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Abstract:While the HVTN 505 trial showed no overall efficacy of the tested vaccine to prevent HIV infection
over placebo, markers measuring immune response to vaccination were strongly correlated with infection.
This finding generated the hypothesis that some marker-defined vaccinated subgroups were partially pro-
tected whereas others had their risk increased. This hypothesis can be assessed using the principal stratifi-
cation framework (Frangakis and Rubin, 2002) for studying treatment effect modification by an intermediate
response variable, using methods in the sub-field of principal surrogate (PS) analysis that studies multiple
principal strata. Unfortunately, available methods for PS analysis require an augmented study design not
available in HVTN 505, and make untestable structural risk assumptions, motivating a need for more robust
PS methods. Fortunately, another sub-field of principal stratification, survivor average causal effect (SACE)
analysis (Rubin, 2006) – which studies effects in a single principal stratum – provides many methods not
requiring an augmented design and making fewer assumptions. We show how, for a binary intermediate re-
sponse variable, methods developed for SACE analysis can be adapted to PS analysis, providing new and
more robust PS methods. Application to HVTN 505 supports that the vaccine partially protected individuals
with vaccine-induced T-cells expressing certain combinations of functions.
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1 Introduction
A vaccine that prevents HIV-1 infection is critically needed for ending the global HIV-1 pandemic. A recent
efficacy trial of a candidate HIV-1 vaccine – HVTN 505 – randomized 2,496 HIV-1 negative volunteers in 1:1
allocation to the DNA/rAd5 vaccine regimen or placebo [1] administered at months 0, 1, 3, 6. The primary ob-
jective compared the rate of HIV-1 infection from 6.5 to 24 months between the randomized treatment arms,
with estimated cumulative incidence 4.62% (3.15%) in the vaccine (placebo) group, and cumulative incidence
ratio 1.46 (95% CI 0.82 to 2.63,Wald test p = 0.20). Through a 2-phase sampling design, Janes et al. [2] studied
HIV-1 Envelope-specific CD8+ T cell responses measured 2 weeks post last vaccination (Month 6.5) as a corre-
late of HIV-1 infection between 6.5 and 24months, and found in vaccine recipients a strong inverse correlation
between CD8+ T cell polyfunctionality score (PFS) and HIV-1 infection (p < 0.001). The surprising strength of
the correlate [e.g., estimated cumulative risk 0.160 and 0.034 for vaccinated subgroups with PFS below and
above the median response, compared to 0.070 for placebo recipients (Figure 4 of [2]), suggests the possibil-
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ity that a qualitative interaction occurred, where somemarker-defined vaccinated subgroups received partial
protection from vaccination whereas others had their risk increased.

Janes et al.’s observation of intermediate risk of the placebo group between that of the biomarker
response-defined vaccinated subgroups does not imply causal vaccine vs. placebo effect modification across
these subgroups, because post-randomization selection bias could occur (e.g., due to an unmeasured genetic
factor predictive of both the PFS and HIV infection). A direct assessment of a causal vaccine effect (eliminat-
ing possible selection bias) would compare risk for each vaccinated subgroup defined by biomarker response
value to that of the placebo recipient subgroup who would have had the same biomarker response value if
assigned vaccination, which essentially repeats the primary analysis of vaccine efficacy (which is valid based
on the randomization) across the marker-defined subgroups. This “principal surrogate (PS) analysis" [3] is a
sub-field of the general framework of principal stratification established by Frangakis and Rubin [3].

However, available methods for PS analysis make strong structural risk assumptions that do not hold in
HVTN 505, and require study design augmentations such as close-out placebo vaccination to measure coun-
terfactual biomarker response [4] that were not utilized in HVTN 505. Given the high threshold of evidence
needed to convince scientists of a qualitative interaction, application of these methods would be inadequate
– rather PS analysis with methods that rely on weaker assumptions are needed. Fortunately, many nonpara-
metric and semiparametric principal stratification methods are available that do not require a design aug-
mentation, many of which were developed for applications in another sub-field of principal stratification –
“survivor average causal effect (SACE) analysis" (e.g., [5, 6])– which we define as principal stratificationmeth-
ods focused on a single principal stratum (e.g., always survivors). We describe how such methods designed
for SACE analysis can be adapted to PS analysis for the special case of a binary intermediate outcome. This
adaptation contributes novel PS methods, by (1) applying to clinical trials without design augmentations; (2)
relaxing the strong assumption of no individual-level clinical treatment effects before the biomarker is mea-
sured; (3) avoiding strong structural placebo conditional risk assumptions; and (4) extending SACEmethods
to study designs that onlymeasure the intermediate outcome in a subset of participants (e.g., two-phase/case-
control studies), as in HVTN 505. The PFS marker studied by Janes et al. [2] is a summary measure of many
different cellular expression patterns, which are binary (expressed vs. not expressed), motivating methods
for a binary intermediate outcome.

2 Principal Surrogate (PS) Target Parameters and the HVTN 505
Application

A common objective of randomized clinical trials is to assess biomarker response endpoints as principal sur-
rogate endpoints for the clinical endpoint of interest [3]. With Z denoting binary treatment assignment and
Sτ denoting a biomarker measured at a fixed time point τ post-randomization and Y denoting the binary
clinical endpoint of interest measured after τ, the PS estimand of interest is the “principal effects" or “causal
effect predictiveness" (CEP) surface [7]: CEP(s1, s0) = h(risk1(s1, s0), risk0(s1, s0)), where riskz(s1, s0) ≡
P(Y(z) = 1|Sτ(1) = s1, Sτ(0) = s0, Yτ(1) = Yτ(0) = 0) for z = 0, 1. Here Yτ(z) is the indicator that the clinical
endpoint occurs by time τ, such that the population for inference is free of the endpoint under both treat-
ment assignments when Sτ is measured. In HVTN 505, Sτ measures an immune response to vaccination and
Y = 1 is subsequent HIV-1 infection, and it would be problematic to include individuals already infected with
HIV-1, because their Sτ values would be affected by the natural immune response to HIV-1 infection, making
the results uninterpretable. Therefore, CEP(s1, s0) contrasts the risk of infection between the vaccine and
placebo arms among those who would be infection-free at time τ under either treatment assignment and
have biomarker measures s1 and s0 under assignment to vaccine and placebo, respectively. The objective of
PS analysis is inference about the CEP(s1, s0) parameters and contrasts in these parameters, which has been
addressed using a variety of methodological approaches including estimated maximum likelihood [4, 7, 8],
pseudo-score estimating equations [9], principal score methods [10–12], and Bayesian methods [13–15].
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We consider PS methods assuming either “No Early Effect" (NEE), “No Early Harm" (NEH), or “No Early
Benefit" (NEB) of treatment on Y by time τ, as defined below as A4, A4′, and A4′′. For the PS methods as-
suming NEH or NEB, we focus on the special case that Z = 0 is a control condition such as placebo, and
there is no variability of Sτ in subjects assigned to Z = 0, i.e., P(Sτ(0) = 0|Yτ(0) = 0) = 1. This “Constant
Biomarker (CB)" case occurs in placebo-controlled preventive vaccine efficacy trials that only enroll subjects
not previously infected with the pathogen under study and for which the intermediate response endpoint is
a readout from a validated bioassay designed to only detect an immune response specific to the pathogen
under study [7]; HVTN 505 is a typical example. For methods assuming NEE, we consider both the special
Case CB and the general case where Sτ(0) varies and a monotonicity assumption holds (A5 below). These
scenarios are chosen because they commonly occur in applications. Table 1 describes the interpretation of
the CEP(s1, s0) parameters for HVTN 505. Because Case CB holds, CEP(1, 0) and CEP(0, 0) are of interest.
For a given binary immune response biomarker Sτ, VE(1) = CEP(1, 0) is vaccine efficacy for the subgroup
with positive response if assigned vaccine and negative response if assigned placebo, and VE(0) = CEP(0, 0)
is vaccine efficacy for the subgroup with negative response under both treatment assignments. Our scientific
goal is to study whether vaccine efficacy differs between these two subgroups, i.e. µ ≡ VE(1) − VE(0) ≠ 0,
andwe also seek to assess evidence for a qualitative interaction, defined by VE(1) and VE(0) having opposite
signs.

Table 1: Notation and Parameters of Interest for the HVTN 505 HIV-1 Vaccine Eflcacy Trial

Variable Description
Z Randomized treatment assignment to vaccine (z = 1) or placebo (z = 0)
Y Indicator of diagnosis of HIV-1 infection after τ = 6.5 months post enrollment through 24

months (outcome of interest)
Yτ Indicator of diagnosis of HIV-1 infection by τ = 6.5months
Sτ Binary immune response biomarker measured at τ (eligible if Yτ = 0)
riskz(s1, s0) = P(Y(z) = 1|Sτ(1) = s1, Sτ(0) = s0, Yτ(1) = Yτ(0) = 0):

Probability of infection diagnosis if assigned Z=z among the subgroup uninfected at τ under
either treatment assignment and with biomarker
measures s1 and s0 under assignment to vaccine and placebo, respectively. HVTN 505 studies
binary biomarkers Sτ described in Section 7.

CEP(s1, s0) = h(risk1(s1, s0), risk0(s1, s0)) with h(x, y) a contrast function satisfying h(x, y) = 0 if and
only if x = y and h(x, y) < 0 for x < y.

Case CB A study where Sτ is constant (“Constant Biomarker") in Z = 0 participants.
VE(s1) = CEP(s1, 0) for s1 ∈ {0, 1}with h(x, y) = 1− x/y. In HVTN 505, Case CB holds (P(Sτ = 0) = 1).

VE(1) and VE(0) are vaccine eflcacy for the subgroups with biomarker response if assigned
vaccine Sτ(1) = 1 and Sτ(1) = 0, respectively.

3 Assumptions and Identifiability of the PS Target Parameters
CEP(s1, s0)

3.1 Additional Notation and Identifiability Assumptions

LetW be a vector of baseline covariates measured in everyone, and R be the indicator of whether the binary
endpoint Sτ is measured at τ. To fit the most common applications in clinical trials we assume Y is binary; in
the case of a time-to-event outcome, Y = I(T ≤ t), where T is the time from randomization until the endpoint
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and t > τ is a fixed time point of interest. Note that Sτ is undefined if T ≤ τ, which we denote as Sτ = *. Define
p(s1, s0) ≡ P(Sτ(1) = s1, Sτ(0) = s0|Yτ(1) = Yτ(0) = 0) for (s1, s0) ∈ {(0, 0), (1, 0), (1, 1)}.

Throughout wemake a baseline set of assumptionsmade in essentially all previous frequentist inference
SACE papers. We assume the (Zi ,Wi , Ri , Yτi (1), Yτi (0), Sτi (1), Sτi (0),
Yi(1), Yi(0)), i = 1, . . . , n, are iid [with observed data Oi = (Zi ,Wi , Ri , Sτi , Yτi , Yi), with Sτi only observed if
Ri = 1] and assume A1 SUTVA (Stable Unit Treatment Value Assumption); A2 Ignorable Treatment Assign-
ment: Conditional onW, Z is independent of (Yτ(1), Yτ(0), Sτ(1), Sτ(0), Y(1), Y(0)); and A3 No Censoring or
Random Censoring: The binary endpoint Y is observed for all participants, or, if Y = I(T ≤ t) with T subject
to right-censoring C, C(z) is random conditional on W (T(z) ⊥ C(z)|W for z = 0, 1). As introduced above,
we develop the methods under each of three assumptions regarding early final endpoint events before the
intermediate endpoint Sτ is measured at τ:

A4 No Early Effect (NEE): P(Yτ(1) = Yτ(0)) = 1

A4′ No Early Harm (NEH): P(Yτ(1) ≤ Yτ(0)) = 1

A4′′ No Early Benefit (NEB): P(Yτ(1) ≥ Yτ(0)) = 1

We also assume p(1, 0) > 0, which holds trivially for any PS application of interest.A4′ andA4′′ are standard
SACEmonotonicity assumptions for the analysis of {risk1, risk0}, whichweakens the strongNEE assumption
made in almost all papers on PS methods.

For the non-Case CB scenario where the biomarker Sτ(0) varies we also reduce the number of non-
identified terms via a biomarker monotonicity assumption:

A5 Biomarker Monotonicity: P(Sτ(0) ≤ Sτ(1)|Yτ(1) = Yτ(0) = 0) = 1.

A5 states that among participants who will not experience the clinical outcome Y = 1 by τ regardless of
treatment assignment, none have a negative treatment effect on the biomarker.

We develop the methods under four scenarios of assumption sets– NEE-VB: A1–A5 hold and Variable
Biomarker (VB) Sτ(0); NEE-CB: A1–A4 hold and Constant Biomarker (CB); NEH-CB : A1–A3, A4′ hold and
Constant Biomarker; NEB-CB : A1–A3, A4′′ hold and Constant Biomarker.

3.2 Identifiability of CEP(s1, s0)

There are 16 basic principal strata corresponding to all possible combinations of values for (Sτ(1), Sτ(0),
Yτ(1), Yτ(0)). Our assumptions, corresponding to the four scenarios stated above, imply that many of these
basic principal strata are empty. Our interest lies in parameters defined for four principal strata: three de-
fined by the basic principal strata Sτ(1) = s1, Sτ(0) = s0, Yτ(1) = Yτ(0) = 0 with (s1, s0) ∈ (0, 0), (1, 0), and
(1, 1), and the fourth defined by Yτ(1) = Yτ(0) = 0. Identification of these parameters requires additional
assumptions that can be expressed using sensitivity parameters. Once sensitivity parameters are fixed, the
parameters of interest become identifiable. Derivations for identification are given in Web Appendix A. For
scenarios NEE-VB, NEE-CB, NEH-CB, and NEB-CB, the numbers of required sensitivity parameters are 2, 1,
4, and 2.

4 SACE Methods and their Translation to PS Analysis

4.1 SACE Methods

In this section we use generic notation (Z, S, Y) to define the general SACE parameter [16], and in Section
4.2 show how it maps to the notation for the PS problem. A common objective is to assess the effect of a
randomized binary treatment Z on an outcome Y, where Y is only defined or observable for participants with
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a post-randomization intermediate response variable S equal to a certain level (S = 1, say). The SACE is the
average causal effect of Z on Y in the subgroup with S = 1 under both treatment assignments:

SACE ≡ h(E[Y(1)|S(1) = S(0) = 1], E[Y(0)|S(1) = S(0) = 1]), (1)

where h(x, y) is a contrast function meeting the requirements described in Table 1. Here S(z) and Y(z) are
potential outcomes of S and Y if a subject is assigned to treatment Z = z.

The large SACE methods literature has focused on the additive-difference contrast h(x, y)
= x − y and includes techniques for nonparametric bounds [17–21] and techniques for sensitivity analysis
that estimate the SACE under a spectrum of selection bias models [22–27]. Several of these methods make
the SACE monotonicity assumption [P(S(0) ≤ S(1)) = 1] and several relax this assumption. We use a general
contrast function h(x, y) because vaccine efficacy is typically measured by a multiplicative reduction in risk
rather than an additive difference.

4.2 SACE and PS Methods as Two Strains of Principal Stratification

For PS applications, the multiple SACE-defining intermediate outcomes S = 1 depend on both Yτ and Sτ

(detailed in Table 2). Because Sτ is typically categorical or continuous, PS applicationsmakes inference across
a spectrum of principal stratum subgroups, whereas SACE applications make inference for a single principal
stratum. Focusing on a single stratum has facilitated development of nonparametric and semiparametric
SACE methods that need only deal with one or a few terms that are not identified from the observed data,
whereas an attempt to apply SACE methods for each principal stratum defined by a general categorical Sτ

would face amuch larger number of non-identified terms that grows with the number of categories. However,
there is an important special case for which SACE methods can be practically adapted– when Sτ is binary–
for which only a few principal strata are of interest. Themotivating HVTN 505 application has binarymarkers
of interest.

Under each of the four assumption sets defined above, we show how to apply SACE methods to the PS
problem: inference about CEP(0, 0), CEP(1, 0), and CEP(1, 1). First, we write the overall conditional risks,
riskz ≡ P(Y(z) = 1|Yτ(1) = Yτ(0) = 0) for z = 0, 1, as weighted averages of the marker-subgroup conditional
risks:

riskz = p(0, 0)riskz(0, 0) + p(1, 0)riskz(1, 0) + p(1, 1)riskz(1, 1) for z = 0, 1. (2)

Equation (2) uses the fact that p(0, 1) = 0 under the assumptions we use.
The riskz and riskz(s1, s0) parameters measure risks in marker-defined subsets of the “always early un-

infected" principal stratum defined by {Yτ(1) = Yτ(0) = 0}. For scenario NEH-CB we will also use the
following parameters measuring risks in subsets of the “early protected" (EP) principal stratum defined by
{Yτ(1) = 0, Yτ(0) = 1}: riskEPz (s1, s0) ≡ P(Y(z) = 1|Sτ(1) = s1, Sτ(0) = s0, Yτ(1) = 0, Yτ(0) = 1) for
z, s1, s0 ∈ {0, 1}. And, for NEB-CB, the analogous parameters are needed for the “early harmed" principal
stratum.

The observation that motivated this work is that a contrast in risk1 and risk0 is a SACE (defined by inter-
mediate event S = 1 − Yτ = 1), a contrast in risk1(0, 0) and risk0(0, 0) is a SACE (defined by intermediate
event S = [1 − Yτ][1 − Sτ] = 1), a contrast in risk1(1, 1) and risk0(1, 1) is a SACE (defined by intermediate
event S = [1 − Yτ]Sτ = 1), and, whereas a contrast in risk1(1, 0) and risk0(1, 0) is not a SACE, these two
parameters are identified from (2) and the other parameters. Thus any two existing SACE methods can be
employed to estimate the two sets of means/probabilities {risk1, risk0} and {risk1(0, 0), risk0(0, 0)}, and
another for {risk1(1, 1), risk0(1, 1)} in scenario NEE-VB, and then equation (2) is applied to yield estimates
of the remaining two probabilities {risk1(1, 0), risk0(1, 0)} via

riskz(1, 0) =
[︀
riskz − p(0, 0)riskz(0, 0) − p(1, 1)riskz(1, 1)

]︀
/p(1, 0) (3)

(where riskz(1, 1) = 0 in the Case CB scenarios NEE-CB, NEH-CB, and NEB-CB).
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We interpret the SACE parameters in terms of our motivating application. The first is SACEAEU =
h(risk1, risk0), with the AEU subgroup being “always early uninfected" individuals with S = 1 indicating be-
ing uninfected with HIV-1 at time τ. The second is SACEAEUB0 = h(risk1(0, 0), risk0(0, 0)), with AEUB0 being
“always early uninfected andbiomarker (B) value Sτ = 0" individuals. The third is SACEAEUB1 = h(risk1(1, 1),
risk0(1, 1)), for “always early uninfected and biomarker value Sτ = 1" individuals.

Table 2: Use of SACE Methods [With Numbers of Sensitivity Parameters (S.P.s)] for Estimation of CEP(s1 , s0) =
h(risk1(s1 , s0), risk0(s1 , s0)) for (s1 , s0) = (0, 0), (1, 0), (1, 1)

Assumption Sets (Identifiability Assumptions)
Target Parameter NEE-VB NEE-CB NEH-CB NEB-CB

(A1–A5) (A1–A4) (A1–A3, A4′) (A1–A3, A4′′)
SACEAEU = Nonpar. Nonpar. Any SACE Any SACE
h(risk1, risk0) ident. ident. method w/ method w/
SACE with mon. A4′a mon. A4′′b

S ≡ 1 − Yτ (0 S.P.s) (0 S.P.s) (1 S.P.) (1 S.P.)
SACEAEUB0 = Any SACE Any SACE Any SACE Any SACE
h(risk1(0, 0), risk0(0, 0)) method w/ method w/ method w/o method w/
SACE with mon. A5c,d mon. A5d mon.e mon.f

S ≡ [1 − Yτ][1 − Sτ] (1 S.P.) (1 S.P.) (3 S.P.s) (1 S.P.)
SACEAEUB1 = Any SACE N/A N/A N/A
h(risk1(1, 1), risk0(1, 1)) method w/ N/A N/A N/A
SACE with mon. A5g N/A N/A N/A
S ≡ [1 − Yτ]Sτ (1 S.P.) N/A N/A N/A

aThe monotonicity assumption for the SACE method is P(S(0) ≤ S(1)) = 1 with S ≡ 1 − Yτ.
bThe monotonicity assumption for the SACE method is P(S(0) ≥ S(1)) = 1 with S ≡ 1 − Yτ.

cThe monotonicity assumption is P(S(1) ≤ S(0)) = 1 with S ≡ [1 − Yτ][1 − Sτ].
dBy A4, the monotonicity assumption in footnote c simplifies to P(Sτ(0) ≤ Sτ(1)|Yτ = 0) = 1, which holds by

A5 in scenario NEE-VB and by Case CB in scenario NEE-CB.
eUnder A4′ and Case CB in scenario NEH-CB, the monotonicity assumption expressed in footnote c

amounts to no Z = 1 participants with a negative biomarker response at τ would be protected by τ. This
assumption is often difficult to justify and hence we use methods without monotonicity.
fThe monotonicity assumption expressed in footnote c holds in scenario NEB-CB by A4′′.
gThe monotonicity assumption is P(S(0) ≤ S(1)) = 1 with S ≡ [1 − Yτ]Sτ. By A4, the monotonicity

assumption expressed in footnote e simplifies to P(Sτ(0) ≤ Sτ(1)|Yτ = 0) = 1, which holds by A5 in scenario
NEE-VB.

The CEP parameters are linked to the three SACE parameters and risks through CEP(0, 0) = SACEAEUB0,
CEP(1, 1) = SACEAEUB1, and CEP(1, 0) = h(risk1(1, 0), risk0(1, 0)) with riskz(s1, s0) as in (3). Thus our ap-
proach pieces together SACE estimates and estimates of the means p(s1, s0) to yield estimates of the CEP
parameters, where the estimators focusing on subgroups defined by Sτ must account for Sτ only measured
in a subset, e.g., through inverse probability weighting. For h(x, y) = x − y, h(risk1(1, 0), risk0(1, 0)) =
[SACEAEU − p(0, 0) SACEAEUB0 − p(1, 1) SACEAEUB1]/p(1, 0).

4.3 Mapping Existing SACE Methods to Estimate the PS Parameters CEP(s1, s0)

Table 2 summarizes how SACE methods can be used to estimate the CEP(s1, s0) parameters for the four
assumption-set scenarios. Under NEE-VB, SACEAEU is nonparametrically identified by A4. CEP(0, 0) =
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SACEAEUB0 canbe estimatedusing any SACEmethodmaking themonotonicity assumption P(S(1) ≤ S(0)) = 1,
with S =

[︀
1 − Yτ

]︀ [︀
1 − Sτ

]︀
= 1. Similarly, CEP(1, 1) = SACEAEUB1 can be estimated with a SACEmethod using

the same monotonicity assumption but now with S =
[︀
1 − Yτ

]︀
Sτ = 1. The mixing parameters, p(s1, s0), are

all nonparametrically identified, such that CEP(1, 0) = h(risk1(1, 0),
risk0(1, 0)) can be estimated based on equation (2).

Estimation under NEE-CB is identical to that of scenario NEE-VB except that risk1(1, 1) and risk0(1, 1)
vanish (because the principal stratum defined by

[︀
1 − Yτ(0)

]︀
Sτ(0) =[︀

1 − Yτ(1)
]︀
Sτ(1) = 1 is empty). For scenario NEH-CB, SACEAEU can be estimated using an existing SACE

methodmaking themonotonicity assumption P(S(1) ≤ S(0)) = 1,with intermediate event S = 1−Yτ = 1. Then,
CEP(0, 0) = SACEAEUB0 can be estimated using an arbitrary SACEmethod that does not assumemonotonicity.

5 Illustration of the Approach with IPW Extensions of Particular
SACE Methods

For each assumption set scenario, we show how the PS estimation and inference works using an exten-
sion of Shepherd, Gilbert, and Dupont’s [24] SACE method, which in scenarios NEE-VB, NEE-CB simplifies
to the Gilbert, Bosch, and Hudgens [22] (GBH) SACE method. The extension incorporates inverse probabil-
ity weighting (IPW) to handle missing Sτ. We focus on semiparametric efficient estimators given the data
(Z, R, Yτ , Sτ , Y) not including baseline covariates W, which amount to sample means with or without IPW
as needed. Moreover, we focus on the case that Y is binary and observed for all participants; Web Appendix
C summarizes how the methods translate to Y = I(T ≤ t) with T subject to right-censoring before t. We use
general estimating function notation so that users preferring to use more efficient estimators leveraging in-
formation inW (e.g., [28]) may substitute alternative estimating functions into the equations.

5.1 General IPW Estimation

The SACE estimators involve estimation of identified terms E[Y|S = 1, Z = z] for subgroups S = 1 [with
S = 1−Yτ, (1−Yτ)Sτ, or (1−Yτ)(1−Sτ)] and of terms E[Sτ|Yτ = 0, Z = z], where Sτ is measured at time τ and
may be missing. Define the probability of observing Sτ as π(O1) ≡ P(R = 1|O1), where O1 is data observed in
everyone, i.e., (Z,W , Yτ , Y). We assume Sτ is missing at random, π(O1) = P(R = 1|O1, Sτ), and that π(O1) is
bounded away from zero, π(O1) ≥ ε with probability 1 for some fixed ε > 0.

Following standard IPW estimation, we specify a model π(O1, ψ) for π(O1) (e.g., logistic), and estimate
the parameterψ bymaximum likelihood, yielding π̂i = π(O1i , ψ̂). Efficiency and robustnessmay be improved
by calibrating the estimated weights π̂i accounting forWi (e.g., [29, 30]).

5.2 Dichotomous Outcome SACE Methods Under Scenario NEE-VB

For scenarioNEE-VB, thefirst step is to estimate the terms that arenonparametrically identified– {risk1, risk0},
p(0, 0), p(1, 0), and p(1, 1). Each riskz for z = 0, 1 can be estimated by any preferredmethod for estimating a
mean,most simply by solving

∑︀n
i=1 U

0z
i (Oi; riskz) = 0with estimating functionU0z(Oi; riskz) ≡ (1−Yτi )I(Zi =

z)(Yi − riskz).
Given p(0, 0) = P(Sτ = 0|Z = 1, Yτ = 0), if full data were available, then a simple approach would

estimate p(0, 0) by solving
∑︀n

i=1 U
01
i (Oi; p(0, 0)) = 0 with U01(Oi; p(0, 0)) ≡ (1 − Yτi )Zi(1 − Sτi − p(0, 0)),

with convention U01(Oi; p(0, 0)) = 0 if Sτi = *. The IPW version of this equation is
∑︀n

i=1 RiU
01
i (Oi; p(0, 0))/

π̂i = 0. The parameter p(1, 1) may be estimated similarly by solving
∑︀n

i=1 RiU
00
i (Oi; p(1, 1))/π̂i = 0 with

U00
i (Oi; p(1, 1)) ≡ (1 − Yτi )(1 − Zi)(Sτi − p(1, 1)), again with convention U00

i (Oi; p(1, 1)) = 0 if Sτi = *. With
p̂(0, 0) and p̂(1, 1), we then set p̂(1, 0) = 1 − p̂(0, 0) − p̂(1, 1).
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Lastly, we estimate each pair {risk1(0, 0), risk0(0, 0)} and {risk1(1, 1), risk0(1, 1)}with a SACEmethod
that assumesmonotonicity.We summarize how the GBHmethod, extended to incorporate IPW, accomplishes
this task.

GBH Semiparametric SACE Method with IPW (Notation as in GBH). Consider the odds ratio selection bias
model with user-specified fixed sensitivity parameter β0:

B.0 exp(β0) = P(S(1)=1|S(0)=1,Y(0)=1)/{1−P(S(1)=1|S(0)=1,Y(0)=1)}
P(S(1)=1|S(0)=1,Y(0)=0)/{1−P(S(1)=1|S(0)=1,Y(0)=0)} .

Under A1–A3, B.0, monotonicity [P(S(1) ≤ S(0)) = 1], and positivity [P(S(1) = 0, S(0) = 1) > 0, P(S(1) =
1, S(0) = 1) > 0], the two parameters of interest, P11(z) ≡ P(Y(z) = 1|S(1) = S(0) = 1) for z = 0, 1, are
nonparametrically identified.

By monotonicity P11(1) = P(Y(1) = 1|S(1) = 1), such that P11(1) is estimated by solving
∑︀n

i=1 RiU
1(Oi;

P(Y(1) = 1|S(1) = 1))/π̂i = 0 where U1(Oi; P(Y(1) = 1|S(1) = 1)) = ZiSi(Yi − P(Y(1) = 1|S(1) = 1)). Next,
P11(0) is estimated by first estimating α0 as the solution to

∑︀n
i=1 RiU

0(Oi; α0, β0)/π̂i = 0 where

U0(Oi; α0, β0) = Zi

⎛⎝Si − P̂(S(0) = 1)
1∑︁
y=0

w0(y; α0, β0)P̂(Y(0) = y|S(0) = 1)

⎞⎠ , (4)

where P̂(Y(0) = 1|S(0) = 1) is obtained in the same way as P̂(Y(1) = 1|S(1) = 1). Then with α̂0 from (4),
P̂11(0) = [P̂(S(0) = 1)/P̂(S(1) = 1)]w0(1; α̂0, β0)P̂(Y(0) = 1|S(0) = 1). We implement this “IPW GBH SACE
Method" verbatim multiple times below, with the meaning of S = 1 changing for estimating needed terms in
CEP(s1, s0).

Assumptions Needed for Valid Inferencewith the IPWGBHSACEMethod.We state additional assumptions,
beyond the identifiability assumptions, that are needed for valid inference via the IPWGBHSACEMethod. The
method requires P(S(1) = 1) < P(S(0) = 1) in order that P̂11(z) for each z = 0, 1 has an asymptotic normal dis-
tribution and thus to ensure that Wald confidence intervals for P11(z) based on asymptotic or nonparametric
bootstrap variance estimates have correct coverage probabilities [23]. Moreover, if P(S(1) = 1) < P(S(0) = 1)
but the probabilities are close, then theWald confidence intervals can have poor coverage. The general SACE
assumption P(S(1) = 1) < P(S(0) = 1) translated for ensuring valid inference on SACEAEUB0 and SACEAEUB1
forNEE-VB (Table 2) is A6 “Early Biomarker Effect": P(Sτ(0) = 1|Yτ = 0) < P(Sτ(1) = 1|Yτ = 0). A6 is also the
assumption needed for valid inference on SACEAEUB0 for NEE-CB. For NEH-CB, the general SACE assump-
tion translated for valid inference on SACEAEU is A7 “Early Benefit": P(Yτ(1) = 1) < P(Yτ(0) = 1), while for
NEB-CB it is A7′ “Early Harm" P(Yτ(1) = 1) > P(Yτ(0) = 1). Lastly, for NEB-CB the general SACE assumption
translated for inference on SACEAEUB0 is A8: P(Sτ(1) = 0|Yτ(1) = 0) < P(Yτ(0) = 0)/P(Yτ(1) = 0). A6 almost
always holds in applications and one of A7 or (A7′, A8) plausibly holds for many real binary PS applications,
as discussed in Section 7. Moreover, A7, A7′, A8 are testable such that the conditions needed to assure valid
inference can be checked.

Implementing the IPW GBH SACE Method for CEP(s1, s0). The semiparametric MLEs ^risk1(0, 0) and
^risk0(0, 0) are obtained as P̂11(1) and P̂11(0), using S ≡ [1 − Yτ][1 − Sτ] with B.0 and a fixed β0. The

semiparametric MLEs ^risk1(1, 1) and ^risk0(1, 1) are obtained in the same way with S ≡ [1 − Yτ]Sτ, with
monotonicity assumption in the reverse direction [i.e., P(S(1) ≥ S(0)) = 1]. This means that we use the IPW
GBH SACE Method reversing the roles of Z = 1 and Z = 0, leading to a selection bias model defined by:

B.1 exp(β1) = P(S(0)=1|S(1)=1,Y(1)=1)/{1−P(S(0)=1|S(1)=1,Y(1)=1)}
P(S(0)=1|S(1)=1,Y(1)=0)/{1−P(S(0)=1|S(1)=1,Y(1)=0)} .

The estimate P̂11(0) is obtained based on U0(Oi; P(Y(0) = 1|S(0) = 1)) = (1 − Zi)Si(Yi − P(Y(0) = 1|S(0) =
1))/

∑︀n
i=1(1 − Zi)Si and P̂

11(1) is obtained by setting

P̂11(1) = [P̂(S(1) = 1)/P̂(S(0) = 1)]w1(1; α̂1, β1)P̂(Y(1) = 1|S(1) = 1) (5)

after estimating α1 from U1(Oi; α1, β1) =

(1 − Zi)

⎛⎝Si − P̂(S(1) = 1)
1∑︁
y=0

w1(y; α1, β1)P̂(Y(1) = y|S(1) = 1)

⎞⎠ . (6)
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By standard estimating equation theory, the above estimators are consistent and asymptotically normal
for given fixed β0 and β1. To obtain Wald confidence intervals for each CEP(s1, s0), consistent estimating-
function based variance estimators may be used for the estimates P̂11(z) not involving α̂0 or α̂1; e.g., the
estimatedvarianceof P̂11(1) for the IPWGBHSACEMethod is givenby

∑︀n
i=1

(︀
Ri/π̂i

)︀ [︁
U1(Oi; P̂(Y(1) = 1|S(1) =

1))
]︁2
. Influence-function based variance estimates are similarly obtained for the estimates P̂11(z) involving

α̂0 or α̂1, by using a vector estimating function and the delta method. For example, the four components of
the estimating function in (6) are for (α̂1, P̂(S(1) = 1), P̂(S(0) = 1), P̂(Y(1) = 1|S(1) = 1))T , with delta method
applied with g(w, x, y, z) = x

yw1(1;w, β1)z. All variance estimation is performed with the R package geex
[31].

To perform a sensitivity analysis, one approach specifies a plausible range [lk , uk] (or maximum pos-
sible) for each sensitivity parameter βk, k = 0, 1. An ignorance interval for CEP(s1, s0) may be estimated
by the span of values between the minimum and maximum estimates, obtained by setting β0 and β1 to the
boundary values. Using themethod of Imbens andManski [32] andVansteelandt et al. [33], aWald asymptotic
(1-α)% estimated uncertainty interval (EUI) for CEP(s1, s0) may be calculated as in formulas (40) and (41) of
Richardson et al. [34], using the variance estimates of the minimum and maximum CEP(s1, s0) estimates. In
particular, let ^CEPl(s1, s0) and ^CEPu(s1, s0) be the estimates of CEP(s1, s0) fixing the sensitivity parameters
at the values within a pre-specified plausible region Γ = [l0, u0] × [l1, u1] of the sensitivity parameter(s) that
minimize or maximize ^CEP(s1, s0), respectively. With σ̂2l and σ̂

2
u consistent estimates of the asymptotic lim-

iting variances of ^CEPl(s1, s0) and ^CEPu(s1, s0), respectively, a (1-α)% EUI is given by [ ^CEPl(s1, s0) − cα σ̂l/√
n, ^CEPu(s1, s0) + cα σ̂u/

√
n], where cα satisfies

Φ
(︁
cα +

(︁√
n( ^CEPu(s1, s0) − ^CEPl(s1, s0))

)︁
/max{σ̂l , σ̂u}

)︁
− Φ(−cα) = 1 − α,

where Φ(·) denotes the cdf of a standard normal variate. The same approach can be used to construct Wald
confidence intervals and EUIs for the other scenarios and SACE approaches described below. Theoretical
justification of these EUIs relies on the assumption that the values 𝛾l , 𝛾u ∈ Γ that correspond to the ignorance
interval for CEP(s1, s0) are the same for all possible observeddata laws (condition (39) from [34]),whichholds
for NEE-VB and NEE-CB and may need validation for NEH-CB and NEB-CB applications.

5.3 Dichotomous Outcome SACE Methods Under Scenario NEE-CB

For scenario NEE-CB, CEP(s1, 0) for s1 = 0, 1 can be estimated exactly as for NEE-VB, with one change that
SACE(1, 1) vanishes because p(1, 1) = 0. In particular, first {risk1, risk0} and p(0, 0) are estimated as in
scenario NEE-VB, and then p(1, 0) is estimated as p̂(1, 0) = 1 − p̂(0, 0). Secondly, {risk1(0, 0), risk0(0, 0)}
are estimated as in scenario NEE-VB. Lastly, riskz(1, 0) for each z = 0, 1 is estimated via equation (3)
plugging in estimates for each term. These steps amount to first estimating risk1(0, 0) by the solution to∑︀n

i=1 RiZi(1 − Y
τ
i )(1 − Sτi )(Yi − risk1(0, 0))/π̂i = 0, with convention that the summand is zero if Sτi = *. Then

risk0(0, 0) and risk0(1, 0) are estimated by the solutions to the equations B.0 and ^risk0 − risk0(0, 0)p̂(0, 0)−
risk0(1, 0)p̂(1, 0) = 0; our code for the simulation study and example are implemented in this manner.

5.4 Dichotomous Outcome SACE Methods Under Scenario NEH-CB

We implement an IPW extension of the Shepherd, Gilbert, and Dupont [24] SACE method that relaxes mono-
tonicity by using the sensitivity parameter β0 in B.0 plus three additional sensitivity parameters:

B.2 exp(β2) = risk1(0,0)/{1−risk1(0,0)}
risk1(0,*)/{1−risk1(0,*)}

B.3 exp(β3) = risk1(1,0)/{1−risk1(1,0)}
risk1(1,*)/{1−risk1(1,*)}

B.4 exp(β4) = p(1,0)/{1−p(1,0)}
P(Sτ(1)=1|0,1)/{1−P(Sτ(1)=1|0,1)} ,
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where risk1(s1, *) ≡ P(Y(1) = 1|Sτ(1) = s1, Sτ(0) = *, Yτ(1) = 0, Yτ(0) = 1) for S1 = 0, 1 and P(Sτ(1) =
1|0, 1) ≡ P(Sτ(1) = 1|Yτ(1) = 0, Yτ(0) = 1). The estimation steps are similar to those taken for scenario
NEE-CB: First, estimate p(1, 0) and P(Sτ(1) = 1|Yτ(1) = 0, Yτ(0) = 1) as the solutions to the two equations
B.4 and

P̂(Sτ(1) = 1|Yτ(1) = 0) − p(1, 0)P̂(Yτ(0) = 0|Yτ(1) = 0)

− P(Sτ(1) = 1|Yτ(1) = 0, Yτ(0) = 1){1 − P̂(Yτ(0) = 0|Yτ(1) = 0)} = 0.

Then risk0(0, 0) and risk0(1, 0) are estimated as in scenarioNEE-CB. Finally, risk1(s1, 0) and risk1(s1, *) are
estimated as the solutions to P̂(Y(1) = 1|Yτ(1) = 0, Sτ(1) = s1) − risk1(s1, 0)P̂(Yτ(0) = 0, Sτ(0) = 0|Yτ(1) =
0, Sτ(1) = s1) − risk1(s1, *){1 − P̂(Yτ(0) = 0, Sτ(0) = 0|Yτ(1) = 0, Sτ(1) = s1)} = 0 and either B.2 for s1 = 0 or
B.3 for s1 = 1.

5.5 Dichotomous Outcome SACE Methods Under Scenario NEB-CB

A SACE method for this scenario uses the sensitivity parameter β0 in B.0 and one additional sensitivity pa-
rameter defined as B.5:

B.5 exp(β5) = risk0/(1−risk0)
P(Y(0)=1|Yτ(1)=1,Yτ(0)=0)/(1−P(Y(0)=1|Yτ(1)=1,Yτ(0)=0)) .

The parameters CEP(1, 0) and CEP(0, 0) can be estimated exactly as in NEE-CB, except that risk0 is not
identifiable and thus its estimation leverages the additional assumption B.5. We estimate risk0 and P(Y(0) =
1|Yτ(1) = 1, Yτ(0) = 0) as the solutions to B.5 and P(Y(0) = 1|Yτ(0) = 0) = P(Yτ(1) = 0|Yτ(0) = 0)risk0 +
P(Yτ(1) = 1|Yτ(0) = 0)P(Y(0) = 1|Yτ(1) = 1, Yτ(0) = 0). Then, estimation of risk1, p(0, 0), risk1(1, 0),
risk1(0, 0), risk0(1, 0), and risk0(0, 0) is identical to that described for NEE-CB.

5.6 Effect Modification Analysis: Inference on Contrasts in CEP(s1, s0)

Formaking inference on contrasts in the CEP(s1, s0), such as µ ≡ CEP(1, 0)−CEP(0, 0), our set-up constrains
µ to values narrower than the maximum possible range −2 to 2. For example, for scenario NEE-CB, setting
β0 = 0 implies risk0(1, 0) = risk0(0, 0), which leaves each of CEP(1, 0) and CEP(0, 0) free to vary over the
maximum possible range as for any SACE method but constrains µ to −1 to 1. Thus making inference on con-
trasts of CEP(s1, s0) does not achieve just-nonparametric identifiability as does inference on the individual
CEP(s1, s0) parameters. This should be borne in mind when inference is made on CEP contrasts as well as
on the individual parameters.

6 Simulation Study
We first simulated data sets under the assumptions of NEE-CB. For each of n independent individuals, we
generated potential outcomes and then observed outcomes. First, (Yτ(1), Yτ(0)) was set to (0,0) or (1,1) with
probabilities 0.8 and 0.2, such thatA4 (NEE) holds. If Yτ(1) = 1, then Y(0) and Y(1) were set to 1. If Yτ(1) = 0,
then (Sτ(1), Sτ(0)) was set to (0,0) or (1,0) with probabilities 0.4 and 0.6, such that Case CB holds.

To evaluate size and power of a test of H0 : CEP(1, 0) = CEP(0, 0) versus H1 : CEP(1, 0) ≠ CEP(0, 0),
data were simulated under 13 different values for CEP(1, 0) − CEP(0, 0): −0.6, −0.5, . . . , 0.6. Specifically, if
Yτ(1) = 0 and Sτ(1) = Sτ(0) = 0, then Y(1) was generated as Bernoulli with mean a (Bern(a)) and Y(0)
as Bern(0.5). If Yτ(1) = 0 and Sτ(1) = 1, Sτ(0) = 0, then Y(1) was Bern(b) and Y(0) was Bern(0.5). Thus
CEP(1, 0) − CEP(0, 0) = b − a for contrast function h(x, y) = x − y. The values of a ranged from 0.7 to 0.1
by decrements of 0.05 and b increased from 0.1 to 0.7 by increments of 0.05. Under this parameterization
risk0(0, 0) = 0.5 = risk0(1, 0), implying β0 = 0.
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To generate the observed data, Z was drawn from Bern(0.5), and the vector of observable random vari-
ables (Z, Yτ , Sτ , Y) = (Z, Yτ(Z), Sτ(Z), Y(Z)) was determined. Simulations were conducted with and without
case-cohort sampling of Sτ. For the latter, membership in the random subcohort was determined by R drawn
from Bern(ν). For individuals with Yτ = 0, Sτ was observed for subcohort members (i.e., R = 1) and cases
(i.e., Y = 1).

Data setswere generated for all 156 combinations of: n ∈ {200, 400, 800, 1600}; ν ∈ {0.1, 0.25, 1}; and
CEP(1, 0) − CEP(0, 0) ∈ {−0.6, −0.5, . . . , 0.6}, except the 13 scenarios with n = 200 and ν = 0.1 were not
studied because only 8 vaccine recipient uninfected controls are expected to have Sτ measured. All results
are based on 2000 simulated data sets. Analyses used [l0, u0] ∈ {[0, 0], [−1, 1], [−2.5, 2.5]}. The true values
for CEP(1, 0) and CEP(0, 0) were selected to include zero effect modification and gradients in effect modifi-
cation magnitudes in both directions, with values (a, b) ∈ {(0.1, 0.7), (0.15, 0.65), (0.2, 0.6), (0.25, 0.55),
(0.55, 0.25), (0.6, 0.2), (0.65, 0.15), (0.7, 0.1)} expressing qualitative interactions. For each simulated data
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Figure 1: Power to reject H0 : µ = CEP(1, 0) = CEP(0, 0) for the simulation study under Scenario NEE-CB. Solid black lines
denote full cohort and dashed (dotted) lines denote case-cohort with 10% (25%) random subcohort.
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set, the data analysis was done using themethods for the scenarioNEE-CB assumption set. The null hypothe-
sis H0 was rejected if and only if the 95% EUI for µ = CEP(1, 0)−CEP(0, 0) calculated as described in Section
5 excluded 0. Power was estimated by the proportion of simulated data sets where H0 was rejected (Figure 1).

Empirical type I error was close to the nominal level α = 0.05. Power increased with sample size and
decreased as the interval [l0, u0] became wider and as the subcohort size decreased. Web Figure 1 (Web Ap-
pendix D) shows the average widths of the 95% EUIs for µ. The EUIs cover at approximately the nominal rate
when l0 = u0, i.e., when µ is identifiable, and are conservative otherwise. The widths are relatively constant
across values of µ and increase as the subcohort size decreases. Empirical coverage of the 95% EUIs are plot-
ted in Web Figure 2. Web Figures 3 and 4 display bias of the µ̂ estimates and ratios of the empirical standard
errors (ESE) to the average of the sandwich variance estimated standard errors (ASE), showing unbiasedness
of both the point and standard error estimators.

A second simulation study was conducted, with data simulated under scenario NEH-CB such that A4 in
scenario NEE-CB failed. Web Appendix D describes details and results, with data analysis by the methods
under assumption-set NEH-CB (Web Figures 5–9).

7 Application: HVTN 505 HIV Vaccine Eflcacy Trial
We apply the new PS methods to HVTN 505. The PFS biomarker described in the introduction [2] is a quanti-
tative aggregate score derived from constituent qualitative biomarkers that are of interest for binary interme-
diate outcome PS analysis. The data from a vaccine recipient’s Month 6.5 blood sample are measurements of
expression of 6 different functional markers (Granzyme-B, IL4, CD40L, TNFalpha, IL2, IFNgamma) in CD8+
T cells after stimulation with HIV-1 peptides. The Bayesian method COMPASS [35] provided, for each vaccine
recipient and eachof the 26 = 64possible cell subsets (i.e., combinations of functionalmarkers), the probabil-
ity the subset was expressed. A question of interest is whether the vaccine effect on HIV-1 infection varied by
expression yes vs. no for any of the 64 subsets. Identification of specific cell subsets associated with vaccine
protection or harm would give clues on cellular mechanisms of vaccine effect.

In this application Yτ is the indicator of HIV-1 infection diagnosis between enrollment and the Month
τ = 6.5 study visit, and Y is the indicator of this event by the Month 24 final follow-up visit; moreover Sτ is a
binary biomarkermeasured fromaMonth 6.5 visit blood sample.Wedefined a vaccine recipient as expressing
a given T cell subset (Sτ = 1) if the COMPASS posterior probability exceeded 0.9, and as not expressing the
subset (Sτ = 0) if the posterior probability was below 0.1. We restricted to cell subsets with at least 25% of
vaccine recipients expressing and at least 25% not expressing the subset, to focus on subsets with ample
data support. This yielded three cell subsets for analysis, defined by (GranzymeB, IL4, CD40L, TNFalpha,
IL2, IFNgamma) expression pattern of (1) (−,−,−,−,+,+), (2) (+,−,−,−,+,+), and (3) (+,−,+,+,−,+), where + or -
indicate that cells do or do not have the function. Among uninfected vaccine recipients (i.e., sampled controls
with Y = 0) with Sτ data, 71 of 110 (64.5%), 70 of 124 (56.5%), and 43 of 125 (34.4%) have Sτ = 1, respectively.
Among infected vaccine recipients (i.e., cases with Y = 1) with Sτ data, 5 of 21 (23.8%), 3 of 25 (12.0%), and 1
of 25 (4.0%) have Sτ = 1. Given Case CB holds, for each biomarker our goal is inference on VE(0) = CEP(0, 0)
and VE(1) = CEP(1, 0), using the vaccine efficacy contrast h(x, y) = 1−x/y (Table 1). For reasons given below,
we implement themethods using theNEE-CBmethod and theNEB-CBmethod.We consider themeaning and
plausibility for HVTN 505 of the critical assumptions in question needed for these two approaches – (A4, A6)
and (A4′′,A7′,A8), respectively, whereA6,A7′, andA8 are needed for valid inference as described in Section
5.2. A4 (NEE) states that the vaccine has no individual-level effects on infection between enrollment and
Month 6.5, which is defensible given that P̂(Yτ(1) = 1) = 14/1251 = 0.011 and P̂(Yτ(0) = 1) = 10/1245 =
0.0080 with Fisher’s exact test 2-sided p-value of p = 0.54 for a difference. Because 0.011 > 0.0080, we also
consider the NEB-CB method that relaxes A4 to A4′′ (no individual-level beneficial vaccine effects through
Month 6.5).

A6 states that the biomarker has a higher frequency of response for at-risk vaccine than placebo recip-
ients, which essentially always holds. Under Case CB as in HVTN 505 (with P(Sτ(0) = 1|Yτ = 0) = 0), it
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obviously holds. A7′ states that there is a harmful vaccine effect (in expectations) through Month 6.5, which
is consistent with the point estimates 0.011 vs. 0.0080 but is not supported by the hypothesis testing with
p = 0.54. In rare event studies such as HVTN 505, A8 states that the fraction of vaccine recipients with posi-
tive biomarker response Sτ = 1 is not near zero, which holds. In sum, the method for scenario NEE-CBmay
be the most reasonable because it does not require Early Harm A7′, and we focus on its results; we also apply
the NEB-CB method for comparison. The NEE-CB and NEB-CB methods are implemented as described in
Sections 5.3 and 5.5, respectively.
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Figure 2: For HVTN 505, ignorance intervals (solid lines) and 95% EUIs (dashed lines) for VE(0) = CEP(0, 0) and VE(1) =
CEP(1, 0) and µ = VE(1) − VE(0) with binary Month 6.5 biomarker Sτ equal to 1 (0) if the vaccine recipient expresses (does not
express) the CD8+ T-cell subset defined by expression pattern (Sτ1) (−,−,−,−,+,+), (Sτ2) (+,−,−,−,+,+), or (Sτ3) (+,−,+,+,−,+). The
sensitivity analysis allows β0 and β1 to vary over [l0 , u0] = [0, 0], [−0.5, 0.5], or [−1, 1]; circles are point estimates assuming
no selection bias. The top panel shows results for µ = VE(1) − VE(0) with the black and grey lines (left and right) results for the
scenario NEE-CB and NEB-CBmethod, respectively. The bottom panel shows scenario NEE-CB results for VE(1) and VE(0).
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Figure 2 shows the results in terms of ignorance intervals and 95% EUIs under each of the three ranges of
sensitivity parameters specified in the simulations. To interpret the sensitivity analysis, note that the single
sensitivity parameter β0 for the NEE-CB method has interpretation as the log odds ratio that the biomarker
response to vaccination Sτ(1) takes value 0 for a placebo recipient who is diagnosed with HIV-1 infection be-
tweenMonth 6.5 and 24 compared to a placebo recipient who is not diagnosedwithHIV-1 infection through 24
months. Setting β0 to 0, 0.5, and 1 specifies no, intermediate, and highest degree of selection bias, correspond-
ing to the odds ratio eβ0 varying over [1,1], [0.61,1.65], and [0.37,2.72]. TheNEB-CBmethod uses the additional
sensitivity parameter β5 (defined in Section 5.5),which is the log odds ratio of infection for a placebo recipient,
comparing the always early uninfected (AEU) subgroup (numerator) to the early harmed subgroup (denomi-
nator); thus it measures the degree to which vaccine-caused infection byMonth 6.5 is prognostic for infection
by Month 24 if assigned placebo. It was varied over the same range as β0.

On the results, first note that theNEE-CB andNEB-CBmethods give very similar results (top panel), with
EUIs for the latter method only very slightly wider (and thus the bottom panel only shows results from the
NEE-CBmethod). Web Appendix E (especiallyWeb Figure 10) studies why themethods under scenariosNEE-
CB andNEB-CB are essentially equivalent for HVTN 505, with extra simulations suggesting that a key part of
the explanation is that P(Yτ(1) = 1, Yτ(0) = 0) is small. Second, the results are similar for the three markers,
with evidence for effect modification across the expressed vs. not expressed subgroups based on the 95%
EUIs for µ = VE(1) − VE(0) lying above zero even when allowing for the largest amount of potential selection
bias (β = 1, Figure 2 upper-right panel, with lower EUI limit 0.12, 0.19, 0.18 for marker Sτ1, Sτ2, Sτ3).

The bottom panel shows that VE(1) is estimated to be positive for eachmarker (ignorance intervals 0.70–
0.85, 0.78–0.91, 0.85–0.96 and 95% EUIs 0.44–0.98, 0.54–1.0, 0.59–0.96, respectively), whereas VE(0) is esti-
mated to be less than zero with wide estimated uncertainty intervals. Based on ignorance intervals these re-
sults support a qualitative interaction for each marker. However, because the upper 95% EUI limits for VE(0)
extend well above 0, there is not compelling evidence for qualitative interactions.

Remarkably, the results support differential vaccine efficacy according to whether the vaccine induced
CD8+ T cells with expression vs. not expression of specific cell subsets, suggesting that the vaccine may
have conferred partial protection for individuals with certain identified expression signatures. Thismotivates
follow-on basic science studies of cellular mechanisms of protection. The HIV vaccine field has “moved on"
from the DNA/rAd5 type of HIV vaccine platform, no longer considering it. Thus these new results sound a
note of caution to not prematurely abandon this platform, in suggesting that if a new version of the regimen
could be invented that induces the specific cell subset responses in a much larger subgroup of vaccine recipi-
ents, then it could potentially confer high enough overall vaccine efficacy to confer worthwhile public health
benefit.

8 Discussion
A sizable literature on nonparametric and semiparametric methods for inference on the survivor average
causal effect (SACE) parameter has developed over the past 20 years. Motivated by the need for more robust
principal surrogate (PS) analysis inHVTN505,we describedhow thesemethods canbe adapted to PS analysis
for a binary intermediate variable. This provides new methods for PS analysis, with novel features summa-
rized in the Introduction, all of whichwere needed for the HVTN 505 application, to appropriately account for
the study design and available data and to relax questionable and untestable assumptions. The newmethods
have application to similar PS questions in other randomized clinical trials.

More robust PS assessment of a qualitative interaction in HVTN 505 was important given the appropriate
skepticism that the DNA/rAd5 vaccine could have both beneficial and detrimental effects. The data analysis
supported that DNA/rAd5 vaccinated subgroups defined by induction of CD8+ T cells with specific functions
had beneficial vaccine efficacy, motivating further research to re-engineer the vaccine regimen to increase
induction of these cells.
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PSanalysis canbe improvedby accounting for baseline covariates associatedwith principal strata and/or
the final outcome [16, 36]. The specific PSmethods described in Section 5 can account for baseline covariates
by implementinganypreferred covariate-adjusted estimator of themeans risk1, risk0, p(0, 0), p(1, 0), p(1, 1).
An appealing alternative approach that fully accounts for baseline covariates – principal score methods [10–
12] –provide PS analysis under a different assumption, principal ignorability, and provide an alternative
sensitivity analysis. In general, given that the key steps in estimating the CEP(s1, s0) parameters is esti-
mation of the three SACES listed in Table 2, any SACE method that accounts for baseline covariates can be
integrated into a new method of PS analysis.
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