
DOI 10.1515/gps-2013-0064      Green Process Synth 2013; 2: 491–497

Asha Kadam, Stephanie Bellinger and Wei Zhang*

Atom- and step-economic synthesis of biaryl-
substituted furocoumarins, furoquinolones and 
furopyrimidines by multicomponent reactions and 
one-pot synthesis

Abstract: Atom-efficient multicomponent reactions 
(MCR) and step-efficient one-pot synthesis are developed 
for the synthesis of biaryl-substituted furocoumarins, 
furoquinolones, and furopyrimidines. Furocoumarin and 
furoquinolone derivatives are synthesized by a three-com-
ponent reaction, followed by the Suzuki coupling reaction. 
Furopyrimidine derivatives are prepared by the Suzuki 
coupling and then the three-component reaction. The bro-
mobenzaldehydes are the key bifunctional molecules for 
the multicomponent and Suzuki coupling reactions.
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1  Introduction
Synthetic efficiency is important for atom economy and 
reducing chemical waste. A multicomponent reaction 
(MCR) is highly atom economic, which generates multiple 
chemical bonds in a simple operation. All of the reagents 
are introduced spontaneously and no distinguishable 
intermediate can be isolated from the MCR. One-pot syn-
thesis is step economic, because no intermediates need to 
be separated from multi-step reactions. Introduced in this 
paper, is the combination of MCR and one-pot synthesis 
for the preparation of biaryl-substituted heterocyclic com-
pounds, including furocoumarins, furoquinolones, and 
furopyrimidines.

Furocoumarins, furoquinolones, and furopyrimidines 
are furan-fused coumarin, quinolone, and pyrimidine 

systems. Conjugated furans have unique photophysical 
and electrochemical properties and have been investi-
gated as fluorescent dyes, photosensitizers, organic light 
emitting diodes, two-photon absorption materials, second 
and higher order nonlinear optics, and supramolecular 
materials [1–4]. Coumarin, quinolone, and pyrimidine 
are privileged-ring systems found in numerous natural 
products and synthetic compounds which have a wide 
range of biological activities and developed as antifungal, 
antibacterial, antiviral, antimicrobial, and anticonvulsant 
agents [5–13]. The combination of furan with coumarin, 
quinolone, or pyrimidine could result in unique hetero-
cyclic molecules for photophysical, photochemical and 
biological studies.

We introduce in this paper a new strategy for atom- and 
step-economic synthesis of furocoumarin, furoquinolone, 
and furopyrimidine derivatives. The synthesis of furocou-
marin and furoquinolone derivatives 6 was accomplished 
by a three-component reaction, followed by the one-pot 
Suzuki coupling reaction (Scheme 1). The synthesis of furo-
pyrimidine derivatives 9 was accomplished by the Suzuki 
coupling of bromobenzaldehydes, followed by the three-
component reaction (Scheme 2). All the reactions shown in 
Schemes 1 and 2 were promoted by microwave (μw) heating 
to reduce reaction time and increase synthetic efficiency.

2  Experimental section

2.1  General information

All chemicals and solvents were purchased from 
Sigma-Aldrich (St. Louis, MO, USA) and used as received. 
1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were 
recorded on a Varian NMR spectrometer. LC-MS were 
performed on an Agilent 2100 system (Santa Clara, CA, 
USA) with a C18 column (5.0 μm, 6.0 × 50 mm). The mobile 
phases were MeOH and water, both containing 0.05% 
trifluoroacetic acid. A linear gradient was started from 
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75:25 MeOH/H2O to 100% MeOH in 5 min at a flow rate of  
0.7 ml/min. The chromatograms were recorded at UV 210 
nm, 254 nm, and 365 nm. Low resolution mass spectra 
were recorded in atmospheric pressure chemical ioniza-
tion (APCI). High resolution mass spectra were obtained 
on a Finnigan/MAT 95XL-T spectrometer. Flash chromato
graphy separations were performed on YAMAZEN AI-580 
system (San Bruno, CA, USA) with Agela silica gel (Wil
mington, DE, USA) (12 g or 20 g, 230–400 μm) cartridges. 
The μw reactions were performed on a Biotage Initiator 
8 system (Charlotte, NC, USA). NMR, LC-MS, and HRMS 
spectra for the representative final compounds can be 
found in the supporting information.

2.2  �Synthesis of furocoumarins and  
furoquinolones 6

2.2.1  �Representative procedure for the synthesis  
of compound 6a

In a 10  ml μw vial equipped with a magnetic stirrer, 
a mixture of 4-hydroxycoumarin (0.162 g, 1.0 mmol), 
4-bromobenzaldehyde (0.185 g, 1.0 mmol) and cyclohexyl 
isocyanide (0.124 g, 1.15 mmol) was mixed with 0.40  ml 
of toluene. The mixture was heated under μw at 80°C 
for 20  min to give 4a. To the same reaction vial, phenyl 
boronic acid (0.181 g, 1.5 mmol), Pd(dppf)Cl2 (0.040  g, 
3 mol%), Cs2CO3 (0.650 g, 2.0 mmol), and 0.40 ml of 4:4:1 
acetone/toluene/water were added. The mixture was 
heated under μw at 130°C for 20 min. The reaction mixture 
was filtered and the filtrate was concentrated to give the 

crude product. Purification of the crude product by flash 
column chromatography (7:3 hexanes/EtOAc) gave 6a 
(0.296 g, 68%). 1H NMR (300 MHz, CDCl3) δ 7.34–7.14 (m, 
2 H), 7.61–7.58 (m, 2 H), 7.50–7.20 (m, 9 H), 3.64–3.42 (m, 
1 H), 2.01 (d, J = 11.7 Hz, 2H), 1.70 (d, J = 13.4 Hz, 2 H), 1.58 
(d, J = 12.5 Hz, 1 H), 1.21 (ddd, J = 40.4, 19.9, 7.8 Hz, 5 H). 13C 
NMR (75 MHz, CDCl3) δ 25.0, 25.6, 34.3, 53.8, 97.4, 111.0, 
112.9, 117.0, 119.6, 124.3, 125.7, 127.4, 127.4, 127.7, 128.5, 128.8, 
128.9, 129.2, 131.2, 141.2, 141.6, 150.0, 151.4, 155.1. LC-MS 
(APCI+): m/z = 436 [M+1]+. HRMS (ES+): m/z [M+H]+ calcd 
for C29H26NO3: 436.1906; found: 436.1913.

2.2.2  �Representative procedure for the synthesis  
of compound 9a

In a 10 ml μw vial equipped with a magnetic stirrer, 0.40 ml 
of 4:4:1 acetone/toluene/water was added to a mixture 
of 4-bromobenzaldehyde (0.185 g, 1.0 mmol), 4-methoxy 
phenyl boronic acid (0.181 g, 1.5 mmol), Pd(dppf)Cl2 
(0.040 g, 3%), and Cs2CO3 (0.650 g 2.0 mmol). The mixture 
was heated under μw at 130°C for 20 min. The reaction 
mixture was filtered and the filtrate was concentrated to 
give the crude product. Purification of the crude product 
by flash column chromatography (7:3 hexanes/EtOAc) 
gave 7a (0.202 g, 95%). A mixture of 7a (0.106 g, 0.5 mmol), 
1,3-dimethylbarbituric acid (0.078 g, 0.5 mmol), and 
4-chlorobenzyl isocyanide (0.086 g, 0.57 mmol) in 0.40 ml 
of toluene was heated under μw at 80°C for 20 min. The 
crude product was filtered and washed with a minimum 
amount of toluene to give 9a as a yellow solid (0.232 g, 98%). 
1H NMR (300 MHz, CDCl3) δ 7.10–7.19 (m, 4 H), 7.50–7.20  
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Scheme 1 One-pot synthesis of furocoumarins (X = O) and furoquinolones (X = NMe).
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(m, 8 H), 4.21 (d, 2 H), 4.06 (m, 1 H), 3.44 (s, 3H), 3.31 
(s, 3H), 2.32 (s, 3H). 13C NMR (75 MHz, CDCl3): δ = 21.2, 28.4, 
29.5, 51.1, 96.3, 100.4, 118.1, 126.9, 127.9, 127.9, 128.8, 128.9, 
129.6, 129.6, 137.2, 138.1, 138.5, 139.9, 149.0, 150.5, 150.7, 
152.8, 158.3. LC-MS (APCI+): m/z = 486 [M+1]+.

3  Results and discussion

3.1  �Optimization of the MCR for the 
synthesis of furocoumarin 4a

The MCR of 4-hydroxycoumarin 1a with 4-bromobenzalde-
hyde 2a and cyclohexyl isocyanide 3a for the synthesis of 
furocoumarin 4a was optimized using different solvents 
and under different reaction temperature and times 
[14, 15] (Table 1). Toluene was found to be a good solvent 
for the MCR (Table 1). The next step Suzuki coupling also 
used toluene as a solvent. It was found that the MCR gave 
unexpected non-condensed byproducts in polar solvents 
such as MeOH, EtOH, and DCM-MeOH (Table 1).

3.2  �One-pot MCR and Suzuki coupling  
for the synthesis of furocoumarins  
and furoquinolones 6

The one-pot synthesis of compounds 6 were accom-
plished by the MCR followed by the Suzuki coupling 

reactions (Table 2). The optimized MCR was carried under 
μw heating at 80°C for 15  min to obtain furocoumarins 
4 with  > 96% conversion, as detected by LC-MS. It was 
found that cycloaddition reactions for the furoquinolone 
intermediate 4f using N-methyl quinolone required more 
time and a higher temperature for completion. Sequential 
Suzuki coupling reactions of 4 with phenyl boronic acids 
[16] to form 6 were conducted in the same vial, without 
isolation of the intermediate. The Suzuki reactions were 
carried out using Pd(dppf)Cl2 as a catalyst, 4:4:1 acetone/
toluene/water as a co-solvent, and Cs2CO3 as a base under 
μw heating at 130°C for 30 min. Fourteen compounds 6 
were prepared in 40–70% yields after flash chromatogra-
phy purification. The structures of the final products were 
characterized by LC-MS, 1H and 13C NMR analysis.

3.3  Synthesis of furopyrimidine derivatives 9

We also attempted the synthesis of furopyrimidine 
derivative 9a by the one-pot MCR and Suzuki coupling 
reaction sequence. The MCR of 1,3-dimethylbarbituric 
acid with 4-bromobenzaldehyde and cyclohexyl iso-
cyanide afforded the desired product 10 in 94% yield. 
However, the Suzuki reaction of 10 under our conditions 
was not able to give the product 9a (Table 3). The furo-
pyrimidine ring was decomposed during the reaction. 
We developed an alternative pathway for the synthesis 
of 9 by first performing the Suzuki coupling reaction 
of 4-bromobenzaldehyde 2a with the boronic acid. The 

Table 1 Optimization of multicomponent reaction (MCR) for the synthesis of furocoumarin 4a.
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1a 2a 3a

Entry Solvent Temp (°C)  Time (min) Yield (%)a

1 DMF 100 10 85
2 DMF 120 10 88
3 Toluene 80 15 97
4 Toluene 120 10 95
5 EtOH 80 15 Uncondensed productb

6 MeOH 80 15 Uncondensed productb

7 DCM-MeOH 80 15 Uncondensed productb

aIsolated yield.
bReaction with 1,3-dimethylbarbituric acid.
DMF, N,N-Dimethylformamide; DCM, Dichloromethane. 
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Table 2 One-pot synthesis of furocoumarin and furoquinolone derivatives 6.

X

O
HN R1

O

CHO

Br

X O

OH

X

O
HN R1

O

+

R1-NC

Br1

3

2

4

i

ArR2

6

ii

i) Toluene, µw 80ºC, 15 min; ii) Pd(dppf)Cl2, Cs2CO3, 4:4:1 acetone/toluene/water, µw 130ºC, 20 min
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Entry Intermediate 4 Boronic acid 5 Product 6 Yield (%)
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1 4a PhB(OH)2 6a, R2 = H 68
2 4a p-MeOC6H4B(OH)2 6b, R2 = OCH3 61
3 4a p-MeC6H4B(OH)2 6c, R2 = CH3 59
4 4a m-ClC6H4B(OH)2 6d, R2 = Cl 67
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6 4c PhB(OH)2 6f, R2 = H 60
7 4c p-MeOC6H4B(OH)2 6g, R2 = OCH3 40
8 4c p-MeC6H4B(OH)2 6h, R2 = CH3 52
9 4c m-ClC6H4B(OH)2 6i, R2 = Cl 66
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11 4d p-MeOC6H4B(OH)2 6k, R2 = OCH3 57
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13 4f m-ClC6H4B(OH)2 6m, R2 = Cl 62
14 4f p-MeOC6H4B(OH)2 6n, R2 = OCH3 70
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Table 3 Synthesis of furopyrimidine derivatives 9.

Entry Isocyanide 3 Bromobenzaldehyde 7 Product 9 Yield (%)
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coupling product 7a was then used for the MCR with 
1,3-dimethylbarbituric acid 8 and cyclohexyl isocyanide 
3a under μw heating at at 80°C for 20  min to give 9a 
in 98% yield (Scheme 3). Using this approach, we com-
pleted the synthesis of seven furopyrimidine derivatives 
9a–g in 95–98% yields.

4  Conclusions
In summary, we have developed an atom- and step-
efficient synthesis of biaryl substituted furocoumarin 
and N-methyl quinolone derivatives 6, by conducting 

a sequential three-component reaction and the Suzuki 
coupling reaction in one pot. We also developed an alter-
native method for the synthesis of furopyrimidine deriva-
tives 9, by conducting the Suzuki reaction first followed 
by the three-component reaction. All the reactions were 
conducted under μw heating to further increase the reac-
tion efficiency.
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