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Abstract: Platinum nanoparticles (Pt NPs) have attracted
interest in catalysis and biomedical applications due to
their unique structural, optical, and catalytic properties.
However, the conventional synthesis of Pt NPs using the
chemical and physical methods is constrained by the use
of harmful and costly chemicals, intricate preparation
requirement, and high energy utilization. Hence, this
review emphasizes on the green synthesis of Pt NPs using
plant extracts as an alternative approach due to its
simplicity, convenience, inexpensiveness, easy scalability,
low energy requirement, environmental friendliness, and
minimum usage of hazardous materials and maximized
efficiency of the synthesis process. The underlying
complex processes that cover the green synthesis (bio-
synthesis) of Pt NPs were reviewed. This review affirms the
effects of different critical parameters (pH, reaction
temperature, reaction time, and biomass dosage) on the
size and shape of the synthesized Pt NPs. For instance, the
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average particle size of Pt NPs was reported to decrease
with increasing pH, reaction temperature, and concentra-
tion of plant extract.
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1 Introduction

In current times, inorganic nanoparticles (NPs) have
garnered immense research interest in the field of science
and technology [1,2]. Platinum nanoparticles (Pt NPs) are
particularly exploited for catalysis and biomedical appli-
cations because of their unique crystalline, optical, and
catalytic properties, which allow them to play the
integrated role of nanoenzymes, nanocarriers, and nano-
diagnostic tool [3,4]. Physical and chemical methods were
prevalent during the early phases of synthesizing Pt NPs
[5-8]. The physicochemical methods guarantee flexibility
in modifying the crystal structure of the NPs to achieve the
required morphology and size [9,10]. Nonetheless, the
utilization of toxic substances and harsh synthesis
conditions ultimately lead to health and environmental
issues. Therefore, there is a need for “green chemistry” to
synthesize eco-friendly materials [11]. Hence, plant-
mediated synthesis has been incorporated into the
preparation of Pt NPs. Living plants, plant extracts, and
plant biomass are basic but efficacious precursor materials
for the extracellular biosynthesis of metal NPs [12].
Moreover, the bioactive molecules (such as amino acids,
phenols, aldehydes, ketones, carboxylic acid, and nitro-
genous compounds) activate the bioreduction of metal
nanoparticles, thus reducing, capping, or stabilizing the
synthesis process [13]. However, studies on the biosyn-
thesis of Pt NPs are somewhat limited. Till date, no study
has investigated the bioreductive mechanism involved in
the plant-mediated synthesis of Pt NPs as well as factors
that affect the synthesis. Hence, this paper provides a
detailed review on the methods of synthesizing Pt NPs,
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proposed reaction mechanism of reduction, and stabilizes
Pt NPs, in addition to the parameters (e.g., pH, reaction
temperature, reaction time, and biomass dosage) that
influence the biosynthesis of Pt NPs.

2 Synthesis of Pt NPs

The size, morphology, composition, and structure of Pt
NPs as well as the presence of a capping agent control
their application for industrial and biomedical purposes
[3,9,14-17]. This has required the development of novel
synthesis methods for the optimization of these intrinsic
properties. The modification and functionalization of Pt
NPs for biomedical uses are directed by recently obtained
data, which revealed that the physicochemical properties,
dispersivity, and stability of the NPs in a biological
environment play key roles in determining their safety or
toxic levels. The critical challenges encumbering the
potential use of Pt NPs as drug carriers and antioxidant
materials include biocompatibility, specifically defined
properties, and contamination-free production (e.g., endo-
toxin, Pt precursors, toxic unreacted reagents, organic
solvents, etc.) [18]. The several synthesis techniques are
discussed in the underlying subsections.

2.1 Chemical methods

The chemical synthesis methods, including wet chemical
reduction (WCR) [19], electrochemical reduction [20,21],
galvanic displacement [22,23], and chemical vapor
deposition [24,25], are all employed to precisely define
the physicochemical properties of NPs. Mainly, WCR is
frequently utilized because of its ability to successfully
control the features of NPs. WCR synthesizes Pt NPs from
Pt precursor solutions with the aid of a reducing agent
[19], which enables the stringent control of features of
NPs such as size and morphology by altering the
precursor concentration [19], reaction temperature [9],
and incorporation of organic or inorganic ligands
[26-29]. The use of WCR methods to synthesize Pt NPs
with enhanced catalytic performances has been exten-
sively explored. A number of shapes modifying agents
(polymers, surfactants, and capping agents) have also
been used to facilitate the asymmetric synthesis of NPs.
Multiphase synthesis setups have also been developed
[30-32], which include utilizing gaseous reducing agents
to attain enhanced control of reaction parameters [33].
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However, this approach is constrained by the need for
vast quantities of organic solvents, surfactants, and
capping agents that could increase the toxicity levels of
NPs. Besides, a huge volume of production (large-scale)
can create an environmental threat. Hence, the use of
microwave heating and glycerol, as a reducing agent and
solvent, has been developed to allow for industrial
upscaling and reduced environmental impact [34,35].
Thiol chemistry is also frequently used to synthesize NPs
that are stable in an aqueous environment or inorganic
media. Thiol ligands, such as alkane thiols [36—38] or
thiols bearing polar groups [29,39,40], have been used to
synthesize stable Pt clusters with controlled size and
precise morphology. These techniques enable the further
decrease in the size of NPs, thereby elevating the
surface/volume ratio. Despite the issue of decreased
catalytic performance with the addition of thiols, their
presence on the surface can transform the properties of
the NPs such as the combination of hydrophobic and
hydrophilic ligands on the same NP to support selective
contact with substrates and the environment [41].
Conversely, these chemicals (aromatic, aliphatic,
and amino-terminated thiols) exhibit potential hazar-
dous effects and can be lethal both in vitro and in vivo
[42]. To synthesize Pt NPs that are biocompatible, the
approach of using “green reagents” like sodium citrate
and ascorbic acid is most promising, due to the fact they
allow robust control on solvent and guarantee the purity
of reagents [42-45]. This synthesis approach can also
assure precise control on size, morphology, and catalytic
properties, in addition to reasonably high yield [42]. For
example, citrate-capped Pt NPs are reported to display
excellent cytocompatibility and high antioxidant cap-
ability [43]. Furthermore, the use of green reagents
enables simple surface functionalization of NPs, which is
essential to the synthesis of Pt NPs for biomedical
purposes, since the biological characteristics of nano-
materials are highly dependent on their bare surface
area. Therefore, since the surface coating of NPs affects
their toxic levels and specific targeting, biogenic synth-
esis techniques using biomolecules as templates have
been initiated [46]. For instance, apoferritin protein
encapsulated Pt NPs were proven to enhance the cellular
uptake and considerably decrease membrane damage
[47-49]. Similarly, Wang et al. [50] developed dendri-
mers encapsulated Pt NPs to replicate the catalytic
centers within natural enzymes. Yamamoto et al. [51]
posited that the catalytic activity of Pt clusters was
significantly improved when encapsulated with dendri-
mers, enabling the controlled growth of the nano-
material. The utilization of dendrimers as encapsulating
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agents for the synthesis of Pt NPs and clusters has also
been explored in other studies [51,52].

2.2 Physical methods

Other synthesis methods that have recently gained
attention include laser ablation [53,54], aerosol-assisted
deposition [55], electron-beam-induced reduction [56],
and flame synthesis [57,58]. These physical methods
were developed as efforts to deal with certain constraints
of the chemical methods (such as toxic reagents, organic
solvents). The laser ablation technique utilizes the
continuous or pulsed application of a high-power laser
beam for the evaporation of NPs from a solid source. This
versatile technique is anchored in the control of pulses,
reaction temperature, and atmospheric gas pressure to
attain a particular set of NP properties. The key benefit of
using this approach is the absence of redundant coat-
ings, solvent contaminations, and stabilizers, which are
problems usually associated with synthesis in nano-
medicine [59]. However, the mechanism of NP produc-
tion has not been entirely elucidated. Moreover, the high
required dilution in addition to complexities of modi-
fying the size, morphology, and production yield of NPs
has constrained their use [42,60,61]. Furthermore, the
stability of these NPs in aqueous solutions is a complex
procedure. Nonetheless, laser ablation is capable of
synthesizing stable NPs in the absence of stabilizers,
which is attributable to inherent electrical repulsion
effects derived from the presence of surface charges on
the NPs [62,63]. Nevertheless, this could pose a problem
in biological systems, since clustering/agglomeration
and precipitation might simultaneously arise during the
incubation of NPs under intricate conditions, such as cell
culture media and solutions with high ionic strength.
Cathodic corrosion is one more basic physical technique
of synthesizing Pt NPs, which entails the conversion of a
bulk alloy electrode in a suspension of NPs with similar
constituents [64]. However, this approach is similarly
constrained by relatively low production yield and size
modification.

2.3 Green synthesis

Bio-assisted synthesis techniques were developed as
viable substitutes of chemical and physical techniques.
Their advantages include the absence of unwanted
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reaction solvents. The application of biological syntheses
has focused on the production of noble metal nano-
materials, because of their ease of reduction using weak
reducing agents [65-73]. Few studies have explained the
production of Pt NPs by means of the green synthesis
approach [74-77]. Nonetheless, procedures have been
successfully developed to synthesize monodisperse and
stable Pt NPs via the biosynthesis approach, using
bacteria [78-81], cyanobacteria [82,83], seaweeds
[84,85], fungi [86-88], plants [89-91], in addition to
bio-derived products which include honey [92,93]. Some
studies exploited the activity of specific hydrogenase
enzymes in sulfate-reducing bacteria to reduce Pt(iv) into
Pt NPs [94,95]. Like the WCR, the concentrations of Pt
salt and protein serve Kkey roles in tuning the mor-
phology and dimension of the NPs during biogenic
synthesis [96]. The synthesis of Pt NPs using fungi, such
as Neurospora crassa [88] and Fusarium oxysporum
[86,87,97], is a valuable “scale-up” approach. The
phytochemical constituents of plant extracts [12] and
wood [98,99] have also been exploited as capping agents
in the biogenic synthesis of metal NPs. The biosynthesis
of Pt NPs via phytoreduction was first reported in 2009,
where 2-12 nm-sized Pt NPs were synthesized using leaf
extracts with 90% vyield and extremely low leaf biomass
[100]. Presently, studies have reported the use of a wide
and diverse range of vegetable-derived products such as
Diospyros kaki [101], Ocimum sanctum [102], Medicago
sativa, and Brassica juncea [103] to synthesize Pt NPs.
Using the root extract of Asparagus racemosus Linn, Raut
et al. [104] developed a quick procedure of synthesizing
monodisperse, spherical Pt NPs with a size range of 1-6
nm in aqueous solution under ambient conditions.

The key benefits of synthesizing Pt NPs from plant
extracts are simplicity, convenience, inexpensiveness,
easy scalability, low energy requirement, environmental
friendliness, and minimum use of hazardous substances
and maximized effectiveness of the synthesis process. It
is particularly pertinent that the synthesis process of NPs
is devoid of toxic materials. The plant extract-based
synthesis increases the stability of NPs in terms of size
and shape, and produces higher yield compared to other
physical and chemical methods.

3 Proposed reaction mechanism

Ever since ancient times, plants are principally investi-
gated for their curative value against different diseases
and infections [105-107]. As well, plants display huge
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Table 1: Studies of the influence of various plant on size, shape, and stabilization of Pt NPs
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No. Plant The possible biomolecules responsible for (TEM) Shape Zeta mV Ref.
Size nm
Reduction Stabilization
1 Ocimum sanctum Terpenoids/reducing Terpenoids 23 Irregular shape — 102
sugars
2 Azadirachta indica Terpenoids/sugars Terpenoids 5-50 Sphere - 119
3 Cacumen platycladi Sugars/flavonoids - 2.4 + 0.8 Sphere — 12
4 Coffea arabica seed Protocathechuic acid Hydroxyl groups of 180-500 Square and - 125
polyphenolic rectangular-
compounds shaped
5 Gum olibanum Chloroplatinic acid Gum proteins 4.4 Spherical -12.7 126
6 Maytenusroyleanus Phenol compounds Phytochemicals 5 Spherical -41 120
7 Garcinia mangostana L. Amines/polyols Amines/polyols 20-25 Spherical -13 124
8 Sechiumedule Ascorbic acid Ascorbic acid 10-70 Spherical -20 127
9 Black cumin seed Hydroxyl and methyl Hydroxyl and methyl 3.47 Spherical — 128
groups groups
10  Water hyacinth plant Hydroxyl, nitrogen and Hydroxyl, nitrogen and  3.74 Spherical —-0.0536 92
carbohydrate groups carbohydrate groups
11 Xanthium Limonene/borneol Limonene/borneol 20 Rectangular - 129

strumarium leaf

potential in detoxifying heavy metals in the course of
treatment [108]. Also, some plants possess firm and highly
resistant biological systems as well as physiology that
allows them to withstand acute metal concentrations. This
intrinsic property made researchers utilize plants in the
field of nanotechnology [109,110]. In addition, aside from
simplicity and cost-effectiveness, the use of plant entails
decent reaction conditions that are nonhostile to the
environment. Presently, biosynthesis of inorganic nano-
particles, for instance, Pt NPs using plants and their
derivatives is under enormous investigation. The bio-
reduction of metal nanoparticles is attributable to the
existence of diverse bioactive molecules that include
amino acids, aldehydes, phenols, carboxylic acid, ketones,
and nitrogen-bearing compounds, which serve to reduce,
cap/functionalize, or stabilize the NPs in the course of
synthesis [13]. For instance, Sheny et al. [111] employed tea
polyphenol in the synthesis of Pt NPs. The phenolic
compounds present in tea polyphenols serve as both
reducing and capping agents by forming complexes with
the Pt ions, reducing them to nanoparticles of diverse sizes
and morphologies [112-114].

Nonetheless, the studies on the biosynthesis of Pt NPs
are quite limited. Hence, researchers are constantly
probing novel ways of rapidly synthesizing Pt NPs using
the different plant components which include flower, root,
leaf, fruit, bark, or by-products like gum [92,115-118].
Similar to other inorganic NPs, the synthesis of Pt NPs is
supported by bioactive molecules that are present in the
plants. Thus, the reduction and stabilization mechanisms

of biosynthesized Pt NPs need to be fully elucidated.
Fourier transform infrared spectroscopy (FTIR) is a
valuable tool for analyzing the bimolecular composition
prior and post-reaction. FTIR mechanism can determine
the bioactive molecules responsible for reducing and
stabilizing the Pt NPs. Generally, FTIR peaks denote the
different vibrations of functional groups present in a
sample. Comparative analysis shows that some character-
istic FTIR peaks of the plant extract disappear or become
less intense or are shifted when observed in the FTIR
spectrum of Pt NPs synthesized by plant extract, which
could be indicative of the reduction process, while the
FTIR peaks that remain unchanged are suggestive of the
functional groups responsible for stabilizing the NPs.
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Figure 1: The effect of pH on the size variation, adapted from refs.
[122 and 132].
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For example, Thirumurugan et al. [119] identified
distinct FTIR peaks at 1728.22, 1365.60, and 1219.01 cm™
for Pt NPs biosynthesized from Azadirachta indica
extract, corresponding to carbonyls, alkanes, and ali-
phatic amines, respectively. It was inferred that Azadir-
achta indica leaf broth contains terpenoid which is
capable of reducing and stabilizing the nanoparti-
cles [101].

Ullah et al. [120] reported that the phytochemicals
existing in the aqueous leaf extract of Maytenusroyleanus
reduce Pt ions into Pt NPs and cap them. The FTIR
analysis of Maytenusroyleanus mediated Pt NPs reveals a
decline in the peak intensities, signifying a possible
reaction of phytochemicals with inorganic compounds in
the synthesis and stabilization of Pt NPs. A significant
shift in the stretching O—H vibration of phenol com-
pounds from 3,310 to 3,412 cm™ was observed, while the
stretching vibrations of C=0 and N—H in amide II shifted
from 1,608 to 1,615 cm™' and 2,938 to 2,925cm’,
respectively, which clearly demonstrates that Pt NPs
can be stabilized by diverse phytochemicals existing in
the aqueous Maytenusroyleanus extract.

The phytochemical components of black cumin seeds
(Nigella sativa L.) include alkaloids (nigellimin, nigellimin-
N-oxide, nigellidin, and nigellicin), terpenoids (carvone,
limonene, citronellol, carvacrol, 4-terpineol), saponins,
tannins, and derivatives. These phytochemicals, comprising
functional groups, e.g., hydroxyl and methyl groups, can
serve as both reducing and capping agents in the
biosynthesis of Pt NPs [121].

FTIR spectra of Ajwa (dried) and Pt NPs (capped)
confirm the presence of diverse kinds of polyphenols in
the biosynthesized Pt NPs. The bioreduction and capping
of Pt NPs synthesized from water-soluble polyphenols is
indicted by the loss of the distinct peak at 1,760 cm™ in
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Figure 2: The optical spectra presents the effect of pH on the green
synthesis of Pt NPs (reprinted from ref. [124], copyright 2020, with
permission from Elsevier).
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Figure 3: The effect of reaction temperature on the particle size
variation of Pt NPs, adapted from refs. [101, 122, and 12].

Pt NPs [122]. Ganaie et al. [123] reported that the
polysaccharides and proteins in the Antigononleptopus
plant extract account for the reduction of Pt ions to Pt NPs
as well as the stabilization of Pt NPs, while Nishanthi et al.
[124] assigned the bands around 1,430-1,440 cm~! and
1,275-1,285cm™" in the FTIR spectrum of Pt NPs to the
secondary aromatic amines and polyols such as hydroxyl
flavones and hydroxyl of xanthones. The amines and
polyols contained in Garcinia mangostana rind extract
were also shown to reduce and stabilize Pt NPs. The
biosynthesis of Pt NPs using different plant extract and
their respective biomolecules for reduction and stabiliza-
tion are summarized in Table 1.

4 Factors influencing biosynthesis
of Pt NPs

There are several variables that control the synthesis,
characteristics, and use of nanoparticles in the course of
plant-mediated biosynthesis. These factors are discussed
in the underlying subsections.

4.1 Solution pH

The pH of the solution serves a vital function in plant-
mediated biosynthesis of nanopatrticles by influencing the
size, morphology, and rate of synthesis [130]. This influence
is attributed to an increase in the development of
nucleation centers as pH increases. The reduction of metal
ions to metal nanoparticles increases concomitantly with
the expansion of the nucleation center (the effect of
protonation—deprotonation of active ingredients could be
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Figure 4: TEM images of the Pt NPs synthesized at (a) 30°C, (b) 60°C, and (c) 90°C when the Cacumen platycladi percentage and initial Pt(i)
concentration were 50% and 1 mM, respectively (reprinted from ref. [12], copyright 2020, with permission from Elsevier).

affected and hence the donation of electrons by changing
pH). Simultaneously, the solution pH controls the activity of
the functional groups in the plant extract/biomass, which
in turn determines the reduction rate of the metal salt [131].
Al-Radadi [122] used solutions of diverse pH (1.5-8.5)
to analyze the impact of pH on the rate of reaction and
synthesis of Pt NPs. The synthesis of Pt NPs was reported
to be faster in the basic medium compared to an acidic
solution. Overall, the synthesis of Pt NPs increases as the
OH concentration (alkalinity) of the dispersive medium
increases. For acidic medium, bundles of Pt NPs are
formed with particles of varied shapes and sizes. More
specifically, at pH 1.5, 3.5, 5.5, and 7.5, the shapes and
sizes of the synthesized Pt NPs are rod-shaped with a size
of 700.5 x 84.1nm, spherical with a size range of
5-5.4nm, spherical with a size of 2.3nm, and spherical
with a size range of 5-13.8 nm, respectively, as displayed
by red data points with size variation bar in Figure 1.
Karim et al. [132] investigated the impact of pH on the
synthesis of Pt NPs using orange peel extract. The Pt NPs
synthesized at pH 3 showed relatively less agglomeration
and asymmetrical distribution of Pt NPs with a mean
particle size distribution of 2.2nm. At pH 5, the Pt NPs
remain irregularly distributed with a high concentration of
nanoparticles at specific spots, but a portion of spots
showing particles with reduced sphericity and average
particle size of 2.2nm. By increasing the pH to 9, the Pt
NPs become uniformly distributed, although there are still
bare areas at the center. Here, the average particle size
slightly decreases to 2 nm. At pH 11, the NPs become more
regularly distributed with further reduction in particle size
to 1.8 nm. At pH 13, the Pt NPs remain spherically shaped,
however, but begin to agglomerate to form larger Pt
clusters, as displayed by black dashed line in Figure 1.

Nishanthi et al. [124] also assessed the pH effect on
Pt NPs synthesized using the rind extract of Garcinia
mangostana L. The optical spectra of Pt NPs synthesized
under different pH values (4-8) are shown in Figure 2. A
slight redshift (~6 nm) is observed at acidic pH, which is
possibly due to the presence of larger nanoparticles,
while the blue shift in the SPR (~4 nm) at alkali pH can
result from the formation of smaller nanoparticles.

4.2 Reaction temperature

Reaction temperature is an additional vital factor that
controls the size, morphology, and synthesis rate of
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Figure 5: The effect of reaction time on the particle size variation of
Pt NPs at room temperature, adapted from ref. [122].
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Figure 6: The optical spectra present the effect of the reaction time
of green synthesis on the absorption spectra of Pt NPs (reprinted
from ref. [124], copyright 2020, with permission from Elsevier).

Pt NPs. Similarly, the production of nucleation centers
increases with increase in reaction temperature which
then enhances the biosynthesis rate. Thirumurugan et al.
[119] investigated the biosynthesis of Pt NPs from
Azadirachta indica extract. Transmission electron micro-
scopy (TEM) analysis shows the synthesis of polydispersed
nanoparticles of small to large spheres (5-50 nm). The rate
of Pt NPs synthesis was found to increase with the reaction
temperature. In another study, Pt NPs sized 2—-12 nm were
biosynthesized using the leaf extract of Diospyros kaki at
95°C with H,PtClg-6H,0 as the precursor solution [101]. The
reduction process of Pt** to Pt° nanoparticles was
optimized at 95°C. As shown in Figure 3 (red dashed
line), the average particle size reduced from 12 nm at 25°C
to 5nm at 95°C, which is attributable to the increasing rate
of reduction. Al-Radadi [122] investigated the impact of
reaction temperature on the biosynthesis of Pt NPs using
Ajwa dates extract. TEM images reported the average
particle sizes of the spherical Pt NPs are 3.4 and 2.6 nm at
20°C and 30°C, respectively, as displayed by black dashed
line in Figure 3. On the other hand, Zheng et al. [12]
explored the effect of reaction temperature on the
biosynthesis of Pt NPs using Cacumen platycladi extract
(CPE). In this work, as shown in Figure 4, the TEM images
of the Pt NPs reported particle sizes of 2.0 + 0.4, 2.6 + 0.4,
and 2.9 + 0.7nm at 30°C, 60°C, and 90°C, respectively.
This indicates increase in the size of Pt NPs with reaction
temperature, as depicted by dotted blue line in Figure 3.
Under similar precursor concentration but higher syn-
thesis reaction temperature, smaller particles with nar-
rower size distribution are dominant, due to the fact that
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homogeneous nucleation is enhanced at a higher reaction
temperature if the precursor undergoes complete reduc-
tion [133]. This is plausible as the Pt(n) conversion is
directly linked to the accessibility of a Pt° source. Thus,
the rate of Pt(ir) conversion was not high at either 30°C or
60°C owing to the deficient Pt° source. In contrast, at
higher reaction temperature (90°C), the abundance of Pt°
source favors the growth of the Pt NPs. For this reason, the
size of the Pt NPs was relatively larger as the reaction
temperature increased. The reaction temperature of 90°C
was thus implemented in successive tests to guarantee
high conversion of Pt(i).

4.3 Reaction time

The duration of reaction/incubation of the suspension
also significantly affects the size, morphology, and
degree of nanoparticle synthesized using plant-based
biomaterials. Al-Radadi [122] investigated the impact of
reaction time on the properties of Pt NPs synthesized
using Ajwa dates extract. Figure 5 showed changes in
particle size of the synthesized Pt NPs (6.6, 2, and
5.4 nm) with increasing duration of reaction time (7, 10,
and 13 h).

Similarly, Nishanthi et al. [124] reported that the most
favorable reaction time for the biosynthesis of Pt NPs is
10 min after the addition of rind extract of Garcinia
mangostana at ambient temperature. As observed in the
spectra (Figure 6), nucleation growth increased with
reaction time, although no significant spectral change is
observed after 10 min, which indicated completion of the
synthesis within a short duration.

4.4 Plant extract/biomass dosage

The concentration of plant extract regularly determines
the effectiveness of nanoparticle synthesis. Numerous
studies reported that increasing the concentration of
plant extract in biomass dosage improves the synthesis
of nanoparticles in addition to modifying their mor-
phology [12,134].

Zheng et al. [12] evaluated the differences in Pt(m)
conversion over a period at varied dosages of CPE (10%,
30%, 50%, and 70%). Pt(n) conversion was found to
proportionally increase with CPE percentage and could
surpass 95% following 25h of bioreduction at CPE
percentage of 70%. In addition, TEM images showed the
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Figure 7: TEM images of the Pt NPs synthesized under different percentages of CPE: (a) 10%, (b) 30%, (c) 50%, and (d) 70% for reaction
temperature of 90°C and preliminary Pt(i) concentration of 0.5 mM (reprinted from ref. [12], copyright 2020, with permission from Elsevier).

Pt NPs were spherically shaped and the histograms insets
indicate (Figure 7) that the particle sizes of Pt NPs
synthesized at different percentages of CPE (10%, 30%,
50%, and 70%) were 3.7 + 0.7, 3.1 + 0.7, 2.9 + 0.7, and
2.4 + 0.8 nm, respectively, as shown in Figure 7.
Al-Radadi [122] researched the impact of variable
concentration of Ajwa dates extract on the properties of
synthesized Pt NPs. The NPs were prepared via the addition

of different volumes of Ajwa dates extract (2, 3, 4, and 5 mL)
to 5mL of H,PtClg stock solutions under incubation/
reaction time of 10h at ambient temperature. Based on
Figure 8, the particle sizes of the synthesized Pt NPs were
11.6, 7.3, 4.5, and 2.6 nm for 2, 3, 4, and 5 mL of Ajwa dates
extract, respectively. Thus, it can be inferred that the
particle size of Pt NPs decreases as the concentration of
plant extract increases (Ajwa dates).
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Figure 8: The effect of different concentration of Ajwa extract on the
particle size variation of Pt NPs with 5 mL of H,PtClg stock solutions
after 10 h at the ordinary temperature, adapted from ref. [122].

5 Conclusion

The effectiveness of conventional (physical and chemical)
methods is constrained by a few critical limitations that
include the use of harmful and costly chemicals, intricate
preparation requirement, and high energy utilization. Hence,
this work emphasizes on the use of green synthesis as an
alternative approach for synthesizing Pt NPs from plants due
to its simplicity, convenience, inexpensiveness, easy scal-
ability, low energy requirement, environmental friendliness,
and minimum use of hazardous substances and maximized
the effectiveness of the synthesis process. The biosynthesis of
NPs can provide more stability in terms of size and shape, as
well as increase in the production yield. The bioreduction of
metal nanoparticles is enabled by various bioactive mole-
cules contained in plants. The plant extracts can also serve
as capping or stabilizing agents during the synthesis process.
Finally, this review affirms the effects of different critical
parameters (pH, reaction temperature, reaction time, and
biomass dosage) on the size and shape of Pt NPs. For
instance, the shape of Pt NPs can be altered with the change
of pH value, and the average patrticle size of Pt NPs was
reported to decrease with increasing pH, reaction tempera-
ture, and concentration of plant extract.
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