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Abstract: There has been increasing interest in recent years in the development of approaches to estimate
causal effects when the number of potential confounders is prohibitively large. This growth in interest has
led to a number of potential estimators one could use in this setting. Each of these estimators has different
operating characteristics, and it is unlikely that one estimator will outperform all others across all possible
scenarios. Coupling this with the fact that an analyst can never know which approach is best for their par-
ticular data, we propose a synthetic estimator that averages over a set of candidate estimators. Averaging is
widely used in statistics for problems such as prediction, where there are many possible models, and averag-
ing can improve performance and increase robustness to using incorrect models. We show that these ideas
carry over into the estimation of causal effects in high-dimensional scenarios. We show theoretically that
averaging provides robustness against choosing a bad model, and show empirically via simulation that the
averaging estimator performs quite well, and in most cases nearly as well as the best among all possible can-
didate estimators. Finally, we illustrate these ideas in an environmental wide association study and see that
averaging provides the largest benefit in themore difficult scenarios that have large numbers of confounders.
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1 Introduction
Estimating the causal effect of a treatment on an outcome with observational data relies on the assumption
that the treatment assignment is unconfounded conditional on a set of pre-treatment covariates. There is a
large literature onmethods to adjust for confounding in order to satisfy this assumption, such asmatching [1],
propensity score weighting [2], stratification [3], outcome regression, and doubly robust estimators [4]. These
approaches have all been shown to provide valid estimates of causal effects as long as the covariates neces-
sary for the unconfoundedness assumption to hold are measured in the data. In recent years, the estimation
of causal effects in high-dimensional data sets with large numbers of covariates have become increasingly
common. A large number of measured covariates makes it more plausible that the covariates necessary for
confounding adjustment have been collected; however, estimation becomes considerably more difficult with
large numbers of parameters. Due to this trade off, methods have been developed to adjust for large numbers
of covariates and produce consistent estimates of causal effects from observational data.

Much of the interest began as papers started to consider the problem of variable selection or model se-
lection for causal estimation in low-dimensional settings [5–7]. Since then, a large number of manuscripts
have been published that aim to estimate causal effects when the number of covariates is large relative to the
sample size. Wilson and Reich [8] tailored the adaptive lasso [9] to effect estimation instead of prediction, by
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creating weights that involve both outcome model and treatment model coefficients. Other approaches have
utilized penalization approaches to estimate causal effects in high-dimensions. Shortreed and Ertefaie [10]
used the adaptive lasso to estimate the propensity score, but allowed the weights to depend on the outcome
model coefficients. Ertefaie et al. [11] created a new penalized likelihood estimator that utilizes information
from both the treatment and outcome to identify confounders, and then estimate causal effects conditional
on this set of variables. The lasso [12] was used to estimate both propensity score and prognostic scoremodels
in [13] to obtain doubly robust estimates by matching on both estimated scores. Antonelli et al. [14] utilized
a fully Bayesian approach to estimating treatment effects in high-dimensions that reduces finite sample bias
while eliminating the impact of instrumental variables through informative prior distributions on variable in-
clusion parameters. Hahn et al. [15] utilized horseshoe priors on the coefficients from a re-parameterized like-
lihood to reduce shrinkage of variables that are associatedwith both the treatment and outcome. A large num-
ber of approaches have focused on obtaining uniformly valid inference of causal effects in high-dimensions
[16–18]. Belloni et al. [16] used lasso models to perform variable selection on both the treament and outcome
models, taking the union of the identified covariates from the twomodels, and then estimating effects condi-
tional on the chosen model. Farrell [17] also utilized the lasso for a treatment and outcome model selection,
and then fit post selection estimators to estimate the traditional doubly robust estimator. Chernozhukov et al.
[18] estimated nuisance parameters such as treatment or outcome model parameters via penalization, and
then solved the efficient score to estimate treatment effects. Similar ideas are used from the Bayesian perspec-
tive in [19], and it is shown that it leads to improved finite sample performance of frequentist metrics such as
interval coverage. Other approaches have shown that

√
n convergence of treatment effects can be achieved in

high-dimensional settings. Athey et al. [20] combined high-dimensional outcome regression with balancing
weights that eliminate any residual confounding remaining after the outcome regression. Propensity score
estimation is improved for both high-dimensions and model misspecification using calibration weights in
[21, 22]. Propensity scores were again used in high-dimensional scenarios, but are instead estimated directly
by their ability to balance important covariates in [23]. Lastly, targeted maximum likelihood (TMLE, [24]) can
be used in conjuction with high-dimensional models to produce estimates of treatment effects. Recent work
has tailored TMLE to this scenario using collaborative TMLE [25, 26] or variance moderation [27].

These developments have led to a diverse and large set of estimators to use if one is faced with obser-
vational data that is high-dimensional. Choosing among this large set of estimators is a subjective choice,
and it is not clear if, or when, any estimators are preferable to others. Given the complexity faced with high-
dimensional data, it is highly unlikely that any one estimator will perform well universally.

In this manuscript, we leverage a large set of potential estimators to our advantage by introducing a sim-
ple, intuitive estimator that averages over all of the candidate estimators.We show both theoretically and em-
pirically that this leads to robust performance for estimating treatment effects in high-dimensions. Through
extensive simulation studies we show that averaging over all estimators generally leads to improved perfor-
mance with respect to standard metrics such as bias, mean squared error (MSE), and coverage probabilities.
We illustrate through a wide variety of data generating mechanisms that there is not any one individual es-
timator that performs well across all scenarios; however, the proposed averaged estimator performs nearly
as well as the best estimator in the majority of cases considered, which shows the robustness that averaging
provides for high-dimensional treatment effect estimation.

The idea of combining models, estimators, or tests has a rich history in the statistical literature. For ex-
ample, model uncertainty can be accounted for through model averaging, which exists in both the Bayesian
and frequentist framework [28–31]. Others have proposed combinations of estimators [32, 33], including in
the field of small area estimation [34]. Omnibus tests for the global null hypothesis simultaneously test mul-
tiple hypotheses (e.g. ANOVA), and several methods for combining individual p-values from genome-wide
association studies have been proposed [35]. These are just a few examples of combiningmodels, estimators,
or tests, but they all share a common goal: combining statistics for improved performance.
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2 Methodology
Throughout, we assume that we have n i.i.d samples of (Xi , Ti , Yi), where Xi is a p−dimensional vector of
pre-treatment covariates, Ti is the treatment of interest, and Yi is the outcome of interest that is measured
after the treatment is initiated. We assume that Ti is a binary treatment as many of the existing estimators
are only applicable to binary treatments. We do not discuss the rates at which p grows, but work in the
high-dimensional regime where p > n and grows with n. For simplicity, we restrict attention to the average
treatment effect defined as ATE = E(Y(1) − Y(0)), where Yi(t) is the potential outcome we would have ob-
served for subject i if they had been exposed to treatment Ti = t. We assume no unmeasured confounding
and positivity, defined below:

Unconfoundedness: Y(t) ⊥⊥ T|X for t=0,1
Positivity: There exist δ ∈ (0, 1) such that 0 < δ < P(T = 1|X) < 1 − δ < 1 with probability 1,

where P(T = 1|X) denotes the propensity score [2]. We also assume the stable unit treatment value as-
sumption (SUTVA), which states that the treatment is well-defined and that the outcomes for one subject are
not affected by the treatment status of other subjects. Further, in high-dimensional settings, many estimators
rely on some form of sparsity, stating that unconfoundedness holds conditional of a subset of the covariates.
The exact form of the sparsity condition varies by estimator and is not discussed in detail in this manuscript.

2.1 Averaged estimator

Consider constructing an averaged estimator from a set of M estimators for the ATE. Denote each estimator
of the ATE by ̂︀θm form = 1, . . . ,M. Each estimator has a corresponding variance estimate, denoted by ̂︀σ2m for
m = 1, . . . ,M. The averaged estimator takes the form:

̂︀θA = M∑︁
m=1

wm̂︀θm ,
where w = (w1, . . . , wM) is a weight vector. Ideally, we would estimate w by optimizing a pre-specified loss
function. Following [33], one could find the weight vector that minimizes the mean squared error of ̂︀θA con-
ditional on w, which corresponds to solving:

argmin
w

wTVw + (wTB)2,

where B and V are the bias vector and covariance matrix for theM estimators. Finding the weight vector that
minimizes the mean squared error requires estimates of both B and V . In the context of noncompliance in
clinical trials, Antonelli et al. [33] were able to estimate these quantities. The bias was estimated by identi-
fying an unbiased estimator among the candidate estimators, and the covariance was estimated using the
bootstrap. In the case of observational studies, the bias of each estimator is unknown a priori and there do
not exist methods for estimating it from observed data.

The covariance matrix V of the estimators is also problematic when there are high-dimensional con-
founders. The standard bootstrap is generally not valid for estimating sampling distributions of high-
dimensional models such as the LASSO [36]. In the context of high-dimensional ATE estimation, it has
been seen empirically that the bootstrap can lead to poor inferential properties such as incorrect standard
error estimation [19]. Due to this, much of the existing work on estimating the ATE in high dimensions has
focused on deriving asymptotic limiting distributions for each estimator. While these asymptotic results may
provide variance estimates for individual estimators, estimation of V also requires the pairwise covariance
between each estimator. It is extremely cumbersome, and perhaps not possible, to derive the covariance
for each pair of estimators, and would require additional work whenever new candidate estimators are
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included. Due to the difficulty of estimating B and V, we will proceed forward with a fixed weight vector
w = (1/M, 1/M, . . . , 1/M), such that each estimator gets equal weight. This provides a number of advan-
tages over simply choosing a single estimator, which are detailed in the subsequent sections. The averaging
provides a form of robustness ensuring that the averaged estimator does better in terms of bias andMSE than
the worst of the M estimators. The empirical studies in Section 3 show that averaging not only provides pro-
tection against choosing the worst estimator, but the averaged estimator typically does close to, if not better,
than the best of the M estimators. This is due to large decreases in the variance of the averaged estimator
relative to any one estimator, particularly if the individual estimators are not strongly correlated. Note that
unequal weights can easily be applied as long as they are chosen a priori and not chosen simply to provide
a desired result. Further, if there is concern about one bad estimator, in particular one with large amounts
of bias, then a trimmed average can be used. We explore this further in the simulation study of section 3
where we use a trimmed average estimator that removes the highest and lowest estimates from the averaged
estimator.

2.2 Variance estimation

If the covariancematrix V of theM estimators is known, the variance of the averaged estimator can bewritten
as:

var(̂︀θA) = 1
M2

M∑︁
i=1

M∑︁
j=1

Vij ,

where Vij is the (i, j) element of the matrix V . Exploring this quantity provides insight in how the averaged
estimator can greatly reduce variance. In one extreme case where all the estimators are perfectly correlated,
then the variance of the averaged estimator is equal to the average of the pairwise products of the standard
deviations for each estimator, implying that its variance is no larger than the highest variance estimator. In a
different extreme case where all of the estimators are uncorrelated, the variance of the averaged estimator is
1
M2

∑︀M
i=1 Vii. This implies that the variance of the averaged estimator is an order of magnitude (1/M) smaller

than the average of the individual estimator variances. Even bigger gains are possible if the estimators are
negatively correlated, but this is very unlikely to happen in practice. In our experience, most estimators are
positively, but not perfectly, correlated with each other, meaning that the truth lies between the two extremes
discussed. Nonetheless, the variance of the averaged estimator will be no worse than the highest variance
estimator, and may be a substantial improvement over the individual estimators.

Estimating the variance of the averaged estimator is problematic due to the underlying high-dimensional
estimators. A plug-in estimate of the variance based on the expression above is not feasible, because it is very
difficult to produce the necessary covariances in high-dimensions. We can, however, estimate the individual
estimator variances ̂︀σ2m. Since the correlation between estimators is bounded between -1 and 1, we can bound
the variance of the averaged estimator as:

var(̂︀θA) = 1
M2

M∑︁
i=1

M∑︁
j=1

Vij =
1
M2

M∑︁
i=1

M∑︁
j=1

cor(̂︀θi , ̂︀θj)√︀Vii
√︁
Vjj ≤

1
M2

M∑︁
i=1

M∑︁
j=1

√︀
Vii

√︁
Vjj .

Therefore, we propose a conservative estimate of the variance as:

̂︀σ2A = 1
M2

M∑︁
i=1

M∑︁
j=1

̂︀σî︀σj .
If the estimators are highly, positively correlated, this variance estimate will not be very conservative. If the
estimators are close to independent, then this variance estimator is very conservative. It is possible that being
conservative in this setting is beneficial for two reasons. First, the estimates of standard errors ̂︀σm frequently
rely on asymptotic approximations, whichmight not hold, and could be underestimates of the true variances.
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Second, there is frequently bias in estimating treatment effects in high-dimensions due to penalization or
variable selection, and conservative estimates of the variance may lead to better interval coverage. Section 3
provides empirical evidence of the performance of this variance estimation strategy.

2.3 Robustness to choosing the worst model

The relative performance of the averaged estimator to the candidate estimators is highly data dependent.
However, we show that the averaged estimator protects against choosing a very bad estimator among the
class of estimators. Intuitively, this is because the averaged estimator only assigns a weight of 1/M to any one
estimator, including the worst estimator with respect to a given metric; therefore, the averaged estimator is
guaranteed to perform no worse than this worst case estimator. The following result shows this for both bias
and mean squared error:

Result 1: If each estimator is assigned equal weight, and we let ̂︀θ* and ̂︀θ** be the worst estimators in terms of
bias and MSE, respectively, then

|E(̂︀θA − θ)| ≤ |E(̂︀θ* − θ)| and E((̂︀θA − θ)2) ≤ E((̂︀θ** − θ)2)
A proof of this result can be found in the Appendix. While this result only guarantees that the averaged esti-
mator does better than theworst estimator, empiricallywehave seen that these are typically very conservative
bounds. In simulation studies in Section 3 we illustrate that the averaged estimator not only performs better
than the worst estimators, but frequently performs as well as the best individual estimator in terms of MSE.

3 Simulation study
Weempirically investigate the ability of the averagedestimator to estimate treatment effects inhigh-dimensional
settings. We focus on 10 potential estimators that are either available in an R package, or straightforward to
implement. An R package to implement these estimators along with the averaged estimator can be found
at https://github.com/jantonelli111/AveragingCausalHD. Computation times for the estimators can also be
found in Section B of the Appendix. The estimators that enter into the averaged estimator are listed below:

1. The double post selection approach (Double PS, [16])
2. The approximate residual debiasing approach (Debiasing, [20])
3. The doubly robust lasso approach (DR-Lasso, [17])
4. Doubly robust matching (DRME, [13])
5. High-dimensional confounding with spike-and-slab priors (HDC, [14])
6. Bayesian doubly robust estimator (DR-Bayes, [19])
7. Targeted maximum likelihood with lasso models (TMLE, [24])
8. Targeted maximum likelihood with an initial screening step followed by unpenalized linear models

(TMLE-screen)
9. Double machine learning with lasso models (DML, [18])
10. Double machine learning with post selection estimators (DML-PS)

We do not go into the details of the respective approaches or how they are fit, as the aim of this work is to
show the performance of the averaged estimator when there are a large number of estimators to average over,
each with varying operating characteristics that are unknown to the user beforehand. For this reason we will
only highlight the best, median, and worst estimator among the individual estimators with respect to any
particular metric. We will also show results for two averaged estimators: The averaged estimator with equal
weights for each estimator, and a trimmed average that removes the estimators with the highest and lowest
estimated causal effects within a particular data set. For mean squared error, the best estimator is the one

https://github.com/jantonelli111/AveragingCausalHD
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with the smallest MSE, the worst is the one with the largest MSE, and the median is the estimator with the
median MSE among the individual estimators. For ease of discussion, the MSE for each simulation scenario
is normalized so that the best estimator has MSE equal to 1. For interval coverage, the worst estimator is the
one with the lowest coverage, and then the best estimator is the one with the coverage closest to 0.95 without
being 1.Wewant to avoid an estimator with a coverage probability of 1 as it is overly conservative. Themedian
estimator is the estimator with the median coverage probability among the individual estimators.

The exact details of the simulation scenarios can be found in Section C of the Appendix, though we will
briefly summarize them here. In each simulation scenario we draw covariates from a multivariate normal
distribution with correlation 0.3 between all covariates. We will set n = 150 and p = 300 for all simulation
scenarios with the exception of scenario 2, which will have n = 300 subjects. The first simulation scenario
represents a data generatingmechanism that has a sparse, linear model for both the treatment and outcome.
The second simulation scenario is one in which the treatment model is dense and all covariates are associ-
ated with the treatment. The third scenario looks at a setting where the outcome model is not sparse. The
fourth setting is one in which the outcome model is nonlinear and therefore many of the approaches will be
misspecified. The final simulation setting is one in which there is treatment effect heterogeneity, which also
can cause misspecification of some of the approaches that assume homogeneous effects. These are chosen
to capture a wide range of data generating mechanisms that might occur in practice. We simulated five ad-
ditional scenarios, and the results can be found in Section C of the Appendix. The results in the additional
simulation scenarios closely match those seen in the main manuscript.

3.1 Results

Figures 1 and 2 show the results averaged over 1000 simulations for both MSE and interval coverage. Both
averaging estimators performed favorably in terms of MSE and interval coverage. The highest MSE estimator
in each scenario had significantly higher MSE than the averaging estimators. The averaging estimators had
lower MSE than the median MSE estimator in every scenario and were able to achieve MSE that is close to
the optimal choice of the individual estimators. They had slightly lower MSE than the individual estimator
with the lowest MSE in Scenario 5. The averaging estimators achieved confidence interval coverage near the
nominal 0.95 level in all of the simulation scenarios, and significantly outperformed both the worst estimator
and themedian estimator. For the averaged estimator, the specific interval coverages in each simulationwere
0.904, 0.975, 0.964, 0.987, and 0.931, respectively.
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Figure 1:Mean squared error for the estimator with the lowest MSE, highest MSE, median MSE, the averaged estimator, and the
trimmed average estimator.
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Figure 2: Interval coverage for the estimator with the best interval coverage, median interval coverage, worst interval coverage,
the averaged estimator, and for the trimmed average estimator.

Overall, the results confirmed the theoretical results that the averaged estimator does better than the
worst individual estimator, though more importantly, the simulation showed that averaging estimators tend
to perform more closely to the best individual estimator (at least in the scenarios considered). It should be
noted that the individual estimator that performed the best or worst in each scenariowas different, and there-
fore there is not one estimator outperforming the averaged estimator across all scenarios. Further, the results
showed that the conservative estimate of the variance is not leading to overly conservative confidence inter-
vals for the averaging estimators. The trimmed average estimator did not provide drastically different results
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Figure 3: Absolute bias and variance for each of the estimators, over all scenarios looked at. The averaged estimator is denoted
by large triangles, while the other estimators are denoted by small circles.
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from the averaging estimator that assigns equal weights to all of the estimators, though it did tend to reduce
the MSE slightly.

To assess the impact of bias and variance of the averaged estimator, Figure 3 shows the absolute bias and
variance for each individual estimator across all the simulation scenarios considered. The circles represent
the individual estimatorswhile the triangles represent the averaged estimator for each scenario. The averaged
estimator had small variance relative to the individual estimators,which is expected given the efficiency gains
that are possible as indicated in Section 2.2. In terms of bias, the averaged estimator is guaranteed to have
exactly the average bias of all of the existing estimators. This can lead to reductions in absolute bias in cases
where certain estimators have positive bias while others have negative bias, which was observed in Scenario
4. In other cases, such as Scenarios 2 and 5, the direction of the bias for the individual estimators was the
same, and the absolute bias of the averaged estimator was simply the average of the absolute biases for the
individual estimators.

4 Application to NHANES data
Environmental wide association studies (EWAS) measure a variety of chemicals and toxins that humans are
exposed to in an effort to understand how they affect the biological processes in the human body [37, 38]. The
National Health and Nutrition Examination Survey (NHANES), is a cross-sectional data sourcemade publicly
available by theCenters forDisease Control andPrevention (CDC), andweaim to estimate the effects of a num-
ber of environmental exposures on three different outcomes: HDL cholesterol levels, LDL cholesterol levels,
and triglyceride levels in the NHANES study. We use data found in [39], which contains a large number of
potential confounders. Participants both filled out questionnaires regarding their health status, as well as
received clinical and laboratory tests that contain information on environmental factors such as pollutants,
allergens, bacterial/viral organisms, chemical toxicants, and nutrients. In previous work [40], the environ-
mental agentswere separated into different groups containing similar agents thatmight affect similar biologi-
cal pathways.We look at the effects of 22 different environmental agent groups on the three outcomes, leading
to 66 different analyses. Each exposure is defined as the average exposure level across all agents within the
same grouping. As most of the approaches considered only consider binary treatments, we dichotomized the
continuous exposure by classifying each exposure as being above or below the median exposure level. Each
of the environmental agents was measured in a different subset of the NHANES data, leading to different
populations, sample sizes, and covariate dimensions for each of the 22 different exposures. Some of the data
sets have very small p/n ratios that do not require high-dimensional techniques, while others have p/n ratios
between 0.3-0.4 and require some form of dimension reduction. In the following sections we show how the
averaged estimator performs in comparison with the individual estimators, and how this varies as a function
of the p/n ratio.

4.1 Agreement of statistical decisions

First, we evaluate whether the averaged estimator would lead to different statistical inferences. In particular,
we are interested in testing the null hypothesis of no treatment effect, and evaluate if the different estimators
lead to different conclusions of statistical significance (i.e., is the null hypothesis rejected). Figure 4 shows
the results of the hypothesis tests for any data set in which there was disagreement among the estimators.
Each row corresponds to a particular estimator, while each column corresponds to a particular data set. The
averagedestimator generally sideswith themajority of the individual estimators in termsof rejectingor failing
to reject the null hypothesis, although this is not always the case. In the sixth column, 7 of the 10 estimators
failed to reject the null hypothesis of no treatment effect, but the averaged estimator leads to a rejection of
the null hypothesis. It is important to emphasize that Figure 4 is limited to cases where different estimators
lead to different conclusions, which represents only 30% of analyses performed.
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Figure 4: Plot of whether or not each estimator rejected a particular null hypothesis. The results only show data sets in which
there was some disagreement among the 11 estimators in terms of the final hypothesis test.

4.2 When does averaging matter?

Next, we evaluated the potential impact that averaging can have on estimation within the NHANES data set,
andattempted to identifywhere it is themost useful. Assuming that each estimator has only a small amount of
bias, themain advantage of averaging is the efficiency gains one can achieve.When the individual estimators
are highly correlated, there is very little to be gained (though also very little to be lost) by using averaging. On
the other hand, when estimators are weakly correlated with each other, the averaged estimator gains more
efficiency. The left panel of Figure 5 shows the correlation matrix of the 10 estimators across the data sets
examined. The correlation is generally very high, with the majority of the values on the off-diagonal above
0.9. The right panel, however, depicts a somewhat different story whenwe restricted attention to the data sets
with p/n ratios above 0.25. In these settings, there is less correlation between the estimators, with some of
the correlations as low as 0.4, and many more in the 0.6 to 0.8 range. This illustrates that the potential for
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Figure 5: Correlation matrix across the 10 estimators over the analyses in the NHANES data. The right panel only shows this
correlation for those data sets with a p/n ratio that is above 0.25
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variance reduction by averaging estimators is greater in the the more difficult setting with a larger number of
covariates relative to the sample size.

5 Discussion
We presented a simple approach to estimate the average treatment effect in high-dimensional settings that
leverages many of the estimators that have been developed in recent years. As more approaches are devel-
oped, it becomes increasingly difficult for an analyst to choose an approach for their particular study. Further,
there is likely no best approach in all scenarios, and the extent to which each estimator performs is highly
dependent on the unknown data generating process. Averaging over all of the estimators provides an ideal
choice when presented with so many estimators. Not only does the averaged estimator guarantee improved
performance over the worst estimator in terms of bias and MSE, but our empirical results indicate that it can
perform much more closely to the best of the individual estimators without knowing beforehand which esti-
mators are best. At times, it can even outperform the best of the individual estimators with respect to MSE or
interval coverage. Further, we derived a conservative estimate of the variance of the averaged estimator that
leads to reasonable confidence interval coverage.

A potential criticism of the averaged estimator is that each individual estimator relies on its own set of
assumptions, and therefore the averaged estimator assumes all of these assumptions in order to achieve un-
biased inference.While this is generally true, this in someways shows the strength of the averaged estimator.
All of these assumptions are untestable, and we don’t know, and cannot test, which estimators’ assumptions
are being violated. By averaging over all estimators, wemitigate the impact that grossmisspecification of one
of these assumptions could have if we simply chose the one, bad estimator. An analyst could alternatively
choose their preferred estimator or the one with the minimum estimated variance among all candidate es-
timators. While this may work in certain scenarios, it can perform extremely poorly if the chosen estimator
has a high bias. Further, simply choosing the estimator with the smallest estimated variance will likely lead
to anti-conservative confidence intervals. The averaged estimator removes the burden of this decision from
the analyst and protects against an estimator with high bias, high variance, or low interval coverage. We be-
lieve that including as many estimators as possible into the list of candidate estimators is ideal unless some
estimators are known a priori to have high bias or variance. Including more estimators reduces the impact
that a small number of bad estimators can have, while increasing the efficiency of the averaged estimator.
Empirically we explored the possibility of using a trimmed average estimator that removes extreme estima-
tors from the candidate list. Trimmed estimators such as this can fix the issue of one or two estimators having
extremely large bias or variance, and can still lead to improvements in efficiency and interval coverage of the
estimators.

While we believe that more individual estimators can lead to improved performance, it is important to
stress that individual estimators should only be used if properly tuned and implemented. There are many
subjective decisions that go into each of the individual estimators, and the performance of the averaged
estimator will be improved if each of the individual estimators are implemented carefully. If an analyst is
not comfortable with certain estimators and their respective implementation, then these should be removed
from the averaged estimator. Further, there is a trade-off between the number of estimators and both the
computational and implementation burden of utilizing more approaches. As more individual estimators are
introduced, there is a greater burden on the analyst in terms of implementation effort and computation time
required to fit all of the estimators, and this should be considered by the analyst before using the averaged es-
timator. We tried to alleviate these concerns by providing a library of estimators in our software package that
are tuned to provide individual estimates of the causal effect, which works well across a wide range of data
generatingmechanisms that we have evaluated. Nonetheless, if an analyst is able to carefully tune individual
estimators within the averaged estimator, that should improve performance of the averaged estimator.
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Software
An R package for implementing the averaging estimator can be found at
https://github.com/jantonelli111/AveragingCausalHD.
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A Proof of result 1
First we will show the result for bias:

⃒⃒⃒⃒
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B Computational details for each estimator
Here we illustrate the computation time of the 10 individual estimators used in the manuscript when the
dimension of the data is n = 150 and p = 300. The computation time (in minutes) can be found in Figure
B1. All of the approaches have computation times smaller than 10 seconds with the exception of DR-Bayes
and HDC, which is unsurprising given that both of these approaches require MCMC chains to be run for high-
dimensional Bayesianmodels. If computational resources and time are a priority, then the averaged estimator
can be fit without including these Bayesian approaches into the library of estimators.
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Figure B1: Computation time for individual estimators

C Data generating mechanisms for simulation scenarios and
additional simulation results

Here we will detail the exact data generating processes for each of the simulation scenarios considered in the
paper. In addition, we will provide five new simulation scenarios and present the results for them as well.

Scenario 1: For the first simulation scenario, we generated data under the following models for the treat-
ment and the outcome processes:

Yi = Ti + Xiβ + ϵi (C1)
P(Ti = 1) = Φ(Xi𝛾)

Xi ∼ MVN(0p , ΣX)
ϵi ∼ N(0, 1),

where ΣX is an exchangeable correlation matrix with correlation 0.3, n = 150, p = 300,
β = (0.75, 1, 0.6, −0.8, −0.7, 0p−5), and 𝛾 = (0.15, 0.2, 0, 0, −0.4, 0p−5).

Scenario 2: This simulation is based on a simulation from [20] that has a dense treatment model. Define
20 clusters, {c1, . . . , c20}where ck ∼ N(0, Ip). For each subject, we randomly sample one of these 20 vectors,
whichwe callCi. Thenwedraw the vector of covariates for subject i, denotedbyXi, fromamultivariate normal
distribution centered at Ci with the identity matrix as the covariance. We set Ti = 1 with probability 0.1 for
the first 10 clusters, and Ti = 1 with probability 0.9 for the remaining clusters. Finally, we generate data from
the outcome model defined as Yi = 10Ti + Xβ + ϵi, where β ∝ (1, 1√

2
, . . . , 1√p ) and is normalized such that

||β||22 = 18. Lastly, n = 300 and p = 300.
Scenario 3: This scenario uses the same structure as in equation C1 and simulation scenario 1, with the

exception of β and 𝛾. In this case, we set β = (0.2, 0.3, 0.15, −0.15, 0.15, −0.15, . . . 0.15, −0.15, 0p−74),
and 𝛾 = (0.6, −0.5, 0p−2).
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Scenario 4: This scenario uses the same simulation structure as scenario 3, except the outcome model is
chosen to be nonlinear. Now we generate the outcomes from a normal distribution with variance 1 and mean
given by

E(Yi|Ti , Xi) = −2 + Ti + 0.5X1i + 0.5X22i + 0.8X32i + 0.3e
X3i

Scenario 5: This scenario uses the same simulation structure as simulation 1 except for the treatment and
outcome models. In this setting, we have P(Ti = 1) = Φ(−0.7 + X𝛾), where 𝛾 = (0.2, 0, 0.4, −0.5, 0p−4) and
we generate the outcome with a variance of 1 and mean given by

E(Yi|Ti , Xi) = −2 + Ti + 0.5X1i + 0.8X2i + 0.4X3i + 0.5TiX3i

Additional scenario 1: This scenario uses the same simulation structure as the first simulation scenario
of the main manuscript, however, both β and 𝛾 are 0p and there is no confounding.

Additional scenario 2: This scenario uses the same simulation structure as the first simulation scenario
of the main manuscript, however,

β = (0.9, 0.9, 0.2, 0.2, 0, 0, 0.9, 0.9, 0p−8),

and
𝛾 = (0.4, 0.9, −0.5, −0.7, −0.3, 0.6, 0p−6).

Additional scenario 3:This scenario is the sameas the second simulation scenario of themainmanuscript,
except that Ti = 1 with probability 0.25 and 0.75 for the first 10 and remaining clusters, respectively. Further,
we set β ∝ (1, 12 , . . . ,

1
p ).

Additional scenario 4: This scenario is the same as the first simulation scenario of the main manuscript
except the treatment model is nonlinear. In particular the treatment probabilities are given by

P(Ti = 1) = expit(0.5X31i + 0.3X
2
1i − 0.3X42i + 0.4 * X

2
3i)

Additional scenario 5: This scenario is the same as the fourth additional simulation scenario except that
the outcome model is also nonlinear. Specifically, the outcome is drawn from a normal distribution with
variance 1 and mean given by

E(Yi|Ti , Xi) = −2 + Ti + 0.5X1i + 0.5X22i + 0.8X32i + 0.3e
X3i

The first additional simulation scenario looks at a scenario with no confounding among the covariates.
The second additional scenario looks at a different sparse data generating process for both the treatment and
outcome models. The third additional scenario looks at a different scenario where the treatment model is
not sparse. The fourth scenario looks at a case where the treatment model is nonlinear and therefore most
approaches will be misspecified. The fifth additional scenario looks at a case where both the treatment and
outcomemodels are nonlinear. The results from these additional simulations can be found in Figures C1 and
C2. In every one of the scenarios looked at the averaged estimators do far better than the worst estimator and
better than the median estimator. In some cases, the averaged estimators do far better than the median esti-
mator and perform as well or better than the best individual estimator. The averaged estimator also obtains
the nominal 95% coverage rate in every simulation scenario except for the fifth scenario. The only scenario
in which the averaged estimators were substantially outperformed by the best individual estimator was sce-
nario 5. In this scenario there was only one estimator that was unbiased and had nominal confidence interval
coverages. The remaining estimators all had substantial biases and low interval coverages. Overall these re-
sults confirm the results from the manuscript. The averaged estimator, whether it is trimmed or not, shows
performance that is much closer to the best individual estimator than either the median or worst individual
estimator. This leads to lowMSE values and interval coverages that are much closer to the nominal rate when
compared with the majority of the individual estimators.



Averaging causal estimators in high dimensions | 107

M
ea

n 
sq

ua
re

d 
er

ro
r

0
1

2
3

4
5

Sc
en

ar
io

 1

Sc
en

ar
io

 2

Sc
en

ar
io

 3

Sc
en

ar
io

 4

Sc
en

ar
io

 5

Best estimator
Median estimator
Worst estimator
Averaged estimator
Trimmed average

Figure C1:Mean squared error for the estimator with the lowest MSE, highest MSE, median MSE, the averaged estimator, and
the trimmed average estimator. Note that these results are for the five additional simulation results of the appendix.
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Figure C2: Interval coverage for the estimator with the best interval coverage, median interval coverage, worst interval cover-
age, the averaged estimator, and for the trimmed average estimator. Note that these results are for the five additional simula-
tion results of the appendix.


	1 Introduction
	2 Methodology
	2.1 Averaged estimator
	2.2 Variance estimation
	2.3 Robustness to choosing the worst model

	3 Simulation study
	3.1 Results

	4 Application to NHANES data
	4.1 Agreement of statistical decisions
	4.2 When does averaging matter?

	5 Discussion
	A Proof of result 1
	B Computational details for each estimator
	C Data generating mechanisms for simulation scenarios and additional simulation results

