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REPRESENTATION OF MODALS

Abstract. The main aim of this paper is to describe the free objects in arbitrary
varieties of modals (semilattice ordered idempotent and entropic algebras) and give some
new representations of modals.

1. Introduction

Algebras considered in this paper are modes and modals. Such alge-
bras were introduced and investigated in detail by A. Romanowska and
J. D. H. Smith ([14], [15]). Modes (M, (2) are characterized by two basic
properties. They are tdempotent, in the sense that each singleton is a sub-
algebra, and entropic, i.e. any two of their operations commute. The two
properties may also be expressed by means of identities:

(1.1) w(z,...,x) =z, (idempotent law),
(1.2) W(A(T11, -y Tnl)s e o s O(Tims - - -y Trm)) =
dw(Tit, -y Tim)s -, W(Tnly v oy Trm)),s (entropic law),

for every m-ary w € {2 and n-ary ¢ € 2.
An operation f: A™ — A is said to distribute over a binary operation +
on a set A if and only if for any 1 <¢ <n and z1,..., 2, ¥i,..., Ty € A:

(1.3) f(z1,. s @i+ Yis-o oy Tn) =
flaey, ooz xn) + f(@1, 00 Uiy e ooy Tp)e

A modal is an algebra (M, (2, +) such that (M, 2) is a mode, (M, +) is a
(join) semilattice (with semilattice order <, ie. z <y < z+y =y) and
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the operations w € 2 distribute over +. The name “modal” was intended
both to refer to the relationship with modes and to suggest the analogy with
modules.

Examples of modals include distributive lattices, dissemilattices (see [8])
—algebras (M, -,+) with two semilattice structures (M,-) and (M,+) in
which the operation - distributes over the operation 4, the algebra
(R, I O,max) defined on the set of real numbers, where I° is the set of the
following binary operations: p: R xR — R; (z,y) — (1 — p)z + py, for each
p € (0,1) C R, and semilattice modes (see [6]) - modes with a semilattice
derived operation.

Let (M, §2,+) be a modal generated by a non-empty set X C M. The
subalgebra of f2-reduct (M, 2) generated by a set X will be called the full
2-mode subreduct (of a modal (M, 2,+)) relative to X and it will be denoted
by ((X)o, 2).

Given a mode variety V, a modal (M, £2,+) is called a V-modal if the
mode reduct (M,S2) of the modal lies in V. A. Romanowska and
J. D. H. Smith (|14], [12]) described the free V-modals in the case V is
a variety of modes defined by linear identities. (We call a term ¢ linear, if
every variable occurs in ¢ at most once. An identity t ~ w is called linear, if
both terms ¢ and u are linear.)

The main aim of this paper is to describe the free objects in arbitrary
varieties of modals and give some new representations of modals.

The paper is organized as follows. In Section 2, we recall basic defini-
tions and results concerning modals and extended power algebras of modes.
In Section 3 we broaden the result of A. Romanowska and J. D. H. Smith
and describe the free objects in an arbitrary variety M of V-modals and
in the quasivariety of (2-subreducts of modals in M. In Section 4 we ap-
ply these results to differential modals. In Section 5 we describe the class
MYV of all modals such that for each (M, §2,4+) € MV there exists a non-
empty set X of generators such that ((X)q, {2) € V. In particular, we show
that each modal in the class MV is a homomorphic image of the algebra
of finitely generated non-empty subalgebras of some free V-mode. We also
investigate identities satisfied by modals and we present a necessary and
sufficient condition for a modal to satisfy some non-linear identity. In Sec-
tion 6 we present a certain representation of V-modals based on extended
power algebras of modes. We conclude the paper with a list of open prob-
lems.

Throughout the paper, V will denote a variety of {2-modes. We assume
that a set of generators of any algebra is non-empty.

The set of all equivalence classes of a relation ¢ C A x A is denoted by A¢.
The symbol N denotes the set of natural numbers including 0.
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2. Modals and extended power algebras of modes

The fundamental elementary properties of modals (M, {2, +) were proved
by A. Romanowska and J. D. H. Smith in [14] and may be summarized in
the following three lemmas.

LEMMA 2.1. (Monotonicity Lemma) Fach n-ary basic operation w € {2,
w: (M™ <) — (M, <) is monotone (as a mapping).

LEMMA 2.2. (Convexity Lemma) For each positive integer r, an n-ary basic
operation w € §2 and elements x;; € M for 1 <i<n,1<j<r:

w1,y Tp1) oo wW(T1py ey ) <
w@i+ ...+ Ty Tl oo Tp).

LEMMA 2.3. (Sum-Superiority Lemma) For each n-ary basic operation
w € 2 and elements x1,...,T, € M, one has

wxy,...,xn) <z14+ ...+ T)p.
If a modal (M, 2,+) satisfies also the following law:
(2.1) w1+ Y1, @n +Yn) Fw(T1, .., ) F WY1, -5 Yn)

for each n-ary operation w € 2 and z1,...,%n, Y1,---,Yn € M, then
(M, 2,+) is a mode. We will call such algebras entropic modals. An ex-
ample is given by semilattice modes investigated by K. Kearnes [6].

For a given set A denote by PsgA the family of all non-empty subsets
of A. For any n-ary operation w : A" — A we define the complex operation
w : PspA™ — P=gA in the following way:

w(Ay, ..., Ap) :i={wl(a1,...,an) | a; € A;},

where () # Aj,..., A, C A. The power (complex or global) algebra of an
algebra (A, £2) is the algebra (PsgA, 2).

The set PsogA also carries a join semilattice structure under the set-
theoretical union U. B. Jénsson and A. Tarski proved in [5] that complex
operations distribute over the union U. By adding U to the set of basic
operations we obtain the extended power algebra (P=oA, 2,U). The algebra
(P;S’ A, 2,U) of all finite non-empty subsets of A is a subalgebra of the
extended power algebra (P=gA4, £2,V).

As was shown by A. Romanowska and J. D. H. Smith in [14], for a given
mode (M, {2), the sets MS of non-empty subalgebras and M P of finitely
generated non-empty subalgebras of (M, £2) have a mode structure under the
w-complex operations and are subalgebras of the power algebra (PsoM, (2).
Moreover, the modes (M S, §2) and (M P, {2) satisfy each linear identity true
in (M, 2).



538 A. Pilitowska, A. Zamojska-Dzienio

A. Romanowska and J. D. H. Smith also proved that for a given mode
(M, £2), the sets M S and M P have an additional (join) semilattice structure
+ obtained by setting
(22) A+ Ay = <A1 U A2>,
for any Ay, Ao € M S, where (X)) denotes the subalgebra of (M, {2) generated
by the set X.

These two structures, mode and semilattice, are related by distributive
laws (1.3). In this way, we obtain algebras (M S, 2,+) and (M P, 2, +) that
provide basic examples of modals. Further examples of modals are given by
results of [10].

EXAMPLE 2.4. [10| Let v be a congruence relation on the extended power
algebra (P~oM, £2,U) of a mode (M, {2), such that the quotient (P~oM?7, §2)
is idempotent. Then the quotient algebra (P=oM?7, 2,U) is a modal.

3. Free modals
A. Romanowska and J. D. H. Smith proved the following universality
property for modals crucial for our next results.

LEMMA 3.1. [14] Let (A, 2) be a mode and (M, $2,4) a modal. Then each
mode homomorphism h : (A, 2) — (M, §2) can be extended to a unique modal
homomorphism
h: (AP, 02,+) = (M, 02,+); 1(S)+— > h(=),
zeX
where (S, §2) is a subalgebra of (A, 2) generated by a finite set X.

Recall that a modal (M, £2,+) is called a V-modal if (M, §2) € V. Let
My, denote the variety of all V-modals.

THEOREM 3.2. (Universality Property for Modals) Let (Fy(X), §2) be the
free V-mode over a set X and let (M, 2,4) € My. Then each mapping
h:X — M can be extended to a unique modal homomorphism h : h(X)P
— M, such that h/x = h.

Proof. Let (M, 2,4) € My and X be a set. By assumption, (M, 2) € V.
So any mapping h : X — M may be uniquely extended to a mode ho-
momorphism % : (Fy(X),2) — (M, ). By Lemma 3.1, the f2-mode ho-
momorphism h may be extended to a unique modal homomorphism % :
(FV(X)Pa Q7+) — (M7Q>+) u

Note that the modal (Fy(X)P,{2,+) is generated by the set {{z} |
x € X}. Hence, if (Fy(X)P,2,4+) € My, then it is, up to isomorphism,
the unique algebra in My, generated by a set X, with the universal mapping
property.
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COROLLARY 3.3. The modal (Fy(X)P, 2,+) is free over a set X in the
variety My if and only if (Fy(X)P,2,4+) € My.

For a variety V of modes let V* be its linearization, the idempotent
variety defined by the linear identities satisfied in V. Obviously, V* is a
variety of modes, and contains V as a subvariety.

It is well known (see for example [15]) that for any variety V of modes,
the variety generated by the class {(AS, 2) | (4, 2) € V} is included in V*.
So by Corollary 3.3 we immediately obtain the following result proved earlier
by A. Romanowska and J. D. H. Smith.

THEOREM 3.4. [14] The modal (Fy«(X)P, §2,+) is free over a set X in the
variety M.

Let M be a non-trivial subvariety of My, and X be a set. By [15, Chap-
ter 3.3] the congruence

Opm(X) = ¢ € Con(Fy(X)P,02,+) | (Fu(X)P?, 02,+) € M}

is the so-called M-replica congruence of (Fy(X)P, 2, +) and (Fy(X)POMmX),
2,+) is called the M-replica of (Fy(X)P,(2,+).
Let (M, £2,+) € M. By the universality property of replication (see

[15, Lemma 3.3.1.]), for each modal homomorphism h : Fy(X)P — M,
there is a unique modal homomorphism & : Fy(X)POMX) — M such that
h = h onatO(X), where nat@(X) is the natural projection onto the
quotient F(X)POX) Hence, by Theorem 3.2, the universality property
for (Fy(X)P, §2,+) yields the following commuting diagram for any mapping
h: X — M:

X4 (RX)P2,+) nat®m(X)

\fl h l ;/
(M, £2,+)
As a result, we obtain

THEOREM 3.5. The M-replica of the algebra (Fy(X)P, §2,4) is free over
a set X in the variety M C My,.

COROLLARY 3.6. Let (Fy(X)P,§2,+) € M. Then it is free in M C My,
over a set X.

(FV(X)PQM(X)7 'Qv +)

EXAMPLE 3.7. Let SL be the variety of semilattices and DL denote the
variety of distributive lattices. Each distributive lattice may be considered
as a modal (M, -,+), where (M, -) is a semilattice and the additional identity
x4+ xy = x is satisfied. By Theorem 3.5, the free distributive lattice on a set
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X is isomorphic to the DL-replica of the algebra (Fs.(X)P,-,+), where
(Fsc(X),-) is the free semilattice over X. By results of [10] and [14] we can
describe the congruence Op,(X) in more detail. It is the congruence (ay.y
in notation of [10]) such, that for finite subsets A, B C Fs,(X), (A,B) €
Ope(X) iff Fsp(X) A= Fsr(X)- B (or equivalently A and B generate the
same sink or ideal). In this way, we obtain the following

COROLLARY 3.8. [14] The free distributive lattice on a set X is the modal of
finitely generated non-empty sinks of the free semilattice (Fsg(X),-) on X.

Let (A, I') be an algebra of a given type 7 : I" — N. Denote by BI" a set
of derived (or term) operations of I" and let £2 C BI'. An algebra (A, 2)
is said to be a reduct (§2-reduct) of the algebra (A, I'). A subalgebra of a
reduct of (A, I") is called a subreduct.

It is well known that the subreducts of algebras in a given quasivariety
again form a quasivariety (see [7]). Let Q be a quasivariety of I'-algebras
of a given type 7 : I' — N. Consider the quasivariety Qg of Q-algebras
isomorphic to (2-subreducts of Q-algebras.

THEOREM 3.9. The free Qp-algebra (Fo,,(X), (2) over X is isomorphic to
the £2-subreduct ((X ), 2), generated by X, of the free Q-algebra (Fo(X),I").

Theorem 3.9 was formulated in [11], but only for subreducts of affine
spaces. It seems to have appeared also in other papers but again for partic-
ular algebras not in general context. For the sake of completeness we give
here the self-contained proof of this result. Nevertheless, we use exactly the
same methods as in [11].

Proof. The universality property for the free algebra (Fo(X),I"):

X = (Fo(X),I)
Lh
"o
assures commutativity of the following diagram for each 2-reduct of (A, ") €
© and a mapping h : X — A:

X5 (X (Fo(X),0)

Here hg is the restriction of the uniquely defined I'-homomorphism h :
Fo(X) — A to the £2-reduct.

Now let (B, {2) be a subalgebra of (A, (2). We want to show that for
any mapping h’' : X — B, there is a uniquely defined 2-homomorphism
B (X))o — (B, £2) such that RWoe=H. Let j: B— A; z+ x be the
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embedding of (B, (2) into (A, (2). Take h equal to j o h'. Then hp maps
Fo(X) into j(B), and similarly hooi maps (X )¢ into j(B) (see the diagram
below). Define n o= j Yohgoi. It is easy to see that T satisfies the required
properties. Hence (X)p is the free Qp-algebra (Fo,,(X), 2).

X5 (X (Fo(xX),0)

h/\B/Z ﬁf?

i(B) .

Free algebras in a quasivariety Qp, are also free in the variety V(Qg)
generated by Qg (see [7]).

Let (M, §2,4+) be a modal generated by a set X C M. Denote by
((X) 0, £2) the subalgebra of the 2-reduct (M, {2) generated by the set X.
The algebra ((X)g, £2) is necessarily a submode of (M, §2) and contains all
elements from (M, (2, +) obtained as results of operations from B2 on the
set X. We will call it the full 2-mode subreduct (of a modal (M, 2,+))
relative to X.

As a corollary one obtains a characterization of free algebras in the qua-
sivariety of f2-subreducts of modals in a given variety of modals.

COROLLARY 3.10. Let M be a variety of modals. Let Mg, be a quasivariety
of £2-subreducts of modals in M. Then the free Mg-mode (Fa,(X), £2)
over X is isomorphic to the full £2-subreduct ((X) g, £2) of the free M-modal
(Fam(X), £2,+).

4. Free differential modals

In this section we will illustrate the results of Section 3 and describe free
objects in some varieties of differential modals. Further examples will be
presented in Section 5.

DEFINITION 4.1. A differential groupoid is a mode groupoid (D, -) satisfy-
ing the additional linear identity:
z(yz) =~ zy.

Each proper non-trivial subvariety of the variety D of differential groupoids
(see [13]) is relatively based by a unique identity of the form

(4.1) (- ((@y)y).. )y =y’ ~ zy™
i—times

for some ¢ € N and positive integer j. Denote such a variety by D; ;4 ;.
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Let (Fp({z,y}), ) be the free algebra on two generators z and y in
the variety of differential groupoids. As was shown in [13] each element in
(Fp({x,y}),-) may be expressed as zy"* or ya™ for some k,n € N (2¢° := z
and yz¥ := y). So the subalgebras of (Fp({x,y}),-) are any finite or infinite
subsets of sets {z,zy,zy?, xy>,...} or {y,yx,yz? yx>,...} or subalgebras
generated by two elements zy* and yz™ for some k,n € N, i.e.:

Hay®, ya"}) = {oyF, oyt 2y T2 U {ya”, ya Ty TR L)

A differential modal is a modal whose mode reduct is a differential grou-
poid.

EXAMPLE 4.2. Consider the free differential groupoid (Fp,,, ({z,y}),")
on two generators x and y in the subvariety D; ;,;, for j > 1. The following
two sets:

{x}FDi,i+j({x7 y})l ={z,zy,... ,xyi}
and
{=}Fp, ., ({z, yW) I =z, xy, ..yt eyt T
are different.

By Corollary 3.3 the algebra (Fp, . (X)P,-,+), for any set X with more
than one element, is not free in the variety Mp, ,, ., where j > 1.

EXAMPLE 4.3. In particular, consider the free differential groupoid

(F'Do,z ({xa y})v )

on two generators x and y in the subvariety Dy o defined by the identity:

x =~ (xy)y.

Such a groupoid has 4 elements {z,y, xy,yz}, the following multiplication
table:

T Ty Yy yx
x| x Y TY

zylzy 2y x T
Yy |yr yr 'y y
yr|y y yr yzr

and 7 subalgebras, namely: a := {z}, b := {y}, ¢ := {zy}, d = {yz},
e:={x,zy}, f:={y,yz}, g := {x,y, 2y, yx}.

The multiplication table of the mode reduct of (Fp,,({z,y})P,-,+) is
the following:
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a b cde fyg
ala ¢ a ¢ a c e
bld b d b db f
cle a ¢ a ¢c a e
dib d b dbdf
ele e e e e e e
nrrrrririrf
919 9 9 9 9949

By [15], the modal (Fp,,({z,y})P,-,+) € Mp, but it is not a Dy -modal:

(ag)g = ({x}{x,y,xy,yx}){x,y,xy,yx} = {l‘,ﬁy} =e# {l‘} =a.

By Corollary 3.3, (Fp,,({z,y})P,-,+) is not free in the variety Mp,,.
But it satisfies the non-linear identity: zy ~ ((xy)y)y, hence

(FDo,z({xay})Pv '7"") € MD1,3'

EXAMPLE 4.4. Consider the free differential groupoid (Fp, ,,, ({z,y, 2}),")
on three generators x, y and z in the subvariety D; ;41. Let (A, -) := ({y, z})
be the subalgebra of (Fp,, ,({z,y,2}), ) generated by y and 2. It is easy
to check that {z}A" = {zy’,zy'lz,...,2yz" ! 22’} and {2}AT! =
{xyt, xy'z, ..., 2y 2yzt 22"}, Hence, for any set X with at least three
elements, the algebra (Fp, , ,(X)P,-,+) is not free in the variety Mp

THEOREM 4.5. Leti € N. The modal (Fp,,,,({z,y})P,-,+) is free in the
variety Mp

il

IRARE
Proof. Let (Fp, ,,,({x,y}), ) be the free differential mode on two generators
r and y in the subvariety D;;y1. Any subalgebra of (Fp,,,,({z,y}),-) has
one of the three following forms:

Ay = {ayh, o ayfe )y = {ayh a2 wyfe ) for i > ke, Ky €N,
Ay = ({ay®, yal}), for i > k,1 € N,

Az = {ya, yzlz, . yatn}) ={yah yal2, . yaln}, for i > 1y, Ly €N,
Hence, {xy®, ... zyPHayh, ... aylm}y = {ayh, ... xyhe ),

{ay®, oyt {ay?, yal}) =

{aykr, . aybe pyPitl ket gyt gyt =

{aykr, o aybn pyPitl ket gyt gy ke iYL —

{ay®r, o ayty {ay, yalh) ™

{oyFr, o pyfe Hyah o yalm} = {ayft L gyt =

{ayfrtitl gkt = Lk ke g2l yatm L
{ay, ya'y) ({zy®, ya'}) = ({wyF, ayh T yal yalt1Y) = ({ay®, ya'});
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({ay® ya' Py, ya', . yalm} = {2y, yal}) = ({zy* T ya'}) =
Hay®, gy W {yah, yalz, ... yalm )+

It follows that the algebra (Fp,,,,({x,y})P,-, +) satisfies the identity (4.1)
for j = 1, and is free in the variety Mp by Corollary 3.3. =

i i1
EXAMPLE 4.6. The free differential groupoid (Fp, ,({z,y}),-) on two gen-
erators  and y also has four elements: {z,y,zy, yz}, the following multipli-

cation table:

ry 'y yxr
T |x x Y TY
Ty |y Y XY XY
Yy |\yr yxr 'y oy
Yyr|yxr yxr yr yx

and ten subalgebras: a := {z}, b:= {y}, ¢ := {zy}, d .= {yz}, e := {z, zy},
= Ay yx}, 9 = {zy,yx}, b= {z, 2y, yx}, @= {y, 2y, yr} and j =
{z,y,zy,yx}. Its semilattice reduct is in Figure 1.

The multiplication table of the mode reduct of (Fp,,({z,y})P, -, +) is
the following: ’

a b cde fghiyj
ala ¢ a ¢c a c e e e e
bld bdbdb f fff
cle ¢ c ceccccococ
did d d ddddddd
ele ¢c e ce ceee e
fla fdfdiffrrfif
919 9 99 999499493
hih g h g h ¢ h h h h
ilg i g i g i i i i i
jlh @ h ¢« h i j j 7 j

It is not difficult to check that (Fp,,({z,y})P,-,+) € Mp,,. By Corol-
lary 3.3, (Fp, ,({z,y})P, -, +) is free in the variety Mp, ,.

Let MYV denote the class of all modals such that for each (M, §2,+) €
MYV there exists a set X of generators, such that its full £2-mode subreduct
relative to X lies in V.

Corollary 3.10 raises the question whether for the free M-modal gener-
ated by a set X, for a given variety M C MYV, its full (2-mode subreduct
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Fig. 1. Semilattice reduct of (Fp, ,({z,y})P, -, +)

relative to X is a free mode in V. By Theorem 3.4 this is the case for vari-
eties My«, where V* is the linearization of V. The following example gives
a negative answer in general.

EXAMPLE 4.7. Let (M,-,+) be a modal with operations - and + defined
as follows:

N

S € v 8 |&®
+ 2 N e y|w
Sl SO S BN

S & & 8 |+

+ 2 v e 8|
+ 2 N e 8|4+

Sl SR S BN

+ =+ 88
+ 2 2 e o
+~ £ w8 oW
+ & & & |8
[ S L T e S~ O B~

t t

Consider the variety M C MD;3 of modals generated by the modal
(M,-,+). Obviously, (M,-,+) is a free modal on two generators xz and y
in the variety M. Now the free mode (F,.,({z,y}), ) in the quasivariety
My of {-}-subreducts of modals from M is isomorphic to the full subreduct
(({z,y}) ¢y, ) defined as follows:

z
Y
z

The free mode (F,., ({,y}), ) is also free in the variety V(M.y) generated
by the quasivariety M), but it is not free in the variety D3, although
(({z,y}){},-) lies in this variety. This shows that V(M) # Dy 3.

5. The class MYV of modals

In this section we will describe in more detail modals in the class MV.

ExAMPLE 5.1. Let (M,2) = (Y) be a mode generated by a set Y C
M. The set X := {{y} | y € Y} generates the modal (MP, (2,+) and
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((X)0,2) = (M, 2). If (M, 2) lies in a variety V then (M P, {2, +) belongs to
the class MV. In particular for the free mode (Fy(X), £2) in a variety V over
a set X, the modal (Fy(X)P, (2, +) is generated by the set {{z} | z € X}.
Hence ({{z} |z € X})o & ((X)0,2) = (Fy(X),2) and (Fy(X)P,2,+)
belongs to the class MV.

Let (M, £2,+) be a modal generated by a set X C M. An element r € M
is said to be in disjunctive form if it is a join of a finite number of elements
from (X)gp. The following lemma shows that each element in a modal may
be expressed in such form.

LEMMA 5.2. (Disjunctive Form Lemma) Let (M, £2,4) be a modal gener-
ated by a set X C M. For each r € M, there exist r1,...,r, € (X))o such
thatr =71+ ...+ 1p.

Proof. The proof goes by induction on the minimal number m of occurrences
of the semilattice operation + in the expression of r as a modal word in the
alphabet X.

Consider r = r with 1 € (X). Hence, the result holds for m = 0.
Now suppose that the hypothesis is established for m > 0 and let r € M
be an element in which the semilattice operation + occurs m + 1 times.
Let r = r1 4 ro, for some ri,r9 € M. By induction hypothesis there are
T1ly -y 1k 721, - - -, T2n € (X) such that

r=ri+ro=ry1+...+rp+"re1+...+7ro,.

Otherwise, r=w(ry, ..., rg+8k,...,ry) forsomewe R and r1, ..., 7%, ..., Ty,
s € M. Then, by distributivity we have

T =W,y P+ Skyev oy Tn) = W1y e ey Thyov o) FW(r1, ooy Sy e ey ).

Because w(ri,...,Tky ..y Tn),w(ri, ..., Sk,...,m) € M, this completes the
inductive proof. m

COROLLARY 5.3. Let (M, §2,4) be a modal generated by a set X C M.
There is a set Y C M of generators of the semilattice (M,+) such that
Y C(X)q.

THEOREM 5.4. Let V be a variety of 2-modes satisfying an identity t =~ u
and M C MYV be a variety of modals (M, £2,+) such that the word operation
t: M™ — M distributes over the operation +. Then the identity t ~ wu is
satisfied in M if and only if the word operation v : M™ — M distributes
over the operation +.

Proof. Let (M, 2,4+) € M and let the word operation t : M™ — M dis-
tribute over the operation +. Because the variety M is, by assumption,
included in MV, there exists a set X of generators of (M, 2,+), such that
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its full £2-mode subreduct relative to X belongs to the variety V. Hence, the
identity ¢ ~ u is also true in ((X)gp, £2).

Suppose first that the word operation u : M™ — M distribute over the
operation + and let r{,...,7r, € M. By the Disjunctive Form Lemma 5.2
there exist 711, ..., "1kyy---sTnls-- s Tnk, € (X)gn such that for each 1 <i <
n, r; = i1 + ...+ ri,. Then, by distributivity of operations t : M™ — M
and u: M" - M

t(?“l,...,?”n): t(?“n—i—...—l—?“lkl,...,?“nl—|—...—|—7"nkn)

= Z t(al,...,an)% Z U(aly--wan)

%‘G{Ti_l ,,,,, Tik } a; €{r;1,.-» Tik }
= u(rin+. F Ty Tl e+ Toky,)
= u(ry,...,ry).

The converse implication is obvious. =

LEMMA 5.5. Let (M, §2,4) be a modal and let t be an n-ary linear (2-term.
The word operation t : M™ — M distributes over the operation +.

Proof. The proof will go by induction on the minimal number m of occur-
rences of (symbols of) the basic 2-operations in the corresponding linear
(2-term.

By definition of a modal, the lemma is certainly true for m = 1. Now
suppose that the hypothesis is established for m > 1. Let t(z11,...,%kp,)

= wvi(@i1,--,Tipy)s - Ve(Tk1, - . -, Thyp, )) be a linear f2-term, for some
w € {2, different variable symbols z11,...,21p,,.-.,Tk1,- .., Tkp, and linear
{2-words v, ..., v, in which the basic {2-operations occur m + 1 times.

By induction hypothesis, the {2-word operations v; : MP: — M, for
1 <4 < k, distribute over the operation +. This implies that for any

ALy ooy TApys v ey Tily v ey Tijy Yiss oo vs Lipgy - ooy Thls o s Thopy € M,

@11y Tij+Yigy - - Thpy,)
= w1 (@11, Tipy)s - Vil ity oo TijHYigs oo Tipy)s oo V(TR -+, Thpy, )
=wi(@11, -, Zipy)s - Vil Tty - oy Tijy oo o Tip;)

+Ui(Tit, o Yigs o Tipy)y - VE(TEL -+, Thepy,))
=W (@11, Zipy)s o Vil Tty o ooy Tijo oo oy iy )y o ooy V(TR - - s Thipy,))
Fw@ (@11, - Tipy)s - Vil @ity ooy Yigs oo s Tipy) s - o V(TR - -+, Ty, )
= (X110, s Tijy ey Thopy ) FE(Z11, - Yijs - Thipy),

what finishes the proof. =

COROLLARY 5.6. Let V be a variety of modes satisfying an identity t =~ u,
where t is linear. The identity t ~ u is true in a variety M C MV of
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modals if and only if the word operation u : M™ — M distributes over the
operation +.

COROLLARY 5.7. A wvariety M C MV of modals satisfies each linear
identity true in V.

THEOREM 5.8. Let j € N. The free modal on n generators in the variety
Mp, ; is isomorphic to the modal with the free semilattice on n generators
as the semilattice reduct and left-zero semigroup as the groupoid reduct.

Proof. Let (Fp,;(A),-) be the free differential mode on n generators A :=
{a1,...,a,} in the subvariety Dy ;. By results of [13| each element in
Fp, ;(A) may be expressed as aia’fl ...afi‘ll afjrﬁl ...afn for 1 <i < n and
0<ki,...,kn <j—1. Moreover, a subalgebra of (F'p, ;(A),-) is generated
by any non-empty subset of A.

On the other hand, by Corollary 5.6, each modal in the variety Mp, ;
has to satisfy the identity

(5.1) 2(y + ) ~ay’ +ayl.

Let (M,-,+) € Mp,; be a modal generated by a set X. Let x,z,
T2, Y Y1y Yms 215+ -5 2s € (X)gy. Note that in particular ((X)¢y,-) €
Dy,;. The identity (5.1) implies the following:

wly+yp) = > wfyl may +ayl o
k+1=j
0<k,1<j
:>:c+xy+:cy2+...+wyj*1zaf
saffrr for0<k<j—1

ﬁxyfl...yfnmzx, for 0 < ky,oo bk <j—1

p
k1. Kkm.i
i=1

p r
k1.4 k. 1 5 ks
= E a:lyll’Z R E xgzll’J R e D
i=1 j=1

This shows that the +-reduct of the Mp, -replica of (Fp, (A)P,-,+) is
isomorphic to a semilattice of all non-empty subsets of an n-element set
and in fact is isomorphic to the free semilattice on n generators. Note also,
that groupoid reduct of the Mp, ;-replica of (Fp,;(A)P, -, +) belongs to the
variety Do 1. =

The variety Dy ; is locally finite, so Theorem 5.8 implies the following:



Representation of modals 549

COROLLARY 5.9. The free modal over the set X in the variety Mp, ; s
isomorphic to the modal with the semilattice of all non-empty finite subsets
of X as the semilattice reduct and a left-zero semigroup as the groupoid
reduct.

EXAMPLE 5.10. We showed in Example 4.3 that (Fp,,({z,y})P,-,+) is
not free in the variety Mp,,. Using the “Universal Algebra Calculator” [3]
written by R. Freese, E. Kiss and M. Valeriote, we can check that the modal
(Fp,,({z,y})P,-,+) has 7 congruences. Only 4 of them contain the Mp, ,-
replica congruence @MDO,Q ({z,y}). In fact, the relation @MDO’Q({.T, y}) has
three classes: A :={a,c,e}, B:={b,d, f}, A+ B:={g}.

The three-element quotient algebra ({A, B, A+ B},-,+) € Mp,, is the
free differential modal on two generators in Mp,,.

By Theorem 5.4, Lemma 5.5 and Example 5.1 we immediately obtain
the well-known result that the algebra of finitely generated subalgebras of a
given mode (M, (2) satisfies each linear identity true in (M, £2).

COROLLARY 5.11. For any variety V of modes,
My C MY C My-.
In particular, MV* = Myx.
In general, the class MV is not a variety.

EXAMPLE 5.12. Consider the modal (Fp,,(z,y)P,-,+) € MDg3. Using
the same notation as in Example 4.3 we can observe that the only sets of
generators of the subalgebra ({a, ¢, g}, -, +) of (Fp, ,(z,y)P, -, +) are {a, e, g}
and {a,g}. But the mode (({a,9})1},") = ({a,e,9},-) is not in the vari-
ety Dpo. This shows that the class MDy 2 is not closed under subalgebras.

LEMMA 5.13. The class MV is closed under homomorphic images and
finite subdirect products.

Proof. Let (M, §2,4+) € MV be a modal generated by a set X such that
(X)p,2) € V and let h : (M, 2,4) — (A, 2,4) be a surjective modal
homomorphism. It is clear that (h(X))n = h((X)n), (h((X)n),2) € V
and A = h(M) = h({(X)) = (h(X)). This implies that a generating set of
(A, £2,+) is included in h(X) and (A4, 2,+) € MV.

Foreachi =1,...,n,let (M;,2,+) € MV be a modal generated by a set
X; € M; such that ((X;)o, 2) € V and let (M, £2,+) be a subdirect product
of the algebras (M;, 2,+). Let a = (as,...,a,) € M. By assumption, for
each i = 1,...,n, a; € m(M) = M; = (X;), where m; is the projection
operator onto the i-th factor. By the Disjunctive Form Lemma 5.2, there

are ti1,...,tx, € (Xi)o such that a; = Z;“:l tij. Then by idempotency of
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the operation + we have

ks

k1 kn n
a:(al,...,an):<Zt1j,...,2tn]~) ZZ tll,tgl,.. 1]7---7tn1)-
j=1 J=1

=1 j=1
This shows that there is a set X C [[;(X;)e € M which generates the
modal (M, 2,+) and ((X),2)€V.

Classes of algebras closed under homomorphic images and finite subdirect
products were investigated by L. Shemetkov and A. Skiba under the name
formation of algebras (see [16]).

The next example shows that the class MV is not closed under arbitrary
products.

EXAMPLE 5.14. Let X := {z, | n € N} be an infinite countable set and let
(Fp,,(X),-) be the free Dy - differential mode over X. By Example 5.1,
the set X := {{z,} | n € N} generates the modal (Fp,,(X)P,-,+) and
(FD0,2 (X)) = ({{a} la € FDO,2(X)}7 )= (<x>{~}7 )€ Do,z

Let I := N and for each i € I, let (M;,-,+) := (Fp,,(X)P,-,+). By
Definition (2.2) it is clear that for each n € I,

Hr1, ..z }) ={zmt+ ...+ {z} = {xlx;m Dl S R

+ {:L’Zl'?I .. 1:?_'{%?_’&“ .. xf{"} + ...+ {$nx8n v $i"fi ",
where ¢, ; = 0 or €5 ; = 1. Moreover, for x,41 ¢ {x1,..., 25}

{$1} +...t {xn} = (FDO,2({x17 s 71‘71})? ) - (FDO,Q({$17 SRR X l‘n—&—l}), )
This implies that for the element

= ({z} Az} + {z2}, . Az + o {aa ) ) e [[ M
el

there is no {-,+}-word ¢ such that m = t(ai,...,ax), and aj,...,a; €
[Licr(X) (- Hence, [[;c;(X){} does not generate the modal ([[;c; M, -, +)-

Without loss of generality we can assume that for any set 3 of generators
of the modal (J[;c; M;,-,+), there is some n € I, such that m,(3) includes
subalgebras (A, -) := ({x1}) and (B, ) := ({z2,23,...,2%}) of (Fp,y,(X),-).
Thus

AB2 = {1'1} U {xl?/z ’ Yy ;é S {$2,$3, v ,.’Ek}} = {.’El} =A & Iy = 21z,

what is impossible, because 2, x3, . . ., 7, are free generators of (Fp,,(X), ).
It follows that for any set 3 of generators of the modal ([[;c; M;, -, +),
there is some n € I, such that ((7,(3)).},") & Do
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LEMMA 5.15. Let (M, 2,+) € MV be a modal generated by a set Y C M,
such that ({(Y)q,§2) € V. Then each mapping h : X — Y can be uniquely
extended to a modal homomorphism h : (Fy(X)P, 2,+) — (M, 2,+).

Proof. Obviously, any mapping h : X — Y < (Y) can be uniquely
extended to a mode homomorphism 7 = th : (Fy(X),$2) — (M, 2), which
is a composition of the unique homomorphism % : (Fy(X), 2) = ((Y) g, 2)
and the canonical embedding ¢ : ((Y)g, £2) — (M, £2). By Lemma 3.1, the (2-
mode homomorphism /& may be extended to a unique modal homomorphism

h: (Fp(X)P,02,4) = (M, 2,+).

THEOREM 5.16. Each modal (M, $2,+) € MV generated by a set X is
a homomorphic image of (Fy(X)P,§2,4).
Proof. Let ((X)gn,f2) € V be the full 2-mode subreduct of (M, $2,+) €
MV. By Lemma 5.15 the composite X LN g (X)p can be uniquely
extended to a modal homomorphism id : (Fy(X)P,2,+) — (M, $2,+),
where id is an extension of the composition of the £2-mode homomorphism
id : (Fy(X), 2) — ((X)n,$2) and the embedding ¢ : ((X)p, 2) — (M, 2).
Note that (X)o € Fy(X) and id/ (X), 18 in fact the identity homomorphism
on ((X)q, 2).

Moreover, for each subalgebra (A, £2) of (Fy(X), £2) finitely generated by

a set S, id(A) = >, gid(s) € M. By the Disjunctive Form Lemma 5.2,
each element m € M may be expressed in a form m = mq+...+m, for some
mi,...,my € (X)q. Let (A, §2) be a subalgebra of (F)(X), §2) generated
by the set {my,...,m,}. Then id(A) = Y_I_, id(m;) = >_i_, id(m;) = m.
This shows that the mapping id is a surjective modal homomorphism and
(M, 2,+) = id((Fy(X)P, 2, +)). =

COROLLARY 5.17. For any variety V of modes

MV = H{(Fy(X)P, 2,+) | X # 0}.

Proof. By Theorem 5.16, the inclusion MV C H{(Fy(X)P, 2,+) | X # 0}
is obvious. On the other hand, by Example 5.1, for each set X, the modal
(Fy(X)P,2,+) € MV. Additionally, by Lemma 5.13, the class MV is
closed under homomorphic images, so the inclusion

MY 2O H{(Fy(X)P, 2,+) | X # 0}
is also clear. =

ExAMPLE 5.18. Let (M,-,+) be the modal described in Example 4.7.
As a set of generators take the set X = {z,y}. The full {-}-mode sub-
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reduct ({({z,y})(},") is a differential groupoid which lies in the subvari-
ety Dp2. By Theorem 5.16 the modal (M, -,+) is a homomorphic image of

the modal (FDM({QJ,_y})P, - +) with z = m({z}) =id({zy}) = id({z, zy}),
y = id({y}), z = id{yx}), v = z +y = id({y,yz}) and t = z + x =
id({z,y, vy, yx}).

It is easy to see that in any entropic modal (M, 2, +) each Q-word oper-
ation distributes over the operation +. Hence, by Theorem 5.4 any variety
M C MYV of entropic modals satisfies each identity true in V.

COROLLARY 5.19. The entropic modals in the class MV form a subvariety
Of Mv.

EXAMPLE 5.20. Consider the variety M of entropic differential modals. It
was proved in [17] that each differential entropic modal satisfies the identity
ry = (zy)y, which means that M C Mp, ,.

In Example 4.6 we showed that the algebra (Fp, ,({x,y})P,-,+) € Mp, ,,
but it is easy to see that (a + d)(b+¢) = h # g = ab+ dc. So, it is not
entropic, hence it is not free in M.

It was also shown in [17] that the free differential entropic modal on {z,y}
is isomorphic to the algebra ({x,y, zy,yx,x + y},-,+), where = + xy = xy,
y+yr =yx, c+yxr =y+2ry = xy+yxr = x+y and the groupoid operation
is defined in the following way:

Y Y yr r+y
X xr Ty X Ty Ty
yx ) yx Y yx
ryY Y Y Y Y Y
yx yx yx yx yx yx
r+yle+y r+y r+y r+Yy r+y

Using once again the “Universal Algebra Calculator”, we can obtain that
the modal (Fp, ,({z,y})P,-, +) has 45 congruences. Only 9 of them contain
the M-replica congruence O ({x,y}). The relation Opr({z,y}) has five
congruence classes: {z}, {y}, {zy,z + zy}, {yz,y + ya} and {zy + yz,z +
yr,y + xy,x + y}.

Hence, in fact the algebra ({z,y, zy, yz,x +y},-,+) is isomorphic to the
M-replica of (Fp, ,({z,y})P,-,+). In particular, by Theorem 5.16

({'I, Y, TY, YT, T + y}7 B +) = E(F'Dla({l‘?y})P) B +)7
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where
p=id({z}), =),
{ogd), oy =id({ye}) = id({y,ye}),

ry = id({ry}) yo id
({z, 2y, yz}) =id({y, vy, yz}) =id({z, y, vy, yz}).

—id
4y =id({xy,ya}) =id
6. Representation theorem for modals

For any variety V of modes, Theorem 3.1 serves to represent general
V*-modals as quotients of subalgebra modals.

THEOREM 6.1. (Modal Representation Theorem [12|) For any variety V
of £2-modes, each V*-modal (M, $2,+) is a quotient of the modal of finitely
generated non-empty submodes of its mode reduct (M, §2).

Lemma 5.15 gives a representation of general modals in any class MV,
based on extended power algebras.

Let (M, £2) be a mode and X,Y C M. We can define on the set PsqM
a relation « in the following way: X a Y < (X) = (Y).

Let Congq(PS§M) denote the lattice of congruence relations v on the
extended power algebra (PSyM, 2,U) of a mode (M, §2), such that the
quotient (P;S’ M7, $2) is idempotent. The relation « is the least element in
this lattice. (For all details see [10].)

THEOREM 6.2. [10]| Let (M, 2) be a mode. The quotient algebra (PsoM®,
£2,U) is isomorphic to the modal (MS, £2,+) of all non-empty subalgebras of
(M, 2) and the quotient algebra (PSEM®, $2,U) is isomorphic to the modal
(MP, 2,+) of all finitely generated subalgebras. The isomorphism is given
by the following mapping: h : PsoM® — MS; X — (X)q.

THEOREM 6.3. (Power Representation Theorem) Each modal (M, $2,+)
generated by a set X is a quotient of a subalgebra of the extended power

algebra of the full mode subreduct ({X)gp, 2).
Proof. Consider the following mapping:

he PSE(X)G = My {ma,. o mp}® = ma + .+ my,
Assume that for some mq,...,my, s1,...,5, € (X)p,
{mi,...,mp}* = {s1,...,s1}".

So by the definition of the relation «,

({ma,...,mp}) = ({s1,...,5K})-

This means that for each element m; € ({s1,...,si}), mi = q(z1,...,x;) for
some l-ary {2-term ¢q and {x1,...,2;} C {s1,..., Sk}
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According to the Sum-Superiority Lemma 2.3 one has that
m; =q(x1,...,2) <z1+...+x; <851+ ...F Sk.

Thus mq1 + ... +mp < 51+ ...+ s;. The reverse inequality is obtained by
symmetry, whence mj + ...+ my, = s1 + ...+ s, and the mapping h is well
defined.

For classes {mi1,...,mip, }* ..., {mn1, ..., Mpp, }* € PSF(X)H and an
n-ary operation w € 2 we obtain

hw{mit,...,mip 3% .o {mp1, .o, My, 1))

= h(w({mi1,....,mip by s {mp1, .o, Mp, 1Y)
= h({w(ar,...,an) | a; € {m41, ..., mip, }}<)

= Z w(ay,...,ap)

=w(mir+...+Mip,...,Mp1+ ...+ Myp,)
= w(h({mll’ SR} mlpl}a)a s h({mnlv s ’mnpn}a))‘

Hence h is an {2-homomorphism. Moreover

h({ma1, ..., map, }* U{mar, ..., map, }?)
= h(({m11, R 7m1p1} U {mm, cee 7m2p2})a)
= h({mu, sy Mlpy, M21, - . 'am2p2}a)

=mi1+...+Mip, + Mo+ ...+ My,
= h({mllv <o Mipy }a) + h({mm? R m2p2}a)7
which shows that h is a semilattice homomorphism.
By the Disjunctive Form Lemma 5.2, for each m € M there exist my, ...,
my € (X)q such that m =mi+...+my, = h({m1,...,mp}*). Hence his a

surjection and
kerh

(M, 2,4) = h((PS§(X) 6, 2,U)) = (P35(X)%),2,0).
By the Second Isomorphism Theorem (M, §2,+) = (P;S’(X)%, 2,U), where
BeConig(PS§(X) 0, 2,U). This implies (M, 2,+) e HS(P>o(X) o, 2,U). =
By Theorem 6.2 we immediately obtain the next corollary.

COROLLARY 6.4. FEach modal (M, $2,+) generated by a set X is a homo-
morphic image of ((X)aP, £2,+).

EXAMPLE 6.5. The modal (M, -,+) given in Example 4.7 is isomorphic to
the modal ({({z,y})}P,,+) by the isomorphism A given by: = = h({z}),
y=h{y}), 2 =h({z}), v = h({y,2}) and t = h({z,y,2}).
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7. Open problems

As shown in [9] and [1], it is usually very difficult to determine which iden-
tities (apart from idempotent and linear ones) holding in a mode (M, £2),
also hold in the algebra (M S, £2). This is in contrast with the power algebra
of subsets. According to results of G. Grétzer and H. Lakser in [4], the class
of all power algebras of algebras from a fixed variety V preserves precisely the
consequences of linear identities holding in V. There is no such characteri-
zation for algebras in the class of all algebras of subalgebras of V-algebras.
However there is a conjecture formulated in the following problem.

PROBLEM 7.1. Is it true that for a variety V of modes, the class of alge-
bras of subalgebras of V-algebras satisfies precisely the consequences of the
idempotent and linear identities true in V?

As Theorem 5.4 shows, settling this conjecture is closely related to the
general structure of modals.

In [17], the lattice of varieties of differential entropic modals was de-
scribed.

PROBLEM 7.2. Describe the structure of other classes of modals using their
relationship with the structure of power algebras.

By Corollary 5.11, for a variety V of modes defined by linear identities,
the class MV is a variety and MV = My,. Is the converse true?

PROBLEM 7.3. Is it true that for a variety V of modes the equality MV =
My, implies that V is defined by linear identities?
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