
�ab�b|0101)

(G.5)



E. Wolfe et al., The Inflation Technique for Causal Inference with Latent Variables | 47

The possibility to write the conditional probabilities in the Bell scenario in this form is equivalent to the
existence of a latent variable model, as noted in Fine’s theorem [122]. Thus, the existence of a solution to our
marginal problem implies the existence of a latent variable model for the original distribution; the converse
follows from our Lemma 4. Hence the inflation of Fig. 8 provides necessary and sufficient conditions for the
compatibility of the original distribution with the Bell scenario.

Moreover, it is possible to describe themarginal polytope over the ai-expressible sets of Eq. (G.1), resulting
in a concrete correspondence between tight Bell inequalities and the facets of our marginal polytope. This
is based on the observation that the “settings” variables X1 to Y2 occur in all four contexts. The marginal
polytope lives in ⊕4i=1ℝ

26 = ⊕4i=1(ℝ
2)⊗6, where each tensor factor has basis vectors corresponding to the two

possible outcomes of each variable, and the direct summands enumerate the four contexts. The polytope is
given as the convex hull of the points

(eA1
⊗ eB1 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 )

⊕ (eA1
⊗ eB2 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 )

⊕ (eA2
⊗ eB1 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 )

⊕ (eA2
⊗ eB2 ⊗ eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 ),

where all six variables range over their possible values. Since the last four tensor factors occur in every direct
summand in exactly the same way, we can also write such a polytope vertex as

[(eA1
⊗ eB1 ) ⊕ (eA1

⊗ eB2 ) ⊕ (eA2
⊗ eB1 ) ⊕ (eA2

⊗ eB2 )] ⊗ [eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2]

in ( ⊕4i=1 ℝ
22) ⊗ℝ2

4
. Now since the first four variables in the first tensor factor vary completely independently

of the latter four variables in the second tensor factor, the resulting polytope will be precisely the tensor
product [123, 124] of two polytopes: first, the convex hull of all points of the form

(eA1
⊗ eB1 ) ⊕ (eA1

⊗ eB2 ) ⊕ (eA2
⊗ eB1 ) ⊕ (eA2

⊗ eB2 ),

and second the convex hull of all eX1 ⊗ eX2 ⊗ eY1 ⊗ eY2 . While the latter polytope is just the standard probability
simplex in ℝ8, the former polytope is precisely the “local polytope” or “Bell polytope” that is traditionally
used in the context of Bell scenarios [20, Sec. II.B]. This implies that the facets of our marginal polytope are
precisely the pairs consisting of a facet of the Bell polytope and a facet of the simplex, the latter of which are
only the nonnegativity of probability inequalities like PX1X2Y1Y2 (0101) ≥ 0. For example, in this way we obtain
one version of the CHSH inequality [18] as a facet of our marginal polytope,

∑
a,b,x,y
(−1)a+b+xyPAxByX1X2Y1Y2 (ab0101) ≤ 2PX1X2Y1Y2 (0101).

This translates into the standard form of the CHSH inequality as follows. Upon using Eq. (G.3), the inequality
becomes

∑
a,b
(−1)a+b(PABXY (ab00)PX(1)PY (1) + PABXY (ab01)PX(1)PY (0)

+ PABXY (ab10)PX(0)PY (1) − PABXY (ab11)PX(0)PY (0)) ≤ PX(0)PX(1)PY (0)PY (1),

so that dividing by the right-hand side results in one of the conventional forms of the CHSH inequality,

∑
a,b
(−1)a+b (PAB|XY (ab|00) + PAB|XY (ab|01) + PAB|XY (ab|10) − PAB|XY (ab|11)) ≤ 2.

In conclusion, the inflation technique is powerful enough to get a precise characterization of all distributions
compatible with the Bell causal structure, and our technique for generating polynomial inequalities through
solving the marginal constraint problem recovers all Bell inequalities.
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Some Bell inequalities may also be derived using the hypergraph transversals technique discussed in
Sec. 4.4. For example, the inequality

PA1B1X1Y1 (0000)PX2 (1)PY2 (1)

≤ PA1B2X1Y2 (0001)PX2 (1)PY1 (0) + PA2B1X2Y1 (0010)PX1 (0)PY2 (1) + PA2B2X2Y2 (1111)PX1 (0)PY1 (0) (G.6)

is the inflationary precursor of the Bell inequality

PAB|XY (00|00) ≤ PAB|XY (00|01) + PAB|XY (00|10) + PAB|XY (11|11), (G.7)

as Eq. (G.7) is obtained from Eq. (G.6) by dividing both sides by PX1Y1X2Y2 (0011) = PX1 (0)PY2 (0)PX2 (1)PY2 (1) and
then dropping copy indices. On the other hand, Eq. (G.6) follows directly from factorization relations on ai-
expressible sets and the tautology

[A1=0,B1=0,X1=0,Y1=0,X2=1,Y2=1] â⇒
[A1=0,B2=0,X1=0,Y1=0,X2=1,Y2=1]
∨ [A2=0,B1=0,X1=0,Y1=0,X2=1,Y2=1]
∨ [A2=1,B2=1,X1=0,Y1=0,X2=1,Y2=1]

(G.8)

which corresponds to the original “Hardy paradox” [49] in our notation.
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