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Recent advances in dibenzo[b,f][1,4]oxazepine 
synthesis

Abstract: Dibenzo[b,f][1,4]oxazepine (DBO) derivatives 
possess an array of pharmacological activities, and are of 
growing pharmaceutical interest. Twelve recent synthetic 
protocols to construct DBO and DBO derivatives have been 
described in this review. The reported methods include 
cyclocondensation with two precursors exemplified by sub-
stituted 2-aminophenols and substituted 2-halobenzalde-
hydes, substituted 2-nitro-1-bromobenzene and substituted 
2-triazolylphenols, substituted 2-nitro-1-bromobenzene and 
substituted 2-hydrazonamidophenol, substituted 2-nitro-
1-bromobenzene and substituted 2-(aminomethyl)phenol, 
and 2-aminobenzonitrile and 1,4-dichloro-2-nitrobenzene. 
Other methods include copper catalysis, 1,3-dipolar 
cycloaddition, domino elimination-rearrangement-addi-
tion sequence, and an Ugi four-component reaction fol-
lowed by an intramolecular O-arylation. These methods 
will serve as a guide to chemists in developing DBO deriva-
tives of pharmacological interest.
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Introduction

Three isomeric forms of dibenzoxazepine systems are pos-
sible – dibenz[b,f][1,4]oxazepine (DBO) 1, dibenz[b,e][1,4]
oxazepine 2, and dibenz[c,f][1,2]oxazepine 3 (Figure 1).

Among tricyclic isomers 1–3, the DBO ring system 1 is 
of particular interest because it is found in many physi-
ologically active compounds. Compounds containing 
chemotype 1 include antidepressants [1], analgesics [2], 
calcium channel antagonists [3], a histamine H4 receptor 
agonist [4], a non-nucleoside HIV-1 reverse transcriptase 
inhibitor [5], and a lachrymatory agent [6]. This review 
provides synthetic chemists with an update on the pro-
gress in the synthesis of DBO derivatives.

Synthetic strategies to DBOs
In a report by Ghafarzadeh et  al. [7], DBO derivatives 6 
were synthesized in short reaction time in yields of 78–
87% (Scheme 1). Substituted 2-chlorobenzaldehydes 4 
were allowed to react with substituted 2-aminophenols 
5 under basic conditions in a microwave oven. The sim-
plicity of the reaction and a short reaction time make this 
method attractive from a practical standpoint.

Sang et al. [8] reported a protocol for the one-pot syn-
thesis of indole/benzimidazole-fused DBOs 9 via copper 
catalysis (Scheme 2). The reaction involves a copper 
initiated C-N and C-O coupling of 2-halophenols 7 and 
2-(2-halophenyl)-1H-indoles 8 in one pot. Use of easily 
available aryl chlorides enhances the practical applica-
tion of this method. Notably, this transformation involves 
a Smiles rearrangement (1,5-hydrogen shift) leading to the 
observed regioselectivity.

Khlebnikov et al. [9] reported synthesis of novel DBO 
derivatives – dibenzo[b,f]pyrrolo[1,2-d][1,4]oxazepines 18 
(Scheme 3). The synthesis involves reaction of imines 10 
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Figure 1 Isomeric forms of dibenzoxazepine systems.
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Scheme 3 Synthesis of dibenzo[b,f]pyrrolo[1,2-d][1,4]oxazepines 18 via formation of aziridines followed by 1,3-dipolar cycloaddition of 
dibenzoxazepinium ylides 16 with alkenes 17.
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Scheme 1 Microwave-induced formation of DBO derivatives 6.
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Scheme 2 Synthesis of indole/benzimidazole-fused DBOs 9 via copper catalysis.

with dichlorocarbene to afford 2,2-dichloroaziridines 12 
through intermediate 11. gem-Dichloroaziridines isomerize 
to imidoylchlorides in the presence of Lewis acids, which 
are also well-known catalysts for Friedal-Crafts acyla-
tion. Hence, treating 12 with AlCl3 leads to domino reac-
tions – azirdine ring opening followed by Friedal-Crafts 
acylation – to afford oxazepines 14. Compounds 14 were 
treated with LiAlH4 to afford aziridinobenzooxazepines 
15. Heating compounds 15 in anhydrous toluene or under 
solvent-free conditions in presence of dipolarophiles 17 at 
140°C furnished the target dibenzo[b,f]pyrrolo[1,2-d][1,4]
oxazepines 18 in yields of 71–97% from 15.



N. Zaware and M. Ohlmeyer: Dibenzo[b,f][1,4]oxazepine synthesis      253

NH2

OH F

19 20

OH

O
1. SOCl2
2. Et3N, THF

H
N

OH F

O

R' R'

21

LiAlH4

HN

O

R' = Br, H

O

R'

R = H, Br

R NaOH, DMFR

R or R' = Br

R

22

R or R' = Br

HN

O R'R

23
R or R' = Br

Pd(OAc)2

50 atm of CO

HN

O R'R

24
R or R' = COOMe

N

O R'R

25
R or R' = COOMe

MnO2

tolueneTHF

or
BH3

dppp, K2CO3
MeOH, THF

125oC

Scheme 4 Synthesis of DBO derivatives 25 by benzamide formation followed by intramolecular SNAr.

NH2

OH F

26 27

H

O
1. PEG300 N

O

H

28

2. K2CO3

100°C, 10 h

50°C, 10 h

Scheme 5 Synthesis of DBO derivatives 28 from 2-aminophenol 26 
and 2-fluorobenzaldehyde 27 using PEG300 and potassium carbonate.

Gijsen et al. [10] reported a series of substituted DBOs 
(Scheme 4) as potent TRPA1 receptor antagonists. The 
synthesis involves a benzamide formation from anilines 
19 and benzoic acids 20, followed by an intramolecular 
SNAr to install the tricyclic scaffold 22. Reduction of cyclic 
amides 22 gave the brominated 10,11-dihydro-DBOs 23, 
which were transformed in two steps to the target DBOs 25.

Fakhraian and Nafary [11] investigated conditions for 
a two-step, one-pot preparation of 28 (Scheme 5). The best 
result (89% yield) was obtained when 2-aminophenol 26 
was first dissolved in PEG(300) at 50°C, and after addition 
of 2-fluorobenzaldehyde 27, the solution was stirred for 
10 h at 50°C to facilitate Schiff base formation, followed 
by addition of potassium carbonate and continuing the 
reaction for 10 h at 100°C. Jorapur et al. [12] also reported 
the same conversion using PEG(400) instead with the best 
yield of 89%.

In a novel method to synthesize DBO derivatives 
developed by Gutch and Acharya [13], 2-aminophenol 26 
was condensed with substituted 2-chlorobenzaldehydes 
29. The condensed products 30 were converted to the 
potassium salts 31, which, in turn, were cyclized in dime-
thyl sulfoxide (DMSO) at 120°C to afford target DBOs 32 in 
yields of 68–72% (Scheme 6).

Miyata et al. [14] investigated the domino reaction of 
tricyclic alkoxyamine 33 with ethylmagnesium bromide 
to afford DBO 35 as the minor product (23%) (Scheme 7) 
and 11-ethyl-10,11-dihydrodibenzo[b,f][1,4]oxazepine 34 
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Scheme 6 Synthesis of DBO derivatives 32 from 2-aminophenol 26 
and substituted 2-chloroacetaldehyde 29.

as the major product. Changing the EtMgBr stoichiom-
etry from 3 to 4 equiv or using other Grignard reagents 
(PhMgBr, allylMgBr, vinylMgBr) gave rise only to products 
analogous to 34 in 81–94% yields. The reaction involves 
a domino elimination-rearrangement-addition sequence 
from the N-alkoxy(arylmethyl)amine A in the presence of 
organometallic reagents to afford the target product D.

Xing et  al. [15] established a general and efficient 
one-pot synthesis of highly functionalized DBOs via 
microwave-assisted one-pot Ugi four-component reac-
tion (U-4CR) and intramolecular O-arylation (Scheme 8). 
The protocol involves heating a solution of 2-aminophe-
nols 36, aldehydes 37, benzoic acids 38, and isocy-
anates 39 in methanol to 80°C for 20 min in a microwave 
reactor to furnish intermediates 40. Compounds 41 
(eight examples, 81–94% yields) were prepared by 
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selecting six substituted 2-aminophenols, two isocya-
nides in combination with 2-bromobenzaldehyde, and 
2-chloro-5-nitrobenzoic acid. Synthesis of compounds 
42 was not as efficient and was influenced by the pKa 

of benzoic acids. Four different benzoic acids were used 
to synthesize four examples of framework 42 (17–49% 
yields), with increasing acidity of benzoic acids leading 
to improved yields.

Intramolecular amidation of compounds 41 to assem-
ble novel classical conjugates 43 was accomplished 
(Scheme 9). These reactions are catalyzed by Pd(OAc)2-
BINAP catalyst system.

Abramov et al. [16] used known reactions of activated 
nucleophilic substitution to facilitate novel protocols for 
synthesis of structurally diverse cyano-substituted DBOs. 
As shown in Scheme 10, 2-(5-phenyl-4H-1,2,4-triazol-3- 
yl)phenol 45, in the presence of potassium carbonate, 
undergoes deprotonation generating the corresponding 
phenoxide, which undergoes a reaction with 4-bromo-
5-nitrophthalonitrile 44 to afford the intermediate product 
46. A potassium carbonate-induced intramolecular sub-
stitution of a nitro group in 46 leads to cyclocondensed 
product 47. Similarly, 44 undergoes a reaction with 
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Conclusions
We have highlighted recent advances in the preparation 
of DBO derivatives. Twelve synthetic methods to the DBO 
ring system have been described. The reported methods 
include cyclocondensation with two precursors, copper 
catalysis, 1,3-dipolar cycloaddition, domino elimination-
rearrangement-addition sequence, and a U-4CR reaction. 
The synthetic methods presented in this review are rele-
vant to medicinal and pharmaceutical chemistry and can 
be used for development of novel DBO derivatives of phar-
macological significance.
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