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Abstract: The E-value is defined as the minimum strength of association on the risk ratio scale that an unmea-
sured confounder would have to have with both the exposure and the outcome, conditional on the measured
covariates, to explain away the observed exposure-outcome association. We have elsewhere proposed that
the reporting of E-values for estimates and for the limit of the confidence interval closest to the null become
routine whenever causal effects are of interest. A number of questions have arisen about the use of E-value
including questions concerning the interpretation of the relevant confounding association parameters, the
nature of the transformation from the risk ratio scale to the E-value scale, inference for and using E-values,
and the relation to Rosenbaum’s notion of design sensitivity. Here we bring these various questions together
and provide responses that we hope will assist in the interpretation of E-values and will further encourage
their use.

Keywords: Bias Analysis, Causal Inference, Covariate Adjustment, Design Sensitivity, Sensitivity Analysis,
Treatment Effects, Unmeasured Confounding

1 Introduction

In 2017, we introduced the E-value metric to help assess sensitivity of results to potential unmeasured con-
founding [1]. The E-value was defined as the minimum strength of association on the risk ratio scale that
an unmeasured confounder would have to have with both the exposure and the outcome, conditional on
the measured covariates, to explain away the observed exposure-outcome association [1]. Formulas for com-
puting E-values or approximate E-values in a variety of settings were provided. Software and also an online
calculator for E-values have since been provided [2]. Since its introduction a number of, often more technical,
questions have been posed concerning the use and interpretation of E-values. The purpose of this paper is to
document and address some of the more common questions that have arisen.

2 Calculation of E-values and interpretation of the parameters

The formal derivation of the E-value relies on two parameters [3]. Let E denote an exposure of interest, D the
outcome, C the measured covariates, and U one or more unmeasured confounders. The observed exposure-
outcome association on the risk ratio scale, conditional on covariates C, is given by

_ P(D=1E=1,)
°bs = p(p =1|E = 0,¢)
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The association, conditional on C, but adjusted also for U would be:

Y. P(D=1E =1,¢,u)P(ulc)
RRie = Y PD=1E=0
«P(D =1|E = 0,c,u)P(ulc)

If covariates (C,U) suffice to control for confounding of the effect of E on D, then the latter expression RR;,e
can be interpreted as the causal risk ratio of E on D conditional on C. More formally, let D, denote the coun-
terfactual outcome if E is set to e, and let X || Y | Z be used to denote that X is independent of Y given Z. The
effect of E on D is said to be unconfounded conditional on Cif D, | E | C for all e. We have that if the effect of
E on D is unconfounded given (C,U) then

P(Dylc) Y, P(D=1|E =1,c,u)P(ulc)
P(Dylc) ¥, P(D =1|E = 0,c,u)P(ulc)

. Y. P(D=1]E=1,c,u)P(ulc)
and hence we denote the expression S B DIEoc Pl 25 RRpye-

Consider now the following two sensitivity analysis parameters [1, 3]:

P(D=1|E =1,c, P(D =1|E = 0,c,
RRUDzmax{maX“ ( | c,u) max,P( | c u)}

min,P(D = 1|E = 1,c,u)’ min,P(D = 1|E = 0, ¢, u)
P(U =ulE =1,0)

RR, =
EU = M E = 0,0)

Essentially, RRyp is the maximum effect that U can have on D, conditional on C = ¢, comparing any two
categories of U, for either the exposed or unexposed; and RRgy; is the maximum risk ratio relating the exposure
to any particular level of U, conditional on C = c. We showed that [3]:

RRops _RRyp x RRgy
RRtrue - RRUD + RREU -1

so that % was the maximum bias (comparing the ratio of the observed association adjusted for C,
to the true association adjusted also for U) that could be generated by such an unmeasured confounder. We
then further derived that for the unmeasured confounder(s) to shift the observed risk ratio to the null of 1,
if one wanted both RRyp, and RRgy to be as small as possible, then the minimum they could both be (which

was what we called the E-value) was [1, 3]:

E-value := min RRypxRR
RRyp.RRyy: g U0 e 1 =

= RRobs + \/ RRobs (RRobs -1

The E-value is thus straightforward to calculate from the observed risk ratio. We had noted previously that
what constitutes a large E-value is context dependent. It is relative to the outcome, to the exposure, and to
the measured covariates for which adjustment has been made. For example, an E-value of 2 when all-cause
mortality is the outcome may provide more evidence for robustness to confounding than would an E-value
of 2 when the outcome is suicide, because risk ratios of 2 are much less common for all-cause mortality in
empirical analyses than they are for suicide, for which there are a variety of known risk factors with risk ratios
of 5- or even 10-fold. The actual evidence for causality is dependent on the context including the nature of
the exposure, the outcome, the measured covariates, and other potential sources of bias. However, within a
given context, the E-value, properly interpreted, can help assess the robustness of an estimate to unmeasured
confounding, and this consideration is relevant in assessing the overall evidence for causality.

Questions have been raised with regard to the interpretation of the E-value for a continuous exposure.
In that context, depending on the magnitude of the exposure change examined, the magnitude of the cor-
responding risk ratio will differ and thus the E-value will differ as well. One will often be able to make the
E-value larger simply by specifying a larger change in the two exposure levels being compared. However,
that the E-value may get larger for a larger change in the exposure levels being compared makes sense, both

Ry, max(RRyp, RRgy)
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because it is more plausible that a large exposure change has a causal effect (a difference in body weights
comparing 300 vs. 80 pounds is more likely to have a causal effect on various outcomes than a difference in
body weights of 170 vs. 169 pounds), but also because it is more likely, for a larger exposure change, that the
two exposure groups differ more on the unmeasured confounder(s) U, so a larger E-value is needed to indicate
genuine evidence of robustness.

Questions have come up concerning the consequences of having a potentially continuous or many-valued
unmeasured confounder U. In such cases, because many pairwise comparisons of categories of U are possible,
it may be more plausible than it is with a binary U that the maxima of these numerous pairwise comparisons
produce RRyp and RRgy; exceeding the E-value. Hence, it might be the case that a large E-value still in fact does
not contribute all that much evidence for a causal effect. This is a reasonable concern. Several interpretative
points here, however, are important.

First, the confounding associations RRyp and RRgy are both conditional on the measured covariates C
so that the confounding associations RRy, and RRgy; reflect residual confounding not captured by the mea-
sured covariates C. It is the association between U and both D and E, independent of C, that is relevant here.
We have, in our paper, referred to these conditional associations as the unmeasured confounding “above and
beyond the measured confounders.” [1] In many cases, control for pre-exposure covariates C will reduce the
amount of bias due to confounding. For example, if income is an unmeasured variable, but control has been
made in the covariates C for education, occupation, and home-ownership, then income may itself, condi-
tional on these other socio-economic markers, not generate all that much bias. There is an entire graphical
calculus on when covariate conditioning suffices to eliminate bias and when conditioning on a covariate can
introduce bias that would have been otherwise absent [4]. Within that graphical models literature, two now-
classic examples of when conditioning on a pre-exposure covariate can introduce additional bias include the
conditioning on a pre-exposure variable that is a “collider”, a common effect of two variables, one of which is
associated with the exposure and the other of which is associated with the outcome [5-7]. Another example
when conditioning on a baseline covariate can increase bias is when there is an unmeasured common cause
U of E and D, then conditioning on a covariate C that is a cause of only the exposure but not the outcome
except through the exposure, i. e. for an instrument of the effect of the exposure on the outcome, can likewise
increase bias, though researchers will often not be certain if a particular covariate is in fact an instrument
[8-10]. While conditioning on such a covariate C, i.e. an instrument, may not increase the sensitivity pa-
rameter, RRyyp, it is the case that conditioning on an instrument can increase the sensitivity parameter RRy.
One must thus be careful with regard to believing that controlling for measured covariates always necessarily
reduces confounding.

Second, the inequality holds for any U and thus the results are relevant for any set of covariates U such
that the effect of E on D is unconfounded conditional on (C,U). One could thus define the parameters RRyp
and RRgy for each possible U such that (C,U) suffice to control for confounding and then take the minimum

over U of the resulting bias BRupxRRey . One would then have
RRyp+RRpy-1

RR s < min { RRyp x RRgy }
RR,,  UPECO T RR )+ RRyy — 1

The E-value calculated as RR,,s + vRR,,s(RR s — 1) is then the minimum strength of association on the risk
ratio scale that any and every unmeasured confounder, that suffices along with C to control for confounding,
would have to have with both the exposure and the outcome, conditional on the measured covariates, to
explain away the observed exposure-outcome association.

Third, and perhaps most importantly when combined with the second observation above, the reality of
our estimates and attempts at confounding control are at best approximate. Often we would be content, and
indeed very pleased, if our estimates were only a few percent away from the truth. Let S denote the set of all
possible covariates U such that adjustment for (C,U) would bring the observed association between E and D,
conditional on C and adjusted for U, within a factor of say 1.03 (i. e. 3 %) of the actual causal effect i. e.

Y. P(D=1E=1,c,u)P(ulc)

B 1 ¥ P(D=1]E=0,c,u)P(ulc)
S=1U 103 = P(DyJc)
P(Dylc)

<103
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One could then define the parameters RRyp and RRgy; for each possible U in the set S such that (C,U) would
suffice to bring the bias within 3 % of the causal effect. One could then further take the minimum over U of

: .. RRypxRRgy
the resulting bias Ryt RRyy 1 One would then have

RR
obs < (1.03) x mingg {

RRyp x RRyy }
P(D;lc)/P(Dolc) —

Once we allow for up to 3% bias say, a considerably coarsened version of the relevant unmeasured con-
founders may well suffice. For such coarsened versions of the unmeasured confounders, the relevant con-
founding association parameters RRyp and RRg; may be considerably smaller for the coarsened unmeasured
confounder than for the original underlying unmeasured confounder. Once we further take the minimum over
all possible unmeasured confounders and all possible coarsenings that would result in at most 3 % bias, the
confounding association parameters RRyp and RRgy will be yet smaller still.

The E-value calculated as RR,,s + VRR,,5(RR,}s — 1) could then be interpreted as the minimum strength
of association on the risk ratio scale that any and every unmeasured confounder or coarsening thereof, that
suffices along with the observed covariates to bring the observed association within 3 % of the true causal
effect, would have to have with both the exposure and the outcome, conditional on the measured covariates,
to explain away the observed exposure-outcome association. Thus, even if an unmeasured confounder that
completely eliminated bias had very large confounding association parameters RRyp and RRy, the E-value
may arguably still be a useful metric for robustness to unmeasured confounding as it can be applied, in an
approximate sense, as above, to coarsenings and approximate confounding control as well. We give a worked
example of this in the Appendix A. Cochran [11] also noted that in many settings a coarsening to five or six
strata is often sufficient to remove at least 90 % of the bias due to that covariate. Informally then, if one is
content with being within 10 % of the unconfounded estimate, a consideration of the sensitivity analysis
parameters when comparing e. g. the top to the bottom quintile of the unmeasured confounder may be a
reasonable way to think about the magnitude of the confounding parameters for a continuous unmeasured
covariate.

A somewhat related issue that pertains to the definition of the confounding parameters concerns the pos-
sibility of multiple unmeasured confounders being needed to eliminate confounding. The bias analysis and
E-value calculations above are in fact applicable to the setting of multiple unmeasured confounders [3]. The
confounding parameters RRyy, is then simply interpreted as the maximum effect that U can have on D, condi-
tional on C = ¢, comparing any two categories of the entire vector of unmeasured confounders U, for either the
exposed or unexposed; and RRgy, is the maximum risk ratio relating the exposure to any particular level of the
entire vector U, conditional on C = c. In such settings large values of RRyp, and RRgy may not be particularly
implausible. While an E-value of 5, say, for all-cause mortality as the outcome, may seem, when considering
a single confounder, to require very substantial confounding associations and it is perhaps unlikely a single
unmeasured confounder could increase the probability of the outcome by 5-fold conditional on the measured
covariates, an increase of that magnitude may not be quite as implausible if one is considering a whole group
of potential unmeasured confounders. The effect comparing the most favorable values of a set of confounders
U to the least favorable values of that set U might plausibly increase the probability of the outcome by 5-fold,
perhaps even conditional on the measured covariates. For example, if the unmeasured confounders were age,
income, baseline health, and country, then a risk ratio of 5 for all-cause mortality might be quite plausible
comparing someone young, rich, in excellent health, and in a country with good safety and medical care, ver-
sus someone who is old, poor, exceedingly frail, and in a country with poor medical care and in which civil
war has begun. However if there are in fact multiple important unmeasured confounders, one should perhaps
question whether the data available are in fact adequate to get a reasonable estimate of the causal effect at all.
Ifit is known in advance that there are not just one, but numerous known unmeasured confounders, strongly
associated with the outcome and exposure and independent of the measured covariates, then arguably this
is not a good study setting in which to attempt to draw conclusions. If it is thought plausible that a 5-fold
increase in the probability of the outcome could be generated by the unmeasured confounders conditional
on the measured covariates, then it is perhaps time to leave that study data alone and pursue other more
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adequate data sources. A large E-value can only contribute strong evidence for a true causal effect if the set
of measured covariates adjusted for plausibly controls for much of the confounding. Said another way, the
design of the study, and the collection of data on measured and known confounders, is essential in whether
an estimate is plausible or not.

Lastly, it is to be remembered that the E-value is conservative insofar as, if the parameters RRyp and
RRgy are in fact as large as the E-value, then it is possible to construct scenarios in which an unmeasured
confounder U with those parameters would suffice to bring the observed association down to the null [3].
However, there are also many other scenarios in which an unmeasured confounder has confounding param-
eters RRyp and RRgy that are equal to the E-value and yet the unmeasured confounder would not suffice to
reduce the observed association to the null. The inequality for the maximum bias ﬁﬁzﬁz < % isan
inequality, not an equality. The inequality is sharp in that it is always possible to construct a variable U with
those confounding associations that attains the bound, but, with an actual unmeasured confounder, the bias
will often be less. This is especially the case when, for example, the unmeasured confounder is rare in both
exposure groups [1, 3]. The E-value essentially assumes that the distribution of U is as unfavorable as pos-
sible. Indeed when it is known in advance that the unmeasured confounder is rare, this is one scenario in
which the E-value calculation is perhaps of less use, and is perhaps to be avoided, as it will, in that setting,
be exceedingly conservative.

3 The E-value as a transformation of the estimate and confidence
interval

In our paper, we recommend reporting the E-value for the estimate and for the limit of the confidence in-
terval closest to the null. The former E-value reports how much unmeasured confounding would be needed
to shift the estimate itself (one’s best guess given the data) to the null. The latter E-value is perhaps a more
adequate measure related to the actual strength of the evidence for an effect, since a large E-value for the
limit of the confidence closest to the null suggests that even allowing for uncertainty in the estimation of the
observed association, the entire range of plausible values for the estimate are all relatively robust to potential
unmeasured confounding. We will return more explicitly to issues of inference for and with the E-value in
the following section. However, with regard to our recommended practices of reporting the E-value for the
estimate and for the limit of the confidence interval closest to the null, another question that has sometimes
arisen concerns the E-value simply being a transformation of the estimate and confidence interval itself and
thus not really providing any additional information beyond that estimate and confidence interval.

While it certainly is the case that the E-value for the estimate is just a transformation of the observed risk
ratio, and the E-value for the limit of the confidence interval closest to the null is just a transformation of that
limit, we still believe the reporting of these metrics is useful for interpretative purposes. The E-value gives the
interpretation of the estimate and confidence interval with respect to the minimum strength of confounding
associations that would be needed to explain away the estimate. It is a more intuitive assessment after the
transformation to the confounding association scale, and one which we believe makes it easier to evaluate
the robustness of results to potential unmeasured confounding. Most people cannot simply compute E-values
in their head, nor necessarily have a clear sense as to how much confounding would be needed to explain
away an estimate of a given magnitude. While the E-value, simply taken as a number, conveys nothing that
is not already there in the estimate itself, we think the reporting of the E-value may assist substantially in the
actual practice of science, in interpretation, and in the assessment of the robustness of conclusions.

As an analogy, in many settings, the p-value in fact conveys no additional information beyond the es-
timate and the confidence interval and can be derived from it [12]. While the use of the p-value has been at
times controversial, it arguably is still a valuable measure of evidence for an association when properly inter-
preted as a continuous metric (rather than say as being dichotomized at the 0.05 level). While the p-value, as
a number, likewise often does not convey any information that is not already there in the confidence interval,
it can still be helpful for the practical purposes of trying to understand the strength of the evidence [13-15].
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Most people cannot simply automatically compute a p-value in their head when given the estimate and confi-
dence interval. The scale on which something is reported does make a difference in trying to understand and
interpret, and this is the case with the p-value [14, 15]. As another example, instead of reporting risk ratios, we
could report the hundredth root of the risk ratios that were obtained so that a risk ratio of 4 was reported as
1.014 and a risk ratio of 1.6 as 1.0047. As numbers, the information conveyed in these two forms of reporting is
exactly the same, but the interpretation of the latter is arguably not very intuitive, nor as useful as the former;
and again, most people cannot simply do the conversion in their head.

It is similar with the E-value. The proposed E-value calculations, as numbers, do not provide additional
information beyond what is already present in the estimate and limit of the confidence interval closest to
the null. However, the transformation of these estimates, carried out by the E-value computation, provides
the appropriate scale on which to interpret robustness to confounding. Most people again cannot carry out
such computations in their head and will thus have more difficulty in interpreting robustness to potential
unmeasured confounding when using the untransformed numbers. What is the E-value for a lower limit of
the confidence interval which is 1.12? How much confounding would at the minimum be needed to bring such
a risk ratio to the null? Again, without going through the computation it is not entirely easy to see or guess.
In this case we obtain an E-value of nearly 1.5.

We believe the E-value computations, if routinely carried out are likely to affect interpretative practices
with regard to robustness to unmeasured confounding. Consider two hypothetical estimates of a causal effect
from two different studies that have adjusted for similar, and all known, confounders: one study obtains an
estimate as RR = 1.18 (95 % CI: 1.04, 1.33) and the other as RR = 1.18 (95 % CI: 1.12, 1.24). In our current set of
practices, we believe, all other things being equal, the evidence for a causal effect in these two studies would
be interpreted in a relatively similar manner. Both obtained similar effect sizes; both had confidence intervals
somewhat bounded away from the null so that it seemed unlikely that it was simply a matter of “p-hacking”
to get the confidence interval just above 1; the p-value in the latter study is smaller, but both are relatively
extreme. Current practices for both studies would probably suggest evidence for association, with the caveat
that association is not causation and that there may be unmeasured confounding. However, the types of
confounders that would alter inference in these two studies are quite different in strength. The E-value for
the confidence interval of the former study is 1.24 and for the latter it is 1.49. While we routinely see risk ratios
of 1.24 in the research literature, those of a magnitude of 1.5 are somewhat rarer, and to have a risk ratio of
magnitude 1.5 with both the outcome and the exposure, conditional on the measured covariates, rarer still. We
believe if the E-values for the lower limit of the confidence intervals for these two studies were reported, along
with the estimates and confidence intervals themselves, the robustness to potential unmeasured confounding
would be more appropriately evaluated, discussed, and assessed. And this is not simply a matter of also
reporting the p-value. We have given elsewhere an example of two studies, one with a more extreme p-value,
but the other having the more extreme E-value for the confidence interval [1]. So while our proposed reporting
practices for the E-value are indeed just a transformation of the estimate and the limit of the confidence
interval closest to the null, we believe this will prove helpful in interpretation and will improve assessments
of robustness.

4 Inference for and using E-values

As noted above, we recommend reporting the E-value for the estimate and for the limit of the confidence
interval closest to the null (provided the confidence interval excludes the null; otherwise the E-value for the
confidence interval is defined as simply 1) [1]. Questions have arisen as to whether it might be good to provide
a confidence interval for the E-value itself. Note that our recommendation is to provide an E-value for the
limit of the confidence interval closest to the null; it is not to provide a confidence interval for the E-value
itself. The distinction is subtle, but important, and concerns the goal of inference. Our perspective is that, in
settings in which the E-value may be of use, the goal of inference is the causal effect itself of the exposure
on the outcome. The E-value is a tool, not the goal, of inference. The E-value is a tool, a tool to assess the
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robustness of one’s conclusions to potential unmeasured confounding when trying to draw inferences about
causal effects. The goal and object of inference does not concern the E-value itself, but rather the causal effect.
The distinction between the E-value for the confidence interval versus the confidence interval for the E-
value becomes clearer when we think about the type of inferential statements one is able to make in repeated
sampling. Suppose one calculated a 95 % confidence interval for the E-value for the confounded association.
In that case, one could make statements along the lines of “Across repeated samples, at least 95 % of the time,
the minimum strength of association on the risk ratio scale that an unmeasured confounder would have to
have with both the exposure and the outcome, conditional on the measured covariates, to explain away the ac-
tual confounded exposure-outcome association will lie in the confidence interval provided.” Such statements
may be of some interest, but they are statements concerning, over repeated samples, minimum unmeasured
confounding associations, rather than statements directly about the causal effect itself. Suppose instead of
calculating a confidence interval for the E-value, one alternatively, as we advocate, calculated the E-value for
the limit of the confidence interval closest to the null and did this across samples and settings. One could then
make statements along the following lines: “Across repeated samples, at least 95 % of the time it is the case
that: if the actual confounding parameters RRyy and RRgy are both less than the E-value for the confidence
interval that was calculated, then the association adjusted by the unmeasured confounder(s) will be in the
same direction as the observed association.”® This is a statement more directly about the presence of a true
causal effect and for this reason we believe that in most settings it is the type of statement that is of interest.
It makes the causal effect, not the E-value, the target of inference. See the Appendix B for greater formality.
Again, as above, one could in principle obtain a confidence interval for the E-value for the estimate,
perhaps by bootstrapping or by the delta method. It is not difficult to derive an asymptotic standard error using
the delta method for the E-value of the estimate, when that E-value is computed by RR s + VRRps(RRyps — 1)-
Typically, estimation and inference for risk ratios are carried out using symmetric confidence intervals around
B = log(RR,;). Suppose we have an estimate B of B with estimated standard error &, then the E-value for the

estimate is eﬁ + \/ e/?(e/? - 1) and its standard error is, by the delta method, & {eﬁ + 2l } and from there one

2yeb(ef-1)

could obtain an asymptotic 95 % confidence interval for the E-value as b+ \ eb(ef - 1)£1.965 {eﬁ + \7% } .
2 (eF-1)

However, as above, in most contexts it will not be E-value itself, but rather the causal effect, that is the target
of inference.

5 Relation to Rosenbaum’s design sensitivity

Questions have also arisen with respect to the relation of the E-value to what Paul Rosenbaum calls design
sensitivity [16]. The two concepts are related but also have a number of important differences. The sensitiv-
ity analysis parameter, I', in Rosenbaum’s design sensitivity is the maximum ratio by which two units with
identical covariates C may differ in their odds of receiving the exposure. Under randomization conditional
on C, two units with the same covariates would not differ at all in their odds of exposure and thus we would
haveT = 1. If however there were an unmeasured covariate U that affected the odds of exposure, then we may
have I > 1. Rosenbaum discusses evaluating how large the parameter would need to be for the results to be
sensitive e. g. for the P-value to rise above 0.05. This is in some ways analogous to the proposed E-value for
the confidence interval, but with a different parameterization.

With regard to design sensitivity specifically, for a given population, and a given design, and a proposed
method of analysis, the design sensitivity is how large the sensitivity analysis parameter, I', would have to be
in large samples to change the conclusion. What is similar with design sensitivity and the E-value is that both

1 Or more generally one could make statements of the form “Across repeated samples, at least 95 % of the time it is the case that:
if the actual confounding parameters RRyy and RRgy are such that the bias factor generated by them is less than that given by
having RRyy and RRgy equal to the E-value for the confidence interval that was calculated, then the association adjusted by the
unmeasured confounder(s) will be in the same direction as the observed association.”
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concern the amount of unmeasured confounding that would be required to alter conclusions or to explain
away an observed association as to not being due to a true causal effect of the exposure on the outcome.

However, there are several differences between the design sensitivity and the E-value. First, different
associations are used to characterize unmeasured confounding in the two approaches. In Rosenbaum’s de-
sign sensitivity the strength of the unmeasured confounding relates to how much an unmeasured covariate
might increase the odds of exposure. With the E-value, the sensitivity analysis parameters are the associa-
tions relating the exposure to the unmeasured confounder, and also relating the unmeasured confounder to
the outcome. Rosenbaum’s design sensitivity does not make explicit reference to the effect of the unmeasured
confounder on the outcome. In further work Rosenbaum and Silber [17] propose what they call an amplifi-
cation of the sensitivity analysis that re-expresses the sensitivity analysis parameter I' in terms of effects of
an unmeasured confounder on the exposure and outcome. However, it does so under a particular model for
the effect of the confounder on the outcome. In contrast, the sensitivity analysis parameters that are used in
the E-value, RRyp and RRgy, do not presuppose a model for the effect of the unmeasured confounder on the
outcome, nor for the relation between the exposure and the unmeasured confounder. The sensitivity analysis
parameters RRyp and RRgy are defined non-parametrically, as above, using maximums.

A second difference between the approaches is that Rosenbaum’s design sensitivity was developed to
evaluate the sharp null hypothesis of no causal effect for any individual. The E-value can be used to assess
the strength of unmeasured confounding that is needed to move the estimate to the null of no average causal
effect; but the E-value can also be used to assess the strength of unmeasured confounding that is needed to
move the estimate of the average causal effect to any other value of the causal effect as well, for example to
a scientifically meaningful threshold for which a causal effect of lesser magnitude would simply not be of
substantive interest [1, 3].

A third difference between the approaches is that for the design sensitivity Rosenbaum proposes that the
sensitivity parameter that would explain away the observed association be assessed as the sample size tends
to infinity, whereas our proposal is that the E-value be calculated for the actual sample. Rosenbaum’s design
sensitivity is intended to be a property of the design, not the sample size. Using the design sensitivity, one can
compare different designs for large sample sizes to determine which designs may be more robust to potential
unmeasured confounding. Our proposed approach using E-values is calculated with the actual data and es-
timates. As above, we propose calculating E-values for both the estimate and for the limit of the confidence
interval closest to the null [1]. The E-value for the limit of the confidence interval closest to the null will of
course vary across samples and will vary by sample size. There is also an E-value for the actual confounded
association between exposure and the outcome conditional on C i. e. the risk ratio one would obtain in an
infinite sample size relating the exposure and the outcome, conditional on the measured covariates, but not
adjusting for unmeasured covariates U. That E-value for the actual confounded risk in an infinite sample is
more closely analogous to Rosenbaum’s design sensitivity. It is also what would be the target of inference if
one were to calculate a confidence interval for the E-value of the estimated risk ratio. However, as argued in
the previous section, this seems of less use in evaluating the actual evidence for a causal effect from a given
study than the E-value for the confidence interval itself. Again, as argued above, the target of inference is
generally the causal effect, not the E-value.

A fourth difference between design sensitivity and the E-value is the scale used. The design sensitivity is
defined on an odds ratio scale. The E-value is defined on the risk ratio scale. In principle, this difference is
only a matter of mathematical definition of scale. However, in practice, we think it is often an important dif-
ference. In practice, odds ratios are not infrequently interpreted, often inadvertently, as risk ratios. When the
variable under consideration is rare, odds ratios in fact approximate risk ratios and this is then unproblem-
atic [12]. However, when the variable for which the odds is being considered is common, then odds ratios can
vastly overestimate risk ratios. In many scenarios, odds ratios are roughly the square of risk ratios [18]. When
the probability of the variable being considered lies in the range 0.2 to 0.8, the odds ratio can exaggerate the
risk ratio by a factor as large as 400 % [18]! In these cases, interpreting odds ratios as risk ratios is highly prob-
lematic. The sensitivity analysis parameters in Rosenbaum’s design sensitivity are defined in terms of odds
ratios for the exposure. The exposures being examined in many studies are of course often relatively common.
Sensitivity analysis using odds ratio scales in these settings can be problematic [19], and one must take due
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caution. For example, if 50 % of the population is exposed and 50 % is unexposed and there are no measured
covariates but one unmeasured binary confounder U with 50 % prevalence in the population such that when
U =1, the exposure occurs with 70 % probability and when U = 0 it occurs with 30 % probability, then the
sensitivity analysis parameter relevant in a design sensitivity calculation would be: (0.7/0.3)/(0.3/0.7) = 5.4.
One could correctly say that two units with identical measured covariates could differ in odds of treatment
by at most 5.4-fold. If, however, this is inadvertently interpreted as a risk ratio, then this is problematic, since
in fact it is the case that two units with identical measured covariates could differ in probability treatment
by at most 0.7/0.3 = 2.33-fold. In this example, the parameter RRgy; is also 2.33 (but this will not be the case if
there are not equal numbers of the exposed versus unexposed). The point here is only the obvious one that
odds ratios should not be interpreted as risk ratios; if they are, then robustness will be exaggerated. If inves-
tigators are careful not to interpret odds ratios as risk ratios, then this need not necessarily be problematic.
However, we believe such misinterpretation of odds ratios as risk ratios is common in practice and for that
reason we would in general advocate for using sensitivity analysis parameters on risk ratio scales. It should,
however, be noted that in the formulation of E-values, the parameter RRy is, as noted above, the risk ratio for
U conditional on E, rather than for E conditional on U, which likewise must be taken into account in interpre-
tation. The parameter is thus on the risk ratio scale but in the reverse direction that is sometimes expected.
We also have endeavored to provide a variety of approximations so that E-values, with parameters reported
on risk ratio scales, can be obtained regardless of the initial method of analysis or effect measure employed
in estimation [1, 18].

In summary, while design sensitivity is somewhat analogous to the E-value for the actual confounded
association between the exposure and outcome, the reporting practices for the E-value that we advocate for
[1] differ from design sensitivity in their considerations of the relations between the unmeasured confounder
and the outcome; differ in considering the null of no average causal effect rather than the sharp null; differ in
considering the actual sample versus an infinite sample; and differ in using risk ratio rather than odds ratio
scales.

6 Concluding remarks

It is our hope, by addressing these questions concerning the interpretation of the confounding association
parameters, the nature of the E-value transformation, questions of statistical inference using the E-value, and
distinctions from design sensitivity, that the interpretation of the E-value metric is clearer and that its use will
thereby be further facilitated.

Appendix A. E-values under coarsening

We will consider an example with an unbounded U such that one of sensitivity parameters RRyy is infinite
and the other RRyy, is very large, but such that a coarsening U’ of U into five categories suffices to reduce
the bias to less than 1% and for which two sensitivity parameters RRy, and RRgy are finite and relatively
moderate. For simplicity will assume no measured covariates. Suppose E is binary with 50 % exposed and
50 % unexposed, and that U takes values among the non-negative integers with distribution conditional on
E that is Poisson with mean (1.5 + 0.5E). Suppose further that Y follows a logistic model with

exp(-4 + 0.5E + 0.1U)

Pr(Y =1|E,U) =
3 | ) 1+ exp(-4 + 0.5E + 0.1U)
In this case,
_ 4\u
P(U =ulE =1) Qe (3)
RRgpy = max,, P—(U —WE=0) = max, o —1.5“e‘1~5 = max, 205 =00
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and
max,P(D = 1|E =1,c, max,P(D = 1|E = 0, c,
RRUD:maX{ .Xl,l ( | u)) ‘Xll ( | u)} —
min,P(D = 1|E = 1,c,u) min,P(D =1|E = 0,c,u)
exp(—4+0.1u)
max,P(D = 1|E = 0,c,u) _ MAXy T4 exp(—4+0.1u) _ 1 _ 556
minup(D — 1|E =0,c, u) minuP exp(—4+0.1u) exp(-4) e

1+exp(—4+0.1u) 1+exp(—4)

However, with a coarsening U’ of U such that U’ = U if U € {0,1,2,3} and U’ = 4 if U > 4 then one can show by
numeric integration that the bias from standardization by U’ rather than U is such that

¥, P(D=1|E=1,u)P(u)
Y, P(D=1[E=0,u)P(u)
¥ P(D=1|E=1,u")P(u')

<1.01

and moreover that

P(U'=u'E=1) PWU =4E=1) N

= =21
P(U'=u'|[E=0) PU' =4E=0) d

RRgyr = maxy

and by numerical integration that

max,P(D = 1|E = 1,u’) max,P(D = 1|E = 0,u’)
min,P(D = 1|E = 1,u') " min,P(D = 1|E = 0,u’) }
_PD=1E=1U'=4)
" PD=1E=1,U'=0)

RRyip = max {

1.55.

Thus a coarsening of an unbounded U into 5 categories that would suffice to move the estimate to less than 1%
of the true causal risk ratio, has relatively bounded sensitivity parameters. The conservative bound generated
by these sensitivity parameters for U’ would be

RR
_RRyp *RRpy 4 o3
RRyp + RRpy - 1

The actual bias is

P(D=1|E=1)

RRops _ __ P(D=1E=0)
RR,,,  ZuPD=LE=LwP)
Y. P(D=1|E=0,u)P(u)

~ 1.05.

Again the bound is conservative.

Appendix B. Interpretation of E-values for the confidence interval

Suppose we have obtained an estimate of

P(D=1|E =1,¢)

RR, = -—— =~ 2%
°bs = p(D =1|E = 0, ¢)

and a 95 % confidence interval, (V, W), as a function of the data. We will consider the case wherein the entire
confidence interval is greater than 1. The case where the entire confidence interval is less than 1is analogous.
Suppose we calculate Q as the E-value for the limit of the confidence interval closest to the null so that Q =

9 (7 (7 RRypxRR,
V+\V(V~1). Let B, = gp 2370 We then have that

P(V < RR,;s < W) = 0.95
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Thus

P(RR,, < V) < 0.05
P(1{B, < V}1(RRs < V)) < 0.05

P(1{B, < V}1(B. * RRy, < V)) < 0.05

P(1{B, < V}1(RRye < V/B,)) < 0.05

P(1{B, < V}1(RRype < 1)) < 0.05
P(1{max(RRyp, RRgy) < Q}1(RRyye < 1)) < 0.05

where the fourth to last line follows because RR,;s/B. < RRy,, and the second to last line follows because
if B, < V then V/B, > 1, and the last line follows because if max(RRyp, RRgy) < Q then B, = -xuwXRRey

RRyp+RRpy—1
00 _ fVJr AV(AV_l)}fVJr VAVEV_I)} = V. Thus across repeated samples, less than 5 % of the time will it be the case
Q-1 [T VT (T-1)-1
that both RRgy and RRyyp are less than the E-value for the limit of the confidence interval closest to the null,
and that RR;,,. is in the opposite direction of RR ;. From this it follows that across repeated samples, at least
95 % of the time it is the case that: if the actual confounding parameters RRyy and RRgy are both less than
the E-value for the confidence interval that was calculated, then the association adjusted by the unmeasured

confounder(s) will be in the same direction as the observed association.
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