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Abstract. Motivated by the recent study of several researchers on extended-order

algebras, introduced by C. Guido and P. Toto as a possible common framework for the
majority of algebraic structures used in many-valued mathematics, the paper focuses on the
properties of homomorphisms of the new structures, considering extended-order algebras
as a generalization of partially ordered sets. The manuscript also introduces the notion of
extended-relation algebra providing a new framework for developing the theory of rough sets.

1. Introduction

The notion of partially ordered set is undoubtedly one of the cornerstones
of modern abstract algebra. Introduced by F. Hausdorff [18] at the beginning
of the previous century (notice that the axioms used in the definition of
an order relation had already been considered by G. Leibniz around 1690;
moreover, G. Cantor [2] presented in 1895 the notion of totally ordered set),
the concept soon drew the attention of many researchers, who successfully
developed the theory of partially ordered sets (or posets for short) up to its
present state, when it has found a way in almost every area of (not only
exact) science. No wonder that a significant amount of time has been spent
to provide various generalizations of the concept. In particular, the topic of
this paper was motivated by the following three approaches.

In 1974, H. Rasiowa [30] has come out with the notion of implicative
algebra, introduced as a possible tool for a uniform algebraic treatment of
various logics.
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Definition 1. An implicative algebra is an abstract algebra (A,⇒, V ),
where V is a nullary operation and ⇒ is a binary operation such that for
every a, b, c ∈ A, the following conditions hold:

(1) a⇒ a = V ;
(2) if a⇒ b = V and b⇒ c = V , then a⇒ c = V ;
(3) if a⇒ b = V and b⇒ a = V , then a = b;
(4) a⇒ V = V .

In 1999, J. Neggers and H. S. Kim [29] introduced the notion of d-algebra
as yet another generalization of BCK-algebras.

Definition 2. A d-algebra is a non-empty set X with a constant 0 and a
binary operation ∗ satisfying for every x, y ∈ X the following axioms:

(1) x ∗ x = 0;
(2) 0 ∗ x = 0;
(3) if x ∗ y = 0 and y ∗ x = 0, then x = y.

A d-algebra (X, ∗, 0) is called d-transitive provided that for every x, y, z ∈ X,
x ∗ y = 0 and y ∗ z = 0 imply x ∗ z = 0.

In 2008, C. Guido and P. Toto [17] provided the concept of weak extended-
order algebra, deemed to serve as a common framework for the majority of
algebraic structures used in many-valued mathematics.

Definition 3. A weak extended-order algebra (w-eo algebra) is a triple
(L,→,⊤), where L is a non-empty set, L×L

→
−→ L is a binary operation on

L, and ⊤ is a distinguished element of L such that the following conditions
are satisfied for every a, b, c ∈ L:

(1) a→ ⊤ = ⊤ (upper bound condition);
(2) a→ a = ⊤ (reflexivity condition);
(3) if a→ b = ⊤ and b→ a = ⊤, then a = b (antisymmetry condition);
(4) if a → b = ⊤ and b → c = ⊤, then a → c = ⊤ (weak transitivity

condition).

It is important to underline immediately that the notion of w-eo algebra
is completely different from that of lattice-valued partially ordered set , which

relies on a fuzzification of partial order in the form of a map X ×X
R
−→ L,

where X is a set and L is a lattice (possibly) with some additional algebraic
structure [26].

The above-mentioned concepts are closely related. In particular, Defini-
tions 1, 3 are equivalent up to the name of the notion. Moreover, an easy
effort will convince the reader that Definition 2 is actually their dual ana-
logue [17] (see more on that in Section 6.5 of the paper). What is more
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important to us is the fact that all three notions bear a close connection to
partial order. In particular, the next result is easy to show.

Lemma 4.

(1) Given a w-eo algebra (L,→,⊤), the binary relation 6 on L defined for
every a, b ∈ L by

a 6 b iff a→ b = ⊤

provides a poset (L,6,⊤) with the upper bound ⊤ (this partial order is
called the natural one in L).

(2) Given an upper-bounded poset (L,6,⊤), every binary operation → on L,
which extends the relation 6 (a → b = ⊤ iff a 6 b), provides a w-eo
algebra (L,→,⊤).

It was precisely the result of Lemma 4 (already mentioned by H. Ra-
siowa [30]) that motivated the change of terminology to “extended-order
algebra”.

An attentive reader will notice immediately that the ambition of C. Guido
et al. in providing a new notion subsumes that of H. Rasiowa, since many-
valued mathematics includes lattice-valued logic, which in its turn incor-
porates classical logic as a crisp subcase. Being more general in the just
mentioned sense, C. Guido and his research team decided to investigate the
properties of the binary operation → of a w-eo algebra (A,→,⊤). The main
motivation came from the current trend of starting with a basic (or primitive)
binary operation of multiplication (⊗) and then obtain an implication-like
operation (→) as a derived one. Consider, for example, the well-known case
of quantales [25, 34, 35, 36, 37, 38].

Definition 5. A quantale (Q,⊗,
∨

) is a
∨

-semilattice (Q,
∨

) (partially
ordered set having arbitrary

∨

) equipped with an associative binary oper-
ation ⊗ (multiplication), which distributes across

∨

from both sides, i.e.,
a⊗ (

∨

S) =
∨

s∈S(a⊗ s) and (
∨

S)⊗ a =
∨

s∈S(s⊗ a) for every a ∈ Q and
every S ⊆ Q.

The multiplication operation in a given quantale (Q,⊗,
∨

) induces two
residuations , namely, a →r b =

∨

{c ∈ Q | a ⊗ c 6 b} and a →l b =
∨

{c ∈
Q | c⊗ a 6 b}. Moreover, a special case of the residuations provides two ⊗-
pseudocomplementations (the terminology is not standard): a⊥ = a →r ⊥
and ⊥a = a→l ⊥. In one word, the basic operation ⊗ gives rise to a variety
of derived ones.

C. Guido et al. proposed to go the opposite way, developing their theory
accordingly [8, 16, 17] (one must underline here that a similar path has
already been taken by, e.g., J. M. Dunn [10]).
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Definition 6. A w-eo algebra (L,→,⊤) is called complete (w-ceo alge-
bra) provided that the set L, equipped with the natural partial order, is a
complete lattice. A w-ceo algebra (L,→,⊤) is said to be right-distributive
(w-rdceo algebra) provided that for every a ∈ L and every S ⊆ L, a→

∧

S =
∧

s∈S(a→ s).

Given a w-rdceo algebra (L,→,⊤), the operation → induces a multipli-
cation ⊗ on L defined by a ⊗ b =

∧

{c ∈ L | b 6 a → c}. Moreover, every
w-ceo algebra (L,→,⊤) is equipped with a unary operation (−)⊥ defined by
a⊥ = a → ⊥. Altogether, the basic operation → gives rise to a plentitude
of derived ones, whose properties can be investigated through those of →.
That was precisely the approach taken up by the team of C. Guido, the
main idea being the following: base all algebraic structures of many-valued
mathematics on a single binary operation → obtained as an extension of
partial order. To back the challenging goal, an advertisement campaign for
the new framework has started, stimulating its applications in many-valued
mathematics. The series of papers [12, 13, 14] contains an attempt to build
the theories of lattice-valued topology and category theory on w-eo algebras.

It should be noticed, however, that the theory of the new structures it-
self is still quite far from maturity, due to some negligence of C. Guido et
al. of their proposed algebras. Indeed, having payed much attention to
the structure, they never considered its homomorphisms. Since the mod-
ern many-valued mathematics relies heavily on category theory (cf., e.g.,
lattice-valued topology of [32], which is a de facto standard in the fuzzy
community), the latter issue is of great importance in the development of
every new lattice-valued framework. It is the main purpose of this paper
to fill in the gap providing a categorical approach to w-eo algebras, thereby
studying properties of homomorphisms of the structures in question. In
pursuing the course, we naturally regard w-eo algebras as a generalization of
posets (cf. the term “extended-order algebras”) and that opens a plentitude
of possibilities to define their homomorphisms.

While reading the paper, a cunning reader will notice striking similar-
ities with the theory of Hilbert algebras [9] (pointed out to the author by
A. Palmigiano), introduced as an algebraic description of the implication
connective in the linear intuitionistic logic. Indeed, Hilbert algebras (or pos-
itive implication algebras in the language of H. Rasiowa [30]) give a further
restriction of w-eo algebras.

Definition 7. A w-eo algebra (L,→,⊤) is called a Hilbert algebra pro-
vided that the following conditions are satisfied for every a, b, c ∈ L:

(1) a→ (b→ a) = ⊤;
(2) (a→ (b→ c)) → ((a→ b) → (a→ c)) = ⊤.
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After careful examination, it appears that our approach to w-eo algebras
differs from the theory of Hilbert algebras, being mostly based on the topic
of homomorphisms and not the structures themselves. A somewhat closer
stand was taken by S. Celani [3] in his notion of semi-homomorphism of
Hilbert algebras, which has arisen as a generalization of the similar notion
of Boolean algebras and was studied in connection with the homomorphisms
and deductive systems.

Definition 8. Let (L,→,⊤) and (M,→,⊤) be Hilbert algebras. A semi-

homomorphism is a map L
h
−→M such that:

(1) h(⊤) = ⊤;
(2) h(a→ b) 6 h(a) → h(b) for every a, b ∈ L.

The idea was further developed by S. Celani, L. M. Cabrer and D. Mon-
tangie in [4], where the category HS of Hilbert algebras and semi-homomor-
phisms was considered, with an ultimate goal to provide a topological duality
theorem for the structures. The current paper uses a similar definition to ob-
tain particular instances of homomorphisms of w-eo algebras (Definition 13),
but in a different context. It will be the topic of our further research to pro-
vide an analogue of the results of S. Celani et al. in the framework of w-eo
algebras.

The paper uses both category theory and algebra, relying more on the
former. The necessary categorical background can be found in [1, 19, 27].
For the notions of universal algebra, we recommend [5, 6, 30]. Although we
tried to make the paper as much self-contained as possible, some details are
still omitted and left for the self-study of the interested reader.

2. Extended-order algebras versus partially ordered sets

This section provides a categorical elaboration of the relation between
w-eo algebras and partially ordered sets touched in Lemma 4. We begin
with the necessary categorical preliminaries from the theory of posets.

Definition 9. Pos is the category, whose objects are partially ordered
sets (X,6), and whose morphisms are order-preserving (monotone) maps

(X,6)
f
−→ (Y,6).

Definition 10. Pos⊤ is the non-full subcategory of Pos, whose objects
are upper-bounded posets (X,6,⊤), and whose morphisms are ⊤-preserving
monotone maps.

Turning to the case of w-eo algebras, one can introduce the respective
category of the structures. For convenience sake, from now on, we will
use the capital letters A, B, C, etc. to denote the underlying sets of the



594 S. A. Solovyov

algebras in question, and Greek letters φ, ϕ, ψ, etc. to denote the respective
homomorphisms.

Definition 11. WEOAlg⊤ is the category, whose objects are w-eo al-

gebras (A,→,⊤), and whose morphisms (A,→,⊤)
ϕ
−→ (B,→,⊤) are maps

A
ϕ
−→ B such that for every a1, a2 ∈ A as well as ⊤ ∈ A, the following

conditions hold:

(1) if a1 → a2 = ⊤, then ϕ(a1) → ϕ(a2) = ⊤;
(2) ϕ(⊤) = ⊤.

An experienced reader will notice that the category WEOAlg⊤ provides
a direct generalization of the category Pos⊤ (a map between d-algebras sat-
isfying item (1) of Definition 11 with the respective change in the notations
is called order-preserving in [28]). It appears that there exists an even deeper
relation between the categories in question, whose proof relies on straight-
forward computations and, therefore, is omitted.

Theorem 12.

(1) There exists a functor WEOAlg⊤ ‖−‖
−−→ Pos⊤, ‖(A,→,⊤)

ϕ
−→ (B,→

,⊤)‖ = (A,6,⊤)
ϕ
−→ (B,6,⊤), where c1 6 c2 iff c1 → c2 = ⊤.

(2) There exists a functor Pos⊤
F
−→ WEOAlg⊤, F ((X,6,⊤)

f
−→ (Y,6

,⊤)) = (X,→,⊤)
f
−→ (Y,→,⊤), where

z1 → z2 =

{

⊤, z1 6 z2

z2, otherwise.

(3) The functors ‖ − ‖ and F provide an equivalence between the categories
WEOAlg⊤ and Pos⊤ such that ‖ − ‖ ◦ F = 1Pos⊤ .

Theorem 12 shows a categorical generalization of Lemma 4, taking the
case of morphisms in play as well. Moreover, the result can be extended even
further, relaxing the rather strong conditions on morphisms of the category
WEOAlg⊤. For the sake of shortness, from now on, given a w-eo algebra
(A,→,⊤) and a, b ∈ A, “a→ b = ⊤” will be occasionally denoted by “a 6 b”.

Definition 13. WEOAlg6 is the non-full subcategory of WEOAlg⊤

having the same objects, and whose morphisms (A,→,⊤)
ϕ
−→ (B,→,⊤) are

maps A
ϕ
−→ B such that for every a1, a2 ∈ A as well as ⊤ ∈ A, the following

conditions hold:

(1) ϕ(a1 → a2) 6 ϕ(a1) → ϕ(a2);
(2) ϕ(⊤) = ⊤.
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The reader should notice that Definition 13 uses the approach of [3,
Definition 3.1] (quite a natural one, in fact) recalled in Definition 8. De-
spite the coincidence, our current context is completely different from that
of S. Celani. To point out the difference as well as to distinguish the mor-
phisms of the category WEOAlg6 from the classical universal algebra ap-
proach (Definition 21), we will call them lax (w-eo algebra) homomorphisms
employing the terminology of [20].

Definition 14. WEOAlg6→ is the full subcategory of WEOAlg6, the
objects of which are w-eo algebras (A,→,⊤) satisfying the condition a →
(b→ a) = ⊤ for every a, b ∈ A.

It is important to underline that following Definition 7, we do not restrict
ourselves to the case of Hilbert algebras. With the category WEOAlg6→

in hand, one can generalize Theorem 12 as follows.

Theorem 15.

(1) There exists the restriction WEOAlg6→
‖−‖6→

−−−−→ Pos⊤ of the functor

WEOAlg⊤ ‖−‖
−−→ Pos⊤.

(2) There exists the restriction Pos⊤
F6→

−−−→ WEOAlg6→ of the functor

Pos⊤
F
−→ WEOAlg⊤.

(3) F6→ is a left-adjoint-right-inverse to ‖ − ‖6→.

Proof. Ad (1). Just to give a flavor of the new functor, we show its
correctness on morphisms. Given a lax w-eo algebra homomorphism

(A,→,⊤)
ϕ
−→ (B,→,⊤) and some a1, a2 ∈ A such that a1 6 a2, it fol-

lows that a1 → a2 = ⊤ and then ⊤ = ϕ(⊤) = ϕ(a1 → a2) 6 ϕ(a1) → ϕ(a2)
yields ϕ(a1) 6 ϕ(a2). In one word, lax homomorphisms are order-preserving,
that generalizes [28, Proposition 5.1].

Ad (2). Show the correctness of the new functor on both objects and

morphisms. Given a ⊤-preserving monotone map (X,6,⊤)
f
−→ (Y,6,⊤), fix

x1, x2 ∈ X. By the definition of F , it follows that x2 6 x1 → x2 that yields
the desired equality. As for morphisms, suppose that f(x1) → f(x2) 6= ⊤.
Then f(x1) 66 f(x2) implies f(x1) → f(x2) = f(x2), on one hand, and
x1 66 x2 provides x1 → x2 = x2, on the other. Altogether, f(x1 → x2) =
f(x2) = f(x1) → f(x2).

Ad (3). Rather straightforward computations show that the map

(X,6,⊤)
η
−→ ‖F6→(X,6,⊤)‖6→ = (X,6,⊤)

1X−−→ (X,6,⊤) provides the
required ‖ − ‖6→-universal arrow, i.e., it has the property that every mono-

tone map (X,6,⊤)
f
−→ ‖(A,→,⊤)‖6→ has a unique homomorphism
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F6→(X,6,⊤)
f
−→ (A,→,⊤) making the triangle

(X,6,⊤)
η

//

f
**UUUUUUUUUUUUUUUUU

‖F6→(X,6,⊤)‖6→

‖f‖6→

��

‖(A,→,⊤)‖6→

commute.

The new framework transforms the equivalence of Theorem 12 into an ad-
junction, retaining the embedding of Pos⊤ into the category WEOAlg6→.
The adjunction obtained allows a certain simplification, under the restriction
to a particular subcategory of Pos⊤.

Definition 16. BPos is the non-full subcategory of Pos⊤, whose objects
are bounded posets (X,6,⊥,⊤), and whose morphisms are monotone maps
preserving the bounds.

Definition 17. WEOAlg6⊥ is the non-full subcategory of WEOAlg6,
whose objects are w-eo algebras (A,→,⊤) having an element ⊥ ∈ A such
that ⊥ → a = ⊤ for every a ∈ A, and whose morphisms are ⊥-preserving
lax w-eo algebra homomorphisms.

Theorem 18.

(1) There exists the restriction WEOAlg6⊥
‖−‖6⊥

−−−−→ BPos of the functor

WEOAlg⊤ ‖−‖
−−→ Pos⊤.

(2) There exists a functor BPos
G
−→ WEOAlg6⊥, which is given by

G((X,6,⊥,⊤)
f
−→ (Y,6,⊥,⊤)) = (X,→,⊤)

f
−→ (Y,→,⊤), where

z1 → z2 =

{

⊤, z1 6 z2

⊥, otherwise

(this operation is called the natural one on the respective set).
(3) G is a left-adjoint-right-inverse to ‖ − ‖6⊥.

Notice that having a bottom element in hand, allows one to define the
operation → in item (2) of Theorem 18 as a characteristic map of the partial
order in question, which is indeed a standard way of converting a relation
into an operation.

3. Extended-order algebras versus preordered sets

This section is devoted to a generalization of the well-known procedure
of making a preordered set partially ordered. For the sake of transparency,
we begin by recalling the standard developments.
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Definition 19. Prost is the category, whose objects are preordered sets
(X,6) (the relation 6 is reflexive and transitive), and whose morphisms are
monotone maps.

It is easy to see that Pos is the full subcategory of Prost, the embedding
functor denoted by E.

Theorem 20. The embedding Pos
�

� E
// Prost has a left adjoint.

Proof. Given a preordered set (X,6), define an equivalence relation ∼ on
X by x1 ∼ x2 iff x1 6 x2 and x2 6 x1. The standard quotient map (X,6)
p
−→ E(X/ ∼,6∼) provides the required E-universal arrow (cf. Ad (3) in the
proof of Theorem 15).

The above-mentioned simple procedure gains somewhat in complexity,
when turning to the case of w-eo algebras. Start with the definition of weak
extended-preorder algebra, which has never been mentioned by C. Guido and
his collaborators.

Definition 21. WEPOAlg is the category, whose objects weak extended-
preorder algebras (w-epo algebras) are triples (A,→,⊤), where L is a non-
empty set, → is a binary operation on L, and ⊤ is an element of L such that
for every a, b, c ∈ L, the following conditions are satisfied:

(1) a→ ⊤ = ⊤ (upper bound condition);
(2) a→ a = ⊤ (reflexivity condition);
(3) if a → b = ⊤ and b → c = ⊤, then a → c = ⊤ (weak transitivity

condition).

The morphisms of the category (A,→,⊤)
ϕ
−→ (B,→,⊤) are maps A

ϕ
−→ B

with the property ϕ(a1 → a2) = ϕ(a1) → ϕ(a2) for every a1, a2 ∈ A.

The following lemma shows a simple (but very important) property of
w-epo algebra homomorphisms.

Lemma 22. Every w-epo algebra homomorphism (A,→,⊤)
ϕ
−→ (B,→,⊤)

is ⊤-preserving.

Proof. ϕ(⊤) = ϕ(⊤ → ⊤) = ϕ(⊤) → ϕ(⊤) = ⊤.

Moreover, with the above-mentioned classical case in mind, one immediately
obtains the next definition.

Definition 23. WEOAlg is the full subcategory of WEPOAlg of w-eo
algebras.

On the other hand, to take the path of Theorem 20, one needs a particular
subcategory of WEPOAlg.



598 S. A. Solovyov

Definition 24. WEPOAlg∗ is the full subcategory of WEPOAlg,
whose objects (w-epo∗ algebras) are those w-epo algebras (A,→,⊤), which
satisfy for every a, b, c, d ∈ A the following conditions:

(1) if a → b = ⊤, b → a = ⊤ and c → d = ⊤, d → c = ⊤, then (a → c) →
(b→ d) = ⊤ and (b→ d) → (a→ c) = ⊤;

(2) if ⊤ → (a→ b) = ⊤ and ⊤ → (b→ c) = ⊤, then ⊤ → (a→ c) = ⊤;
(3) if ⊤ → (a → b) = ⊤ and ⊤ → (b → a) = ⊤, then a → b = ⊤ and

b→ a = ⊤.

Clearly, WEOAlg is the full subcategory of WEPOAlg∗, with E stand-
ing for the embedding functor.

Theorem 25. The embedding WEOAlg
�

� E
// WEPOAlg∗ has a left

adjoint.

Proof. Given a w-epo∗ algebra (A,→,⊤), define an equivalence relation ∼
on A by a ∼ b iff a→ b = ⊤ and b→ a = ⊤. Item (1) of Definition 24 ensures
that the relation is a congruence. To continue, let (A/ ∼) × (A/ ∼)

 
−→

(A/ ∼), [a]  [b] = [a → b], where [a] = {c ∈ A | a ∼ c} is the congruence
class of a. Employing items (2), (3) of Definition 24, one gets a w-eo algebra
(A/ ∼, , [⊤]). For example, to show the transitivity axiom, notice that
[a]  [b] = [⊤] and [b]  [c] = [⊤] imply ⊤ → (a → b) = ⊤ and ⊤ → (b →
c) = ⊤ that yields ⊤ → (a → c) = ⊤ by the above item (2). Altogether,
(a → c) ∼ ⊤ and, thus, [a]  [c] = [⊤]. Easy computations show that the

quotient map A
p
−→ (A/ ∼), p(a) = [a] is the required E-universal arrow for

(A,→,⊤).

Notice that by Theorem 25, the conditions of Definition 24 are sufficient
for the desired result. It is not difficult to see that they are also the necessary
ones due to item (1) of Definition 21.

4. Completion of extended-order algebras

The algebraic structures used in many-valued mathematics are often re-
quired to be based on complete lattices. The case of lattice-valued topology
provides a good example, since its modern theory relies on the concept of
semi-quantale [32, 33], which is a

∨

-semilattice equipped with a binary op-
eration (notice that neither associativity nor any relation to partial order
is required from the binary operation in question as in Definition 5). The
softening of the standard quantale-like conditions is related to the fact that
the obtained categories of topological structures are itself topological over
their ground categories, ensuring that one is doing topology while working
in the new framework. Since w-eo algebras in general come equipped with a
partial order only, C. Guido and P. Toto [17] provided a special completion
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procedure for the structures, generalizing the standard MacNeille comple-
tion of partially ordered sets. This paper takes a similar turn, providing a
suitable extension of the so-called completion by cuts. For convenience of the
reader, we recall the essence of the developments.

Definition 26. CSLat(
∨

) is the non-full subcategory of Pos, with the
embedding functor denoted by E, whose objects are

∨

-semilattices (cf. Def-
inition 5), and whose morphisms are

∨

-preserving maps.

Theorem 27. The embedding CSLat(
∨

) �

� E
// Pos has a left adjoint.

Proof. Given a poset (X,6), let P↓(X) be the collection of all lower sets of
X (S ⊆ X is a lower set provided that s ∈ S and x 6 s imply x ∈ S). It is
easy to see that P↓(X) is a

∨

-semilattice, where
∨

are given by set-theoretic

unions. Moreover, the map X
↓(−)
−−−→ P↓(X), ↓ x = {y ∈ X | y 6 x} provides

an E-universal arrow for (X,6).

The object part of the functor of Theorem 27 gives the above-mentioned
completion by cuts, which in general is different from the MacNeille com-
pletion. Turning now to the case of w-eo algebras, we begin with a suitable
analogue of the category Pos.

Definition 28. EOAlg6 is the full subcategory of WEOAlg6, whose
objects extended-order algebras (eo algebras) are those w-eo algebras
(A,→,⊤), which satisfy for every a, b, c ∈ A the following conditions:

(1) if a→ b = ⊤, then (b→ c) → (a→ c) = ⊤ (weak antitonic condition in
the first variable);

(2) if a → b = ⊤, then (c → a) → (c → b) = ⊤ (weak isotonic condition in
the second variable).

On the next step, using more restrictions, we provide a substitute for the
category CSLat(

∨

).

Definition 29. LDEOAlg6(
∨

) is the non-full subcategory of EOAlg6,
with the embedding functor denoted by E, whose objects left-distributive
complete eo algebras (ldceo algebras) are eo algebras (A,→,⊤), which are
∨

-semilattices (w.r.t. the natural partial order) satisfying the condition
(
∨

S) → a =
∧

s∈S(s → a) for every a ∈ A and every S ⊆ A, and whose
morphisms additionally are

∨

-preserving.

It should be noticed that the notion of (ld)ceo algebra is due to C. Guido
et al. [17]. Everything is in its place to provide the main result of the section,
which extends Theorem 27.
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Theorem 30. The functor LDEOAlg6(
∨

)
�

� E
// EOAlg6 has a left

adjoint.

Proof. Given an eo algebra (A,→,⊤), define P↓(A) = {↓ S |S ⊆ A}, where
↓ S = {a ∈ A | a→ s = ⊤ for some s ∈ S}. It should be clear that P↓(A) =
P↓(A), where the notational difference just draws the attention to the new
framework. For T1, T2 ∈ P↓(A) set T1  T2 =

⋂

t1∈T1

⋃

t2∈T2
↓ (t1 → t2).

Given a family (Ti)i∈I ⊆ P↓(A) let
∨

i∈I Ti =
⋃

i∈I Ti. One has to verify
that the triple (P↓(A), , A) is an ldceo algebra. As an example, show that
T1 ⊆ T2 iff T1  T2 = A. Assuming the left-hand side inclusion, every
t1 ∈ T1 satisfies t1 ∈ T2 and, thus, A =↓ (t1 → t1) ⊆

⋃

t2∈T2
↓ (t1 → t2).

It follows that A ⊆ T1  T2. Assuming now the right-hand side equality,
every t1 ∈ T1 yields

⋃

t2∈T2
↓ (t1 → t2) = A and, thus, there exists some

t2 ∈ T2 such that ⊤ ∈↓ (t1 → t2), yielding t1 → t2 = ⊤. The desired t1 ∈ T2
now follows.

Straightforward (but tedious) computations show that the map A
↓(−)
−−−→

P↓(A) provides an E-universal arrow for (A,→,⊤), i.e., every lax eo algebra

homomorphism (A,→,⊤)
ϕ
−→ E(B,→,⊤) has a unique extension P↓(A)

ϕ
−→

B, ϕ(T ) =
∨

ϕ→(T ) =
∨

t∈T ϕ(t). As illustrative examples, we will show
two things. Firstly, let us check that the map ↓ (−) is a lax homomorphism,
i.e., ↓ (a→ b) =↓ a ↓ b for every a, b ∈ A.

Given c ∈↓ (a → b), it follows that c ∈
⋃

t2∈↓b
↓ (a → t2) and, thus,

c ∈↓ (a→ t2) for some t2 ∈↓ b, i.e., c→ (a→ t2) = ⊤ and t2 → b = ⊤. The
latter equality gives (a → t2) → (a → b) = ⊤ by item (2) of Definition 28
and, therefore, the former one provides c→ (a→ b) = ⊤, i.e., c ∈↓ (a→ b).

Given c ∈↓ (a → b), it follows that c → (a → b) = ⊤. Every t1 ∈↓ a
provides t1 → a = ⊤ and, thus, (a → b) → (t1 → b) = ⊤ by item (1) of
Definition 28, yielding c→ (t1 → b) = ⊤. Then c ∈↓ (t1 → b) and, therefore,
c ∈

⋃

t2∈↓b
↓ (t1 → t2). Altogether, c ∈

⋂

t1∈T1

⋃

t2∈T2
↓ (t1 → t2) and that

was to show.

Secondly, let us verify that the extension map P↓(A)
ϕ
−→ B is a homo-

morphism as well. It will be enough to show that
∨

ϕ→(
⋂

t1∈T1

⋃

t2∈T2
↓

(t1 → t2)) 6 (
∨

ϕ→(T1)) → (
∨

ϕ→(T2)). Notice that
∨

ϕ→(
⋂

t1∈T1

⋃

t2∈T2
↓

(t1 → t2)) 6
∨

(
⋂

t1∈T1

⋃

t2∈T2
↓ ϕ→(↓ (t1 → t2))). Choose an element

b ∈
⋂

t1∈T1

⋃

t2∈T2
↓ ϕ→(↓ (t1 → t2)). Every t1 ∈ T1 has t2 ∈ T2 such that

b → ϕ(a) = ⊤ and a → (t1 → t2) = ⊤ for some a ∈ A. The latter equality
provides ⊤ = ϕ(⊤) = ϕ(a → (t1 → t2)) 6 ϕ(a) → ϕ(t1 → t2) 6 ϕ(a) →
(ϕ(t1) → ϕ(t2)) (mind the use of Item (2) of Definition 28) and, thus, ϕ(a) →
(ϕ(t1) → ϕ(t2)) = ⊤. The former one then gives b → (ϕ(t1) → ϕ(t2)) = ⊤
yielding (again by item (2)) b → (ϕ(t1) →

∨

ϕ→(T2)) = ⊤. Altogether,
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b →
∧

t1∈T1
(ϕ(t1) →

∨

ϕ→(T2)) = ⊤ and then (employing the condition of
Definition 29) b→ (

∨

ϕ→(T1) →
∨

ϕ→(T2)) = ⊤ that was to show.

For the sake of convenience, from now on, the paper uses the follow-
ing notation. Given a category C of w-eo algebra related structures, it is
assumed that the respective morphisms are defined as in Definition 21 (ho-
momorphisms of the standard universal algebra approach), whereas C6 is
supposed to have the morphisms as in Definition 13 (lax homomorphisms of
the poset motivated approach).

The last part of the proof of Theorem 30 shows that the map A
↓(−)
−−−→

P↓(A) actually lies in the category EOAlg and that provides a motivation
for changing the setting from EOAlg6 to EOAlg. Despite the expectations,
the next lemma states that the desired modification is impossible.

Lemma 31. The adjunction of Theorem 30 can not be restricted to the
category EOAlg.

Proof. Consider the eo algebra (2 = {⊥,⊤},→,⊤) with the natural oper-
ation → (cf. Theorem 18). If the desired restriction is possible, then there

exists a homomorphism P↓(2)
12−→ 2 defined by 12(T ) =

∨

T (the extension

of the identity 2
12−→ 2). On the other hand, letting T1 = {⊥} and T2 = ∅

provides 12(T1  T2) = ⊥ < ⊤ = 12(T1) → 12(T2).

Having the desired completion in hand, it would be interesting to compare
our result with the respective one of C. Guido et al. [17]. Their approach
is also based on the concept of extended-order algebra recalled in Defini-
tion 28. In particular, they constructed the MacNeille completion of a given
eo algebra (A,→,⊤) such that the new operation  provides an extension
of the original one. The construction of Theorem 30 provides a different
(sometimes of a bigger cardinality) completion of eo algebras, the additional
condition on distributivity in Definition 29 used to extend the result to ho-
momorphisms. In one word, the object part of the new framework simplifies
the respective procedure of C. Guido et al. On the other hand, in [15] the
obtained MacNeille completion is studied w.r.t. the properties it is capable
of preserving (reflecting) from the original eo algebra. It will be the topic of
our further research to do the same job in our framework.

5. Free extended-order algebras

Every new algebraic structure raises a question on the description of the
respective free algebras over sets. While working in the classical framework
of universal algebra, where the operations are finitary and set-indexed, there
exists the standard procedure for obtaining free algebras, which relies on the



602 S. A. Solovyov

well-known term algebra construction. Unlike the classical case, the algebras
used in lattice-valued mathematics do not always enjoy availability of free
objects. For example, the construct CLat of complete lattices and complete
lattice homomorphisms never has free lattices over sets with more than two
elements. Luckily, the case of w-eo algebras is a classical one and, therefore,
the familiar procedure should be at hand. On the other hand, following our
viewpoint on the structures as an extension of posets, we will generalize the
standard procedure of the latter framework. For convenience of the reader,
we start with some preliminaries.

There exists the forgetful functor Pos
|−|
−−→ Set defined by |(X,6)

f
−→

(Y,6)| = X
f
−→ Y , which has the following simple property.

Theorem 32. The functor Pos
|−|
−−→ Set has a left adjoint.

Proof. Given a set X, the identity map X
1X−−→ |(X,=)| provides a | − |-

universal arrow for X.

Turning to the framework of w-eo algebras, one obtains the following
generalization (cf. Definition 14).

Theorem 33. The forgetful functor WEOAlg6→
|−|
−−→ Set has a left ad-

joint.

Proof. Given a set X, define F (X) = X
⊎

{⊤} and let

x→ y =

{

⊤, x = y

y, otherwise.

Straightforward computations show that (F (X),→,⊤) lies in WEOAlg6→,

and the map X
η
−→ F (X), η(x) = x is a | − |-universal arrow for X. In

particular, every map X
f
−→ |(A,→,⊤)| has a unique extension to a lax

homomorphism F (X)
f
−→ A defined by

f(x) =

{

⊤, x = ⊤

f(x), otherwise.

It should be noticed here that relaxing the notion of w-eo algebra homo-
morphism simplifies dramatically the procedure of obtaining free algebras.
Moreover, the adjunction of Theorem 33 can be restricted to a particular
subcategory of WEOAlg6→, the motivation for which will be given in the
next section.

Definition 34. WEOAlg6→⋆ is the full subcategory of WEOAlg6→,
whose objects (A,→,⊤) satisfy for every a, b, c ∈ A the following condition:



Extended-order algebras as a generalization of posets 603

(⋆) if a→ b = ⊤ and a→ c 6= ⊤, then a→ (b→ c) 6= ⊤.

Theorem 35. There exists the restriction of the adjunction of Theorem 33
to the category WEOAlg6→⋆.

Proof. The challenge is to show that the free algebra obtained in Theorem 33
belongs to the subcategory in question, and that can be done employing easy
computations to check the condition of Definition 34.

As an immediate consequence, one obtains the following standard cate-
gory-theoretic result.

Corollary 36. The monomorphism in WEOAlg6→ and WEOAlg6→⋆

are precisely the homomorphisms with injective underlying maps.

Other standard categorical properties (e.g., preservation of limits by the
respective forgetful functor) also follow. It will be the topic of our further
research to investigate the functors of this section more thoroughly.

6. Categorical properties of extended-order algebras

The previous sections of the paper have probably already convinced the
reader of the fruitfulness of the categorical approach to w-eo algebras. Up
to now, however, we were mostly concerned with the categorical properties
of the algebras, motivated by the structures themselves. It is the purpose
of this section to move in the proposed direction even further and consider
some categorically motivated features of the concept. All of them will clarify
several essential properties of the studied categories, which at the end will
cast some light on the considered structures themselves.

6.1. Coseparators

The first categorical concept we are going to consider is that of cosepa-
rator. For convenience of the reader, we recall its definition.

Definition 37. An object C of a category C is called coseparator provided

that for every distinct morphisms B
f

//

g
// A , there exists a morphism A

h
−→

C such that B
f
−→ A

h
−→ C 6= B

g
−→ A

h
−→ C.

Enjoying a rather simple definition, the object in question plays an im-
portant role in every category where it exists. In particular, in each category
with products, an object C is a coseparator iff every object is a subobject
of some power CI of C. Many standard constructs have a coseparator. For
example, the following result shows that one of the main categories of this
paper has this object as well.
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Lemma 38. Coseparators in Pos are precisely the non-discrete (the order
is not given by equality) posets.

The respective result for w-eo algebras follows the pattern of its prede-
cessor (recall Definition 34).

Theorem 39. The coseparators in WEOAlg6→⋆ are precisely the objects
having at least two elements.

Proof. Given distinct homomorphisms B
ϕ

//

ψ
// A , there exists b ∈ B such

that ϕ(b) 6= ψ(b). Take some (C,→,⊤) in WEOAlg6→⋆ such that there

exists an element c ∈ C with c 6= ⊤. Define a map A
φ
−→ C by

φ(a) =

{

⊤, φ(b) → a = ⊤

c, otherwise.

It follows that φ is a lax homomorphism and, moreover, φ ◦ ϕ 6= φ ◦ ψ.

For example, (2,→,⊤) with the natural operation → (cf. the proof of
Lemma 31) is the simplest coseparator in WEOAlg6→⋆. Also notice that
since every w-eo algebra has the top element ⊤, the condition of indiscrete-
ness for posets translates into the existence of at least one element different
from ⊤ (which is then strictly less than ⊤).

6.2. Epimorphisms

The next categorical concept of interest is that of epimorphism, whose
definition is recalled below.

Definition 40. A morphism A
f
−→ B of a category C is said to be an

epimorphism provided that for all pairs B
h

//

k
// C of morphisms such that

h ◦ f = k ◦ f , it follows that h = k.

Initially deemed to generalize the notion of surjective map, epimorphisms
in several well-known constructs do not necessarily have the property. On
the other hand, even if they do, the proof can appear far from easy. Luckily,
the case of partially ordered sets does not provide any difficulty.

Lemma 41. Epimorphisms in Pos are precisely the homomorphisms with
surjective underlying maps.

While the proof of Lemma 41 is sufficiently easy, the generalization of
the procedure to the case of w-eo algebras gains slightly in complexity.

Theorem 42. Epimorphisms in the category WEOAlg6→ are precisely
the homomorphisms with surjective underlying maps.
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Proof. Take a non-surjective lax homomorphism A
ϕ
−→ B and choose some

b0 ∈ B\ϕ→(A) (cf. the notations of the proof of Theorem 30). Define
B∗ = B

⊎

{∗} and let

b1 →∗ b2 =































b1 →B b2, b1 6= ∗ and b2 6= ∗

⊤, (b1 = ∗ and b2 = ∗) or (b1 = ∗ and b2 = b0)

∗, b1 = b0 and b2 = ∗

b0 →B b2, b1 = ∗ and b2 ∈ B\{b0, ∗}

b1 →B b0, b1 ∈ B\{b0, ∗} and b2 = ∗.

Straightforward (but really long) computations show that (B∗,→∗,⊤) is a

WEOAlg6→-object. Moreover, by defining the maps B
ψ1

−→ B∗, ψ1(b) = b

and B
ψ2

−→ B∗,

ψ2(b) =

{

∗, b = b0

b, otherwise,

one obtains ψ1◦ϕ = ψ2◦ϕ and ψ1 6= ψ2. It follows that every WEOAlg6→-
epimorphism must have a surjective underlying map. The converse state-
ment is easy.

In view of Corollary 36, one can ask about the restriction of the result
to the category WEOAlg6→⋆. The next lemma dismisses the possibility.

Lemma 43. The WEOAlg6→-object (B∗,→∗,⊤) constructed in Theo-
rem 42 does not belong to the category WEOAlg6→⋆.

Proof. Letting b = b0, b1 = ⊤, b2 = ∗ provides b →∗ b1 = ⊤, b →∗ b2 6= ⊤,
but b→∗ (b1 →∗ b2) = ⊤.

It will be the topic of our further research to characterize epimorphisms
in the category WEOAlg6→⋆.

6.3. Initial morphisms

While doing lattice-valued mathematics, many researchers employ the
tools of category theory to study their proposed frameworks. The most
common procedure is to consider the categories of some newly introduced
many-valued structures and then study their properties. It appears, however,
that a more convenient framework arises if the categories in question fall
into a specific class of, e.g., topological, algebraic or topologically-algebraic
categories. For example, lattice-valued topology [31] relies heavily on the
respective categories of many-valued structures to be topological over their
ground categories. The concept of topological category in its turn depends
on the notion of initial morphism, whose definition is given below.
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Definition 44. Let (A, | − |) be a concrete category over X. An A-

morphism A
f
−→ B is called initial provided that for every A-object C, an

X-morphism |C|
g
−→ |A| is an A-morphism whenever |C|

f◦g
−−→ |B| is an

A-morphism.

A simple example of the concept provides the category Pos of partially
ordered sets.

Theorem 45. In the construct Pos, a morphism (X,6)
f
−→ (Y,6) is initial

iff the equivalence x1 6 x2 ⇔ f(x1) 6 f(x2) holds.

Corollary 46. Initial morphisms in Pos have injective underlying maps.

It seems natural to generalize the procedure to the respective category
of w-eo algebras (recall the notations introduced before Definition 13).

Theorem 47. In the construct WEOAlg6→, a morphism (A,→,⊤)
ϕ
−→

(B,→,⊤) is initial iff a1 → a2 =
∨

{a ∈ A |ϕ(a2) 6 ϕ(a) 6 ϕ(a1) → ϕ(a2)}
for every a1, a2 ∈ A.

Proof. For the sufficiency, consider a commutative triangle

|(C,→,⊤)|
|ψ|

))TTTTTTTTTTTTTTT

f

��

|(A,→,⊤)|
|ϕ|

// |(B,→,⊤)|,

where | − | is the respective underlying functor. We have to show that

the map C
f
−→ A is a lax homomorphism. For item (2) of Definition 13,

ϕ ◦ f(⊤) = ψ(⊤) = ⊤ = ϕ(⊤) yields ⊤ → f(⊤) =
∨

{a ∈ A |ϕ ◦ f(⊤) 6
ϕ(a) 6 ϕ(⊤) → ϕ ◦ f(⊤)} = ⊤ and, thus, f(⊤) = ⊤. For item (1) of
Definition 13, notice that given c1, c2 ∈ C, ϕ ◦ f(c1 → c2) = ψ(c1 → c2) 6
ψ(c1) → ψ(c2) = ϕ ◦ f(c1) → ϕ ◦ f(c2). Moreover, c2 6 c1 → c2 implies
ϕ ◦ f(c2) = ψ(c2) 6 ψ(c1 → c2) = ϕ ◦ f(c1 → c2) and, therefore, f(c1 →
c2) 6 f(c1) → f(c2).

For the necessity, take a lax homomorphism (A,→,⊤)
ϕ
−→ (B,→,⊤)

such that there exist a1, a2 ∈ A with a1 → a2 6=
∨

{a ∈ A |ϕ(a2) 6 ϕ(a) 6
ϕ(a1) → ϕ(a2)}. It follows that there should be some a ∈ A such that
ϕ(a2) 6 ϕ(a) 6 ϕ(a1) → ϕ(a2) and a 66 a1 → a2. Consider the poset (C,6)
given by the following Hasse diagram:
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⊤

}}
}}

}}
}

AA
AA

AA
A

c1 c3

c2

and define an operation → on C by

c→ c′ =











⊤, c 6 c′

c3, c = c1 and c′ = c2

c′, otherwise.

It follows that (C,→,⊤) is a WEOAlg6→-object and, moreover, by defining
the maps

C
f
−→ A, f(c) =



















a1, c = c1

a2, c = c2

a, c = c3

⊤, c = ⊤

and C
ψ
−→ B, ψ(c) =



















ϕ(a1), c = c1

ϕ(a2), c = c2

ϕ(a), c = c3

⊤, c = ⊤,

one obtains a commutative triangle similar to the above-mentioned one. This

time, however, the map |(C,→,⊤)|
f
−→ |(A,→,⊤)| is no more a lax homo-

morphism. Indeed, if it is, then a = f(c3) = f(c1 → c2) 6 f(c1) → f(c2) =
a1 → a2 that contradicts the assumption.

Similar to Corollary 46, one obtains a useful property of initial mor-
phisms.

Corollary 48. Initial WEOAlg6→-morphisms have injective underlying
maps.

Proof. Easy computations show that every initial WEOAlg6→-morphism

(A,→,⊤)
ϕ
−→ (B,→,⊤) has the property a1 → a2 = ⊤ iff ϕ(a1) → ϕ(a2) =

⊤ for every a1, a2 ∈ A.

It is important to observe that the category Prost of preordered sets
(Definition 19) is topological over its ground category, whereas the category
Pos is not. It will be the topic of our further investigation to generalize the
result for the respective categories of w-eo algebras.

6.4. Products and coproducts of objects

The concept of (co)product of objects of some category plays an impor-
tant role not only in category theory, but also in universal algebra, which uses
particular instances of categories called (quasi)varieties. While products of
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algebras are generally easy to define, their respective counterpart – coprod-
ucts (sometimes also called sums) are quite often more difficult to construct.
In the following, we present both constructions in case of w-eo algebras. For
the sake of clarity, we start by recalling the respective developments from
the theory of partially ordered sets.

Theorem 49. Given a family ((Xi,6i))i∈I of partially ordered sets, the
cartesian product

∏

i∈I Xi (the disjoint union
⊎

i∈I Xi) of the underlying
sets, equipped with the pointwise structure (the structure given by the disjoint
union

⊎

i∈I 6i), provides a (co)product of the family in the category Pos.

Turning to the case of w-eo algebras, the procedures can be generalized
as follows.

Theorem 50. The category WEOAlg has products of objects.

Proof. Given a family ((Ai,→i,⊤i))i∈I of w-eo algebras, the cartesian prod-
uct

∏

i∈I Ai of the underlying sets, equipped with the pointwise structure,
provides the required product in the category WEOAlg.

It is easy to see that the construction of Theorem 50 easily applies to
the categories WEOAlg⊤, WEOAlg6, WEOAlg6→ and WEOAlg6→⋆

as well. On the other hand, the respective coproducts are slightly more
demanding.

Theorem 51. The category WEOAlg6→ has coproducts of objects.

Proof. Given a family ((Ai,→i,⊤i))i∈I of WEOAlg6→-objects let
⊕

i∈I Ai
= (

⊎

i∈I(Ai\{⊤i}))
⊎

{⊤} and
∐

i∈I(Ai,→i,⊤i) = (
⊕

i∈I Ai,→,⊤), where

a→ b =



















⊤, b = ⊤

⊤i →i b, a = ⊤ and b ∈ Ai

a→i b, a, b ∈ Ai for some i ∈ I

b, a ∈ Ai, b ∈ Aj and i 6= j.

For every j ∈ I, define (Aj ,→j ,⊤j)
µj
−→

∐

i∈I(Ai,→i,⊤i) by µj(a) = a.
It is not difficult to see that ((µi)I ,

∐

i∈I(Ai,→i,⊤i)) provides the required
coproduct in the category WEOAlg6→.

One important moment should be underlined here immediately. In [29],
J. Neggers and H. S. Kim considered (co)products of d-algebras (Defini-
tion 2), which are the duals of w-eo algebras (see the next subsection). While
the product construction goes as usual (there is no way to deviate), the re-
spective coproducts (called by the authors sums) raise strong doubts. In
particular, given a family ((X, ∗i, 0i))i∈I of d-algebras, the authors propose
to consider a subset (a d-subalgebra, in fact)

⊕

i∈I Xi of
∏

i∈I Xi consisting
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of all elements (xi)i∈I such that the set {i ∈ I |xi 6= 0} is finite. For every

j ∈ I, the respective embedding Xj

ιj
−→

⊕

i∈I Xi is given by ιj(x) = (xi)i∈I ,
where

xi =

{

x, i = j

0, otherwise.

J. Neggers et al. claim ((ιi)I , (
⊕

i∈I Xi, ∗, 0)) (both ∗ and 0 are induced
by the respective d-subalgebra structure) to be the coproduct in question.
While the construction goes smoothly in the category of ∨-semilattices (cf.
Definition 26, but mind that ∨ now are finite), its generalization to d-algebras
is problematic. The sticking point is the condition that for every family of

d-algebra homomorphisms ((Xi, ∗i, 0i)
fi
−→ (X, ∗, 0))i∈I , there should exist

a d-algebra homomorphism (
⊕

i∈I Xi, ∗, 0)
[fi]I
−−→ (X, ∗, 0) such that [fi]I ◦

ιi = fi for every i ∈ I. In case of ∨-semilattices, the homomorphism in
question can be easily defined by [fi]I((xi)I) =

∨

i∈I xi, which is correct
due to the finiteness condition on the set

⊕

i∈I Xi. The case of d-algebras,
however, does not allow the definition, since the operation ∗ in general is
not associative. The authors themselves never provide any hint on the map
in question, that leaves their claim unjustified. Moreover, our construction
differs dramatically from the respective one of J. Neggers and H. S. Kim.

6.5. Dual w-eo algebras

The theory of partially ordered sets is particularly useful because of the
availability of the so-called duality principle. Indeed, every poset (X,6) has
its dual (X,6o), where x6oy iff y 6 x. The operation (−)o is in fact a

functor Pos
(−)o

−−−→ Pos, with the property (−)o ◦ (−)o = 1Pos. It appears
that the developments can be easily extended to the case of w-eo algebras.
We have already noticed in Introduction (following C. Guido et al. [17]) that
d-transitive d-algebras of [29] provide a dual analogue of w-eo algebras. It is
the purpose of this section to elaborate the result in its full extent.

Definition 52. Given a w-eo algebra (A,→,⊤), its dual (denoted by
(A,→,⊤)o) is the triple (A, ,⊥), where ⊥ = ⊤ and a  b = b → a for
every a, b ∈ A.

Having a new concept in hand, it is useful to consider some of its simple
features.

Lemma 53. Every dual w-eo algebra (A,→,⊤)o has the following proper-
ties:

(1) ⊥ a = ⊥;
(2) a a = ⊥;
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(3) if a b = ⊥ and b a = ⊥, then a = b;
(4) if a b = ⊥ and b c = ⊥, then a c = ⊥;

and every lax homomorphism (A,→,⊤)
ϕ
−→ (B,→,⊤) satisfies the condi-

tions:

(1) ϕ(a1  a2) = ϕ(a1) ϕ(a2) for every a1, a2 ∈ A;
(2) ϕ(⊥) = ⊥.

Lemma 53 gives rise to a new category WEOAlgo of dual w-eo alge-
bras , which is isomorphic to the category of d-transitive d-algebras provided
(implicitly) by J. Neggers and H. S. Kim [29]. Notice, however, that the
codomain of the functor (−)o is no more the category WEOAlg. On the
other hand, the equality (−)o ◦ (−)o = 1WEOAlg is still true.

7. Conclusion

In this paper, we introduced several approaches to homomorphisms of
w-eo algebras, based on different categories of the structures. The two main
frameworks (both having w-eo algebras as objects) are as follows:

(1) the category WEOAlg, the morphisms of which (A,→,⊤)
ϕ
−→ (B,→,⊤)

are maps A
ϕ
−→ B such that ϕ(a1 → a2) = ϕ(a1) → ϕ(a2) for every

a1, a2 ∈ A. The additional property ϕ(⊤) = ⊤ comes as a consequence.

(2) the category WEOAlg6, the morphisms of which (A,→,⊤)
ϕ
−→ (B,

→,⊤) are maps A
ϕ
−→ B such that ϕ(a1 → a2) 6 ϕ(a1) → ϕ(a2) for

every a1, a2 ∈ A, and also ϕ(⊤) = ⊤ (the latter condition does not
follow automatically).

The first approach backs the algebraic viewpoint on w-eo algebras, whereas
the second one considers w-eo algebras as an extension of posets. In the pa-
per, we have assumed the second viewpoint on the structures as the one
which seems to be the most appropriate to their essence (cf. the term
“extended-order”). In particular, the current manuscript considered several
subcategories of the category WEOAlg6, with the aim to provide a suitable
framework to match different properties of the category Pos. The plentitude
of the subcategories available motivates the following problems.

Problem 54. What is the best subcategory of WEOAlg6 for obtaining
a “convenient” analogue of the category Pos?

Notice that by “convenient” subcategory we mean a category, whose proper-
ties allow one to restore the majority of the features of the category Pos.

Problem 55. Does there exist a better starting point than the category
WEOAlg6?
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A better starting point should share more properties of the category Pos

than the category WEOAlg6 does and (probably) be more user-friendly.

As the last remark, we would like to point out that the overall develop-
ments of the paper suggest a more general structure called extended-relation
algebra, which could be defined as follows.

Definition 56. An extended-relation algebra (er algebra) is a triple
(L,→,⊤), where L is a non-empty set, L × L

→
−→ L is a binary operation

on L, and ⊤ is a distinguished element of L.

Notice the lack of the term “weak” in the name of the new concept as
being non-appropriate in the current setting. Backed by the results of the
manuscript, we do not require the existence of an additional element ⊥. On
the other hand, we do need a distinguished element ⊤, to consider specific
properties of er algebras (e.g., the extension of a partial order). A theory
could be developed then, which substitutes particular relations with oper-
ations, and studies possible interconnections between the properties of the
former and the latter. For example, one can consider different combinations
of the following characteristics of binary relations [23].

Definition 57. A binary relation R on a set X is called:

(1) connected , if for every x ∈ X, there exists y ∈ X such that xRy;
(2) reflexive, if xRx for every x ∈ X;
(3) symmetric, if xRy implies yRx for every x, y ∈ X;
(4) antisymmetric, if xRy and yRx imply x = y for every x, y ∈ X;
(5) transitive, if xRy and yRz imply xRz for every x, y, z ∈ X.

If R is reflexive and symmetric, it is called a tolerance relation, and if R
is reflexive and transitive, it is called a preorder (or a quasi-order). If R is
both a tolerance and a preorder, then it is an equivalence relation.

It is easy to see that the concept of er algebra provides a framework for
incorporating all the notions of Definition 57 (and many others as well). For
example, a good application field for the new algebras is the theory of rough
sets [23], where the structures could potentially serve as a good starting point
for a generalization of the developments that would streamline the existing
results and cast new light on various sticking points. For convenience of the
reader, we briefly recall the standard approach.

Definition 58. Let R be a binary relation on a setX. Given x ∈ X, define
R(x) = {y ∈ X |xR y}. For every S ⊆ X let SH = {x ∈ X |R(x) ⊆ S}
and SN = {x ∈ X |R(x)

⋂

S 6= ∅}. The pair R(S) = (SH, SN) is called the
rough set of S. The set R(X) = {R(S) |S ⊆ X} is called then the set of
all rough sets of X. R(X) is a bounded poset, with the partial order given
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by (SH, SN) 6 (TH, TN) iff SH ⊆ TH and SN ⊆ TN, whereas the lower (resp.
upper) bound is R(∅) = (∅H,∅) (resp. R(X) = (X,XN)).

One of the most challenging questions is to characterize the algebraic
structure of the above-mentioned poset (R(X), 6, R(∅), R(X)) generated
by a particular type of relation R [7, 11, 21, 22, 24] (cf. Definition 57).
On the other hand, one can start with an er algebra (A,→,⊤) and define
↑ a = {b ∈ A | a→ b = ⊤} for every a ∈ A. Substituting R(x) with ↑ a in the
procedures of Definition 58, one obtains the poset (R(A), 6, R(∅), R(A)).
The following problem then arises immediately.

Problem 59. What additional structure is given to the poset (R(A), 6,
R(∅), R(A)) by the operation →, and how their properties are related?

It will be the topic of our further research to approach the theory of er
algebras more thoroughly.
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