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A NEW PROOF OF THE FAITHFULNESS

OF THE TEMPERLEY–LIEB REPRESENTATION OF B3

Abstract. We find a way to calculate the term with lowest exponent in the Kauffman
bracket polynomial of a closed 3-string braid. This leads us to a new proof of the faithful-
ness of the Temperley-Lieb representation of the 3-string braid group B3. In particular we
will prove that for any link with braid index 3 either the coefficient of the lowest degree
term or the coefficient of the highest degree term of the Jones polynomial is equal to ±1.

1. Introduction

The Burau representation µn : Bn → Mn−1(Z[t±1]) is one of the classic
representations of the braid group Bn. In the 1990’s it was shown this is
not faithful for n ≥ 9 (Moody [11]), n ≥ 6 (Long and Paton [10]), and
n ≥ 5 (Bigelow [2]). On the other hand it is known to be faithful for n = 3
(Bigelow [1], Birman [3]). The case n = 4 is still an open question.

The Temperley–Lieb algebra TLn is defined over Z[A±1], has dimension
Cn = 1

n+1

(2n
n

)
, n − 1 generators {U i

i }
n−1
i=1 , and relations:

(TL1) U i
i · U

i
i = (−A−2 − A2)U i

i ,

(TL2) U i
i · U

j
j · U i

i = U i
i for |i − j| = 1,

(TL3) U i
i · U

j
j = U j

j · U i
i for |i − j| > 1.

In the case n = 3 the relation (TL3) may be omitted.

It can be shown that the map ρn : Bn → TLn, σi 7→ A + A−1U i
i , extends

to a representation of the braid group. It is known that the faithfulness of
µ3 and ρ3 are equivalent (Kędziorek [9]). The question of faithfulness of ρn

in general is not yet decided.
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We propose a new, direct approach to the question of the faithfulness by
analyzing the Kauffman bracket. We will prove the following two theorems.

Theorem 1. The representation ρ3 : B3 → TL3 is faithful

Theorem 2. For every link L that may be represented by a closed 3-braid
the Jones polynomial VL of that link has the coefficient equal to ±1 at at
least one end (i.e. either the coefficient of the highest degree term or the
coefficient of the lowest degree term is ±1).

2. Kauffman bracket

The Kauffman bracket (Kauffman [8]) of an unoriented link diagram
L is a Laurent polynomial with integer coefficients 〈L〉(A) defined by the
following rules:

(1) 〈 〉 = A〈 )( 〉 + A−1〈 ≍ 〉,

(2) 〈 © 〉 = 1

(3) 〈 © ⊔ L 〉 = (−A−2 − A2)〈L 〉.

The Jones polynomial VL(t) ∈ Z[t±
1

2 ] of an oriented link L can be de-

fined by substituting A2 7→ t
1

2 in (−A−3)wr(L)〈L〉(A), a variation of the
link’s Kauffman bracket, where wr(L) is the difference between the number
of positive and negative crossings in L. It is well known that the bracket
polynomial, and therefore the Jones polynomial, is multiplicative with re-
spect to the connected sum of diagrams/links (see also Jones [6], [7]).

If the Kauffman bracket rules (1)–(3) are applied to a braid, then we
obtain a linear combination of the Kauffman diagrams with coefficients in
Z[A±1] rather than a single polynomial. This may be treated as a definition
of the Jones representation of Bn into the Temperley–Lieb algebra TLn (for
details on TLn see Kauffman [8]).

Kauffman states for an unoriented link diagram are defined in [8]. Every
state S has its well defined contribution 〈S, D〉 to the Kauffman bracket 〈D〉
of the link diagram D. It will be convenient to extend this notion to braids.

Following Kauffman again, we will define the contribution ρ(S, β) of
a state S to ρ(β) in the obvious way:

Suppose the state S was obtained by splitting p crossings positively, and
n crossing negatively. The state S itself is a Kauffman diagram KS , possibly
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with a number, say c, of simple closed curves. Then the contribution of S
to ρ(β) is:

(2.1) Ap−n · (−A−2 − A2)cKS .

We will also write 〈S, β〉 to denote the contribution of the closure of S to
the bracket polynomial 〈β〉 of the closure of β, so that

(2.2) 〈β〉 =
∑

S

〈S, β〉, ρ(β) =
∑

S

ρ(S, β).

We will also use what we propose to call σ1-states. A σ1-state of a braid is a
diagram obtained by splitting all crossings, some of them positively, the rest
negatively (we will only use it for braids in which σ−1

1 does not appear, so-
called σ1-positive braids). To stress the difference between Kauffman states
and σ1-states we will use notation S and S respectively. Like for Kauffman
states we will use 〈S, β〉 and ρ(S, β) to denote the contribution of S to 〈β〉
and to ρ(β) respectively. Of course we have formulas analogous to 2.2.

(2.3) 〈β〉 =
∑

S

〈S, β〉, ρ(β) =
∑

S

ρ(S, β).

Two extreme cases of σ1-states will play a special role in our considerations:
SH – the horizontal state obtained by smoothing all the σ1 crossings hori-
zontally, and SV – the vertical state obtained by smoothing all σ1 crossings
vertically.

Observation. If S is a non-vertical σ1-state then the trivial Kauffman
diagram 1 does not appear in ρ(S, β) (or more precisely, the coefficient of 1

in ρ(S, β) is zero).

3. σ1-states

It is known (Dehornoy [4], [5]) that every n-string braid has a reduced
or σ1-consistent form, i.e. such a form that either all exponents of σ1 are
positive, or all are negative. In the case of a closed 3-string braid, the reduced
form looks as in Figure 2.

In proving Theorem 1 we may restrict our attention to the case of σ1-
positive braids (those in which all occurrences of σ1 have positive exponents)
in ker ρ. Moreover, the following lemma allows for further restriction of the
braid’s form.

Lemma 1. Let γ be a positive 3-braid word. Assume that γ contains
a σ1σ2σ1 or σ2σ1σ2 sequence. Then γ is equivalent to a positive braid word
of the form σ2β of the same length.

Proof. We can assume that it is the σ2σ1σ2 sequence that is present in γ.
It is well known that σ1σ2σ1σ2 is equivalent as a braid to σ2σ1σ2σ2 and
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σ2σ2σ1σ2 is equivalent to σ2σ1σ2σ1. It follows that we can drag the sequence
σ2σ1σ2 gradually to the left staying within the initial isotopy class of the
braid. Finally we obtain a braid word as required.

Corollary 1. Let γ be a σ1-positive 3-braid word. Assume that γ is of
minimum length in its conjugacy class (minimum taken over all σ1-positive
words in the conjugacy class). Assume also that the conjugacy class of γ
contains none of the following:

1. positive braid,
2. σn

2 ,
3. σk

1σn
2 .
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Then γ may be written (as a cyclic word) as α1σ
−i1
2 . . . αkσ

−ik
2 , where

i1, . . . , ik > 0, k ≥ 2, in such a way that for every 1 ≤ i ≤ k the sequence αi

is positive and contains no isolated σ2 term, and moreover that αi contains
no isolated σ1 term, except possibly at the beginning/end (in particular the
sequence σ2σ1σ2 does not appear in the considered braid).

Proof. This is all obvious, except we need to work on the no single σ2 (σ1)
condition. Assume to the contrary, that we cannot avoid that for some s the
term αs contains a single σ2. If it appears at either end of αs then it may be
cancelled with a σ−1

2 term taken from the preceding σ
−is−1

2 sequence or from
the following σ−is

2 sequence (in the cyclic word and therefore in the same
conjugacy class). The result is still σ1-positive and the length is smaller
contradicting the assumption. If αs contains a single σ2 (or a single σ1)
somewhere in the middle, then it also contains a σ1σ2σ1 (or a σ2σ1σ2) se-
quence. It follows (by Lemma 1) that αs is equivalent to a positive word
beginning with a σ2 and we proceed as before.

To analyze the bracket polynomial of β̂ we will consider what we proposed
to call σ1-states of the considered braid. The closure of each σ1-state may be
transformed by regular isotopy (just cancellation of σ2σ

−1
2 and σ−1

2 σ2 terms,
in fact) into the disjoint union of a number of free circles with the connected
sum of a certain number of standard diagrams of (2, k)-torus links, including
possibly k = ±1 and k = 0 (Figures 3 and 4). We recall the formulas for the
bracket of a standard 2-torus link diagram.

Lemma 2. Let Tn = σ̂n and T−n = σ̂−n be standard 2-torus link diagrams,
and let T0 be the trivial diagram of the trivial 2-component link. Then:

〈T0〉 = −A−2 − A2,

〈Tn〉 = −An−2 +
n∑

i=0

(−1)n−1−iA−3n+2+4i,

〈T−n〉 = −A−n+2 +

n∑

i=0

(−1)−n−1−iA3n−2−4i.

In fact, we only need to know the exponent of the lowest degree term
degmin〈Tn〉. We formulate this for future reference.

Corollary 2.
degmin〈T0〉 = −2,

degmin〈Tn〉 = −3n + 2, for n ≥ 2,

degmin〈T1〉 = 3,

degmin〈Tn〉 = n − 2 for n < 0

(unlike with T1 there is no need to treat the case of T−1 separately).
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Theorem 1 and Theorem 2 are obviously true for 3-braids of the form σn
2

and σk
1σn

2 . Also, positive 3-braids will need special attention (later).
For now we will consider 3-braids that are not positive (more precisely,

those for which there is no positive braid in the conjugacy class) and not
of the form σn

2 or σk
1σn

2 . We will also assume that these braids are first
transformed into the special form introduced in Corollary 1. For a given
state S let us consider 〈S, β〉 in more detail. Let d be the difference of the
number of σ1 crossings smoothed vertically and the number of σ1 crossings
smoothed horizontally to obtain S, and let c be the number of simple closed
curves in S. As explained before, what remains when the simple closed curves
are removed is the connected sum of a number of standard Tn diagrams.
Given such notation we have:

(3.1) 〈S, β〉 = Ad · (−A−2 − A2)c ·
∏

〈Tn〉,

Remark 1. The coefficient of the lowest degree term in 〈S, β〉 is equal
to ±1.

Proof. It follows immediately from formula (3.1) and Lemma 2, as the
right hand side of formula (3.1) is a product of polynomials, each of them
obviously having the required property. �

Proposition 1. Let β be a σ1-positive 3-braid of the special form described
in Corollary 1 (and not of the form σn

2 or σk
1σn

2 ) and let SH be its horizontal
state. Then

(3.2) degmin〈SH , β〉 = degmin〈β〉,

while for all the other σ1-states S we have

(3.3) degmin〈SH , β〉 < degmin〈S, β〉.

Moreover, the coefficient of the lowest degree term in 〈SH , β〉 is ±1.

Proof. What we really need to prove is the sharp inequality 3.3. The
equality 3.2 follows easily, and the last statement is a consequence of 3.2 and
Remark 1.

Suppose that a counterexample to the Proposition exists. Such a coun-
terexample would involve a pair (β, S0) consisting of a braid β and a non-
horizontal σ1-state S0 of β such that

(3.4) degmin〈S0, β〉 ≤ degmin〈SH , β〉.

The set of all possible states S0 with this property for a given braid β
may be ordered (partially) by the number of σ1 crossings smoothed vertically
rather than horizontally in the state S0. Keeping the notation as described
above – (β, S0) is assumed to be a hypothetical minimal counterexample –
we formulate the following lemma.



A new proof of the faithfulness of the Temperley–Lieb representation of B3 439

Lemma 3. If in the state S0 a certain σ1 crossing in the sequence

. . . σi
2σ

j
1σ

k
2 . . .

is smoothed vertically, then all the j crossings are smoothed vertically.

Proof. Suppose Lemma 3 is false for the braid β. Let us consider another
state S

′ which is identical to S0 except that all the j crossings of type σ1 from
the considered . . . σi

2σ
j
1σ

k
2 . . . sequence are smoothed horizontally. When we

analyze the formulas (like formula (3.1)) for the contribution of S0 and S
′ to

〈β〉 it is clear that in both cases the 2-torus links are exactly the same, the
multiplier for S

′ is of smaller degree than the one for S0 and the number of
closed curves in S

′ is greater than in S0. Also, the number of σ1 crossings
smoothed vertically in S

′ is smaller than in S0. If this was possible, then
(β, S′) would be a smaller counterexample to the Proposition than (β, S0)
against assumption.

We are now in position to prove Proposition 1. Using the same notation
we can now choose a sequence σk0

2 σj1
1 σk1

2 . . . σjn

1 σkn

2 such that in the state S0

all the σ1 crossings in the given sequence are smoothed vertically and that
the considered sequence is of maximum length with respect to this property.
By Lemma 3 we know that n ≥ 1. This is applied to a cyclic word, therefore
it is possible that the sequence considered is the whole braid word β (in
this case either k0 = 0 or kn = 0). We now want to see if smoothing all
the σ1 crossings in the considered sequence vertically may have the effect
of decreasing the degmin or of keeping it unchanged. To determine this we
analyze how the suitable terms of the following formula change when we pass
from SH to S0

(3.5) 〈S, β〉 = Ad · (−A−2 − A2)c ·
∏

〈Tki
〉.

The change of the exponent d is easy to control. It is increased by∑
ji which has the effect of increasing degmin by 2 ·

∑
ji. The change of

the parameter c (the number of closed curves in the state) is a decrease by∑
(ji−1) if the considered sequence is not the whole braid or by −1+

∑
(ji−1)

in the opposite case (because in this case one additional curve is created from
the first string of the braid). While we said decrease, in fact the parameter
c may stay unchanged (when all the ji’s are equal to 1) or may actually
increase by 1 (if in addition to ji = 1 for all i, the considered sequence
is equal to the whole braid). Accordingly, this causes a suitable change in
degmin — an increase in most cases, no change in one special case and a
decrease by 2 in the extreme case described above. While the change in
parameter d has always a favourable effect, this is not so with the change of
c, as described above.
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Finally, let us discuss the change in
∏
〈Tki

〉. Here we replace the bracket
polynomials of Tk0

, . . . , Tkn
with the bracket polynomial of Tk0+···+kn

. We
will consider this case in three stages. First, we will assume that k0, . . . kn

are all positive, next we will assume that they are all negative and then
we will consider the case when some of them are negative and some are
positive.

We start with k0, . . . kn > 0. Now, it is time to use our assumptions
about the special form of the considered braid word. We are assuming that
no isolated σ2 crossing appears in the considered braid word. It follows
that we have in fact ki ≥ 2 for i = 0, . . . , n. According to Corollary 2,
the contribution of σki

2 to degmin in 〈SH , β〉 is −3ki + 2 for i = 0, . . . , n.

Altogether, the contribution of σk0

2 , . . . , σkn

2 to degmin〈SH , β〉 is −3 · (k0 +
. . . + kn) + 2(n + 1). On the other hand, the contribution of Tk0+···+kn

to
degmin〈S0, β〉 is −3 · (k0 + . . . + kn) + 2. This means a decrease by 2n which
must be more than compensated if we want to prove that SH is responsible
for the single term of the lowest degree. But it is easy to see, that the
change in the parameter d (described above) is an increase of 2 ·

∑
ji ≥ 2n.

This means that there is no contribution of degree lower than degmin〈SH , β〉
to 〈β〉 coming from 〈S0, β〉, so degmin〈SH , β〉 ≤ degmin〈S0, β〉. However,
we need prove that the sharp inequality holds. To do better we can now
use another property of our special form of the considered braid: in the
considered situation (k0, . . . kn > 0) we have ji ≥ 2 for i = 1, . . . , n which
implies that in this special case the change in the parameter d increases the
degmin by at least 4n. Let us observe that there is no need to consider the
possible decrease caused by the change in the parameter c — this may only
happen when the considered sequence is equal to the whole braid and this
is not the case here as the considered braid is assumed not to be positive.

Next, we consider the case of k0, . . . kn < 0. We assume that n ≥ 1, so we
have at least two negative torus link diagrams involved. An easy calculation
shows that grouping the torus link diagrams into one (by smoothing the σ1’s
vertically) increases the degmin by at least 2. The change in d increases it
further by at least 2. Together, it more than compensates the change in the
wrong direction caused possibly by the change in c.

What remains is to consider the case when at least one of the k′
is is

positive and at least one is negative. We will reorder them, so that all the
negative ones appear first. Reordering Tk’s in such a way (or any other) has
no effect on the final result. What does matter is that the connected sum
of Tk diagrams is replaced by Tk0+...+kn

. After such an operation it may no
longer be true that a σ2σ1σ2 sequence does not appear in β. Fortunately,
this will not be needed anymore. We will pass from SH to S0 in three stages.
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First, we smooth all the σ1’s in the first part (the one grouping the negative
σ2 crossings). This results in an increase of degmin or in the worst case (which
is that of just one negative ki in the whole sequence) no change of degmin.
Secondly, we do the same for the part grouping the positive σ2 crossings.
While single σ1’s might now appear in this part of the sequence, it is still
true that the contribution to degmin is at the worst the same and not smaller.
Now, we smooth the final set of σ1 crossings separating the two parts and
obviously the contribution of S0 to degmin is smaller than that of SH . This
is because at this last stage we connect in one box two standard 2-torus
link diagrams, one positive, of length at least 2 and the other negative, and
this always results in a decrease of degmin. This completes the proof of
Proposition 1.

Proof of Theorem 1. Suppose that there is a non-trivial braid β in ker ρ.
First, we will exclude the possibility of β being a positive braid of length
n > 0. It is well-known that in such case the coefficient of the unit Kauffman
diagram 1 in ρ(β) is An, rather than 1, which means that β /∈ ker ρ. The
same argument works for any braid that is conjugate to a positive braid, and
more generally, for any braid with non-zero writhe. As mentioned before,
there are no non-trivial braids of the form σn

2 or σk
1σn

2 in ker ρ. Therefore,
what remains is to consider braids of the form described in Corollary 1 with
null writhe.

Let m be the number of σ1 crossings in β. Then the vertical state SV

is a disjoint union of one free circle and T−m (it is T−m with this specific
parameter −m because of the assumption about the sum of exponents in the
considered braid being equal to zero). From formula 3.1 we obtain

(3.6) 〈SV , β〉 = Am · (−A−2 − A2) · 〈T−m〉.

Then by Corollary 2

(3.7) degmin〈SV , β〉 = m − 2 − m − 2 = −4.

On the other hand, by Proposition 1,

(3.8) degmin〈β〉 = degmin〈SH , β〉 < degmin〈SV , β〉 = −4,

so

(3.9) degmin〈β〉 < −4.

It follows that ρ(β) 6= 1. Otherwise we would have ρ(β) = ρ(1) (here 1
means the trivial 3-string braid). That would imply that

(3.10) 〈β〉 = 〈1〉 = (−A−2 − A2)2.

However the minimum degree of the left-hand side is strictly smaller than
−4 (3.9), while the minimum degree of the right-hand side is −4.
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Proof of Theorem 2. Theorem 2 is checked directly for links represented
by braids of the form σn

2 , σk
1σn

2 . For positive braids one can easily prove that
the highest degree term has coefficient 1. Namely, the vertical state contains
the unique term of the highest degree (because it is easy to see that when
we go from the vertical state to the state with just one crossing smoothed
horizontally, then the maximum degree always decreases by 2 and in all
subsequent steps it cannot increase). Proposition 1 proves the remaining σ1-
positive cases. The case of negative or σ1-negative 3-braids is analogous.

Example 1. The assumption that the considered braid is not positive is
necessary in Proposition 1. For example the bracket polynomial of the braid
σ1σ2σ1σ1σ2σ1 is 2A−6 + A2 + A10.

Example 2. Another example shows that a σ1-positive 3-braid may have a
coefficient of the highest degree term that is not equal to ±1. In the example
below the writhe equals 6. Let us remark that there is no such example with
writhe 0 since in such case it is well known that the bracket polynomial is
symmetric. The braid σ1σ

−2
2 σ2

1σ
5
2 has bracket polynomial

A2 − 2A6 + 3A10 − 5A14 + 5A18 − 5A22 + 4A26 − 2A30 + 2A34.

Example 3. We end with an example of a 4-braid showing that the above
is not necessarily true for braids with more than 3 strings. The σ1-positive
4-braid with null writhe

σ2σ3σ1σ
−1
2 σ1σ

2
2σ

−1
3 σ−2

2 σ1σ
−1
2 σ1σ

−2
3 σ−2

2 σ2
1σ2σ

−1
3 σ−2

2 σ2
1σ

−1
3

has bracket polynomial

−2A−30 +9A−26−24A−22 +45A−18−61A−14 +61A−10−45A−6 +14A−2

+19A2−50A6 +68A10−69A14 +54A18−31A22 +12A26−2A30.

The coefficients of both the term with the lowest exponent and the term
with the highest exponent, are not equal to ±1.
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