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REPRESENTATION OF MODALS

Abstract. The main aim of this paper is to describe the free objects in arbitrary
varieties of modals (semilattice ordered idempotent and entropic algebras) and give some
new representations of modals.

1. Introduction

Algebras considered in this paper are modes and modals. Such alge-
bras were introduced and investigated in detail by A. Romanowska and
J. D. H. Smith ([14], [15]). Modes (M,Ω) are characterized by two basic
properties. They are idempotent , in the sense that each singleton is a sub-
algebra, and entropic, i.e. any two of their operations commute. The two
properties may also be expressed by means of identities:

ω(x, . . . , x) ≈ x, (idempotent law),(1.1)

ω(φ(x11, . . . , xn1), . . . , φ(x1m, . . . , xnm)) ≈(1.2)

φ(ω(x11, . . . , x1m), . . . , ω(xn1, . . . , xnm)), (entropic law),

for every m-ary ω ∈ Ω and n-ary φ ∈ Ω.
An operation f : An → A is said to distribute over a binary operation +

on a set A if and only if for any 1 ≤ i ≤ n and x1, . . . , xi, yi, . . . , xn ∈ A:

(1.3) f(x1, . . . , xi + yi, . . . , xn) =

f(x1, . . . , xi, . . . , xn) + f(x1, . . . , yi, . . . , xn).

A modal is an algebra (M,Ω,+) such that (M,Ω) is a mode, (M,+) is a
(join) semilattice (with semilattice order ≤, i.e. x ≤ y ⇔ x + y = y) and
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the operations ω ∈ Ω distribute over +. The name “modal” was intended
both to refer to the relationship with modes and to suggest the analogy with
modules.

Examples of modals include distributive lattices, dissemilattices (see [8])
–algebras (M, ·,+) with two semilattice structures (M, ·) and (M,+) in
which the operation · distributes over the operation +, the algebra
(R, I0,max) defined on the set of real numbers, where I0 is the set of the
following binary operations: p : R×R → R; (x, y) 7→ (1− p)x+ py, for each
p ∈ (0, 1) ⊂ R, and semilattice modes (see [6]) - modes with a semilattice
derived operation.

Let (M,Ω,+) be a modal generated by a non-empty set X ⊆ M . The
subalgebra of Ω-reduct (M,Ω) generated by a set X will be called the full

Ω-mode subreduct (of a modal (M,Ω,+)) relative to X and it will be denoted
by (〈X〉Ω, Ω).

Given a mode variety V, a modal (M,Ω,+) is called a V-modal if the
mode reduct (M,Ω) of the modal lies in V. A. Romanowska and
J. D. H. Smith ([14], [12]) described the free V-modals in the case V is
a variety of modes defined by linear identities. (We call a term t linear , if
every variable occurs in t at most once. An identity t ≈ u is called linear , if
both terms t and u are linear.)

The main aim of this paper is to describe the free objects in arbitrary
varieties of modals and give some new representations of modals.

The paper is organized as follows. In Section 2, we recall basic defini-
tions and results concerning modals and extended power algebras of modes.
In Section 3 we broaden the result of A. Romanowska and J. D. H. Smith
and describe the free objects in an arbitrary variety M of V-modals and
in the quasivariety of Ω-subreducts of modals in M. In Section 4 we ap-
ply these results to differential modals. In Section 5 we describe the class
MV of all modals such that for each (M,Ω,+) ∈ MV there exists a non-
empty set X of generators such that (〈X〉Ω, Ω) ∈ V. In particular, we show
that each modal in the class MV is a homomorphic image of the algebra
of finitely generated non-empty subalgebras of some free V-mode. We also
investigate identities satisfied by modals and we present a necessary and
sufficient condition for a modal to satisfy some non-linear identity. In Sec-
tion 6 we present a certain representation of V-modals based on extended
power algebras of modes. We conclude the paper with a list of open prob-
lems.

Throughout the paper, V will denote a variety of Ω-modes. We assume
that a set of generators of any algebra is non-empty.

The set of all equivalence classes of a relation ̺ ⊆ A×A is denoted by A̺.
The symbol N denotes the set of natural numbers including 0.
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2. Modals and extended power algebras of modes

The fundamental elementary properties of modals (M,Ω,+) were proved
by A. Romanowska and J. D. H. Smith in [14] and may be summarized in
the following three lemmas.

Lemma 2.1. (Monotonicity Lemma) Each n-ary basic operation ω ∈ Ω,

ω : (Mn,≤) → (M,≤) is monotone (as a mapping).

Lemma 2.2. (Convexity Lemma) For each positive integer r, an n-ary basic

operation ω ∈ Ω and elements xij ∈ M for 1 ≤ i ≤ n, 1 ≤ j ≤ r:

ω(x11, . . . , xn1) + . . .+ ω(x1r, . . . , xnr) ≤

ω(x11 + . . .+ x1r, . . . , xn1 + . . .+ xnr).

Lemma 2.3. (Sum-Superiority Lemma) For each n-ary basic operation

ω ∈ Ω and elements x1, . . . , xn ∈ M , one has

ω(x1, . . . , xn) ≤ x1 + . . .+ xn.

If a modal (M,Ω,+) satisfies also the following law:

(2.1) ω(x1 + y1, . . . , xn + yn) ≈ ω(x1, . . . , xn) + ω(y1, . . . , yn)

for each n-ary operation ω ∈ Ω and x1, . . . , xn, y1, . . . , yn ∈ M , then
(M,Ω,+) is a mode. We will call such algebras entropic modals. An ex-
ample is given by semilattice modes investigated by K. Kearnes [6].

For a given set A denote by P>0A the family of all non-empty subsets
of A. For any n-ary operation ω : An → A we define the complex operation

ω : P>0A
n → P>0A in the following way:

ω(A1, . . . , An) := {ω(a1, . . . , an) | ai ∈ Ai},

where ∅ 6= A1, . . . , An ⊆ A. The power (complex or global) algebra of an
algebra (A,Ω) is the algebra (P>0A,Ω).

The set P>0A also carries a join semilattice structure under the set-
theoretical union ∪. B. Jónsson and A. Tarski proved in [5] that complex
operations distribute over the union ∪. By adding ∪ to the set of basic
operations we obtain the extended power algebra (P>0A,Ω,∪). The algebra
(P<ω

>0 A,Ω,∪) of all finite non-empty subsets of A is a subalgebra of the
extended power algebra (P>0A,Ω,∪).

As was shown by A. Romanowska and J. D. H. Smith in [14], for a given
mode (M,Ω), the sets MS of non-empty subalgebras and MP of finitely
generated non-empty subalgebras of (M,Ω) have a mode structure under the
ω-complex operations and are subalgebras of the power algebra (P>0M,Ω).
Moreover, the modes (MS,Ω) and (MP,Ω) satisfy each linear identity true
in (M,Ω).
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A. Romanowska and J. D. H. Smith also proved that for a given mode
(M,Ω), the sets MS and MP have an additional (join) semilattice structure
+ obtained by setting

(2.2) A1 +A2 := 〈A1 ∪A2〉,

for any A1, A2 ∈ MS, where 〈X〉 denotes the subalgebra of (M,Ω) generated
by the set X.

These two structures, mode and semilattice, are related by distributive
laws (1.3). In this way, we obtain algebras (MS,Ω,+) and (MP,Ω,+) that
provide basic examples of modals. Further examples of modals are given by
results of [10].

Example 2.4. [10] Let γ be a congruence relation on the extended power
algebra (P>0M,Ω,∪) of a mode (M,Ω), such that the quotient (P>0M

γ , Ω)
is idempotent. Then the quotient algebra (P>0M

γ , Ω,∪) is a modal.

3. Free modals

A. Romanowska and J. D. H. Smith proved the following universality
property for modals crucial for our next results.

Lemma 3.1. [14] Let (A,Ω) be a mode and (M,Ω,+) a modal. Then each

mode homomorphism h : (A,Ω) → (M,Ω) can be extended to a unique modal

homomorphism

h : (AP,Ω,+) → (M,Ω,+); h(S) 7→
∑

x∈X

h(x),

where (S,Ω) is a subalgebra of (A,Ω) generated by a finite set X.

Recall that a modal (M,Ω,+) is called a V-modal if (M,Ω) ∈ V. Let
MV denote the variety of all V-modals.

Theorem 3.2. (Universality Property for Modals) Let (FV(X), Ω) be the

free V-mode over a set X and let (M,Ω,+) ∈ MV . Then each mapping

h : X → M can be extended to a unique modal homomorphism h : FV(X)P
→ M , such that h/X = h.

Proof. Let (M,Ω,+) ∈MV and X be a set. By assumption, (M,Ω) ∈ V.
So any mapping h : X → M may be uniquely extended to a mode ho-
momorphism h : (FV(X), Ω) → (M,Ω). By Lemma 3.1, the Ω-mode ho-

momorphism h may be extended to a unique modal homomorphism h :
(FV(X)P,Ω,+) → (M,Ω,+).

Note that the modal (FV(X)P,Ω,+) is generated by the set {{x} |
x ∈ X}. Hence, if (FV(X)P,Ω,+) ∈ MV , then it is, up to isomorphism,
the unique algebra in MV generated by a set X, with the universal mapping
property.
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Corollary 3.3. The modal (FV(X)P,Ω,+) is free over a set X in the

variety MV if and only if (FV(X)P,Ω,+) ∈ MV .

For a variety V of modes let V∗ be its linearization, the idempotent
variety defined by the linear identities satisfied in V. Obviously, V∗ is a
variety of modes, and contains V as a subvariety.

It is well known (see for example [15]) that for any variety V of modes,
the variety generated by the class {(AS,Ω) | (A,Ω) ∈ V} is included in V∗.
So by Corollary 3.3 we immediately obtain the following result proved earlier
by A. Romanowska and J. D. H. Smith.

Theorem 3.4. [14] The modal (FV∗(X)P,Ω,+) is free over a set X in the

variety MV∗ .

Let M be a non-trivial subvariety of MV and X be a set. By [15, Chap-
ter 3.3] the congruence

ΘM(X) :=
⋂

{φ ∈ Con(FV(X)P,Ω,+) | (FV(X)P φ, Ω,+) ∈ M}

is the so-called M-replica congruence of (FV(X)P,Ω,+) and (FV(X)PΘM(X),
Ω,+) is called the M-replica of (FV(X)P,Ω,+).

Let (M,Ω,+) ∈ M. By the universality property of replication (see
[15, Lemma 3.3.1.]), for each modal homomorphism h : FV(X)P → M ,

there is a unique modal homomorphism h : FV(X)PΘM(X) → M such that

h = h ◦ natΘM(X), where natΘM(X) is the natural projection onto the
quotient FV(X)PΘM(X). Hence, by Theorem 3.2, the universality property
for (FV(X)P,Ω,+) yields the following commuting diagram for any mapping
h : X → M :

X (FV(X)P,Ω,+) (FV(X)PΘM(X), Ω,+)

(M,Ω,+)

→֒ -

?
@
@@R

�������
h hh

i natΘM(X)

As a result, we obtain

Theorem 3.5. The M-replica of the algebra (FV(X)P,Ω,+) is free over

a set X in the variety M ⊆ MV .

Corollary 3.6. Let (FV(X)P,Ω,+) ∈ M. Then it is free in M ⊆ MV

over a set X.

Example 3.7. Let SL be the variety of semilattices and DL denote the
variety of distributive lattices. Each distributive lattice may be considered
as a modal (M, ·,+), where (M, ·) is a semilattice and the additional identity
x+xy = x is satisfied. By Theorem 3.5, the free distributive lattice on a set
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X is isomorphic to the DL-replica of the algebra (FSL(X)P, ·,+), where
(FSL(X), ·) is the free semilattice over X. By results of [10] and [14] we can
describe the congruence ΘDL(X) in more detail. It is the congruence (α{·}

in notation of [10]) such, that for finite subsets A,B ⊆ FSL(X), (A,B) ∈
ΘDL(X) iff FSL(X) ·A = FSL(X) ·B (or equivalently A and B generate the
same sink or ideal). In this way, we obtain the following

Corollary 3.8. [14] The free distributive lattice on a set X is the modal of

finitely generated non-empty sinks of the free semilattice (FSL(X), ·) on X.

Let (A,Γ ) be an algebra of a given type τ : Γ → N. Denote by BΓ a set
of derived (or term) operations of Γ and let Ω ⊆ BΓ . An algebra (A,Ω)
is said to be a reduct (Ω-reduct) of the algebra (A,Γ ). A subalgebra of a
reduct of (A,Γ ) is called a subreduct.

It is well known that the subreducts of algebras in a given quasivariety
again form a quasivariety (see [7]). Let Q be a quasivariety of Γ -algebras
of a given type τ : Γ → N. Consider the quasivariety QΩ of Ω-algebras
isomorphic to Ω-subreducts of Q-algebras.

Theorem 3.9. The free QΩ-algebra (FQΩ
(X), Ω) over X is isomorphic to

the Ω-subreduct (〈X〉Ω, Ω), generated by X, of the free Q-algebra (FQ(X), Γ ).

Theorem 3.9 was formulated in [11], but only for subreducts of affine
spaces. It seems to have appeared also in other papers but again for partic-
ular algebras not in general context. For the sake of completeness we give
here the self-contained proof of this result. Nevertheless, we use exactly the
same methods as in [11].

Proof. The universality property for the free algebra (FQ(X), Γ ):

X (FQ(X), Γ )

(A,Γ )

→֒

ց
↓

h
h

assures commutativity of the following diagram for each Ω-reduct of (A,Γ ) ∈
Q and a mapping h : X → A:

X 〈X〉Ω (FQ(X), Ω)

(A,Ω)

→֒ →֒

ց ւ
h hΩ

e i

Here hΩ is the restriction of the uniquely defined Γ -homomorphism h :
FQ(X) → A to the Ω-reduct.

Now let (B,Ω) be a subalgebra of (A,Ω). We want to show that for
any mapping h′ : X → B, there is a uniquely defined Ω-homomorphism

h
′
: 〈X〉Ω → (B,Ω) such that h

′
◦ e = h′. Let j : B → A; x 7→ x be the
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embedding of (B,Ω) into (A,Ω). Take h equal to j ◦ h′. Then hΩ maps
FQ(X) into j(B), and similarly hΩ ◦i maps 〈X〉Ω into j(B) (see the diagram

below). Define h
′
:= j−1◦hΩ ◦i. It is easy to see that h

′
satisfies the required

properties. Hence 〈X〉Ω is the free QΩ-algebra (FQΩ
(X), Ω).

X 〈X〉Ω (FQ(X), Ω)

B

j(B)

→֒ →֒

ց

ց

h′

j

�
�

��	

e

��	h
′

i

hΩ

&-
h

Free algebras in a quasivariety QΩ are also free in the variety V (QΩ)
generated by QΩ (see [7]).

Let (M,Ω,+) be a modal generated by a set X ⊆ M . Denote by
(〈X〉Ω, Ω) the subalgebra of the Ω-reduct (M,Ω) generated by the set X.
The algebra (〈X〉Ω, Ω) is necessarily a submode of (M,Ω) and contains all
elements from (M,Ω,+) obtained as results of operations from BΩ on the
set X. We will call it the full Ω-mode subreduct (of a modal (M,Ω,+))
relative to X.

As a corollary one obtains a characterization of free algebras in the qua-
sivariety of Ω-subreducts of modals in a given variety of modals.

Corollary 3.10. Let M be a variety of modals. Let MΩ be a quasivariety

of Ω-subreducts of modals in M. Then the free MΩ-mode (FMΩ
(X), Ω)

over X is isomorphic to the full Ω-subreduct (〈X〉Ω, Ω) of the free M-modal

(FM(X), Ω,+).

4. Free differential modals

In this section we will illustrate the results of Section 3 and describe free
objects in some varieties of differential modals. Further examples will be
presented in Section 5.

Definition 4.1. A differential groupoid is a mode groupoid (D, ·) satisfy-
ing the additional linear identity:

x(yz) ≈ xy.

Each proper non-trivial subvariety of the variety D of differential groupoids
(see [13]) is relatively based by a unique identity of the form

(. . . ((x y)y) . . .)y︸ ︷︷ ︸
i−times

=: xyi ≈ xyi+j(4.1)

for some i ∈ N and positive integer j. Denote such a variety by Di,i+j .
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Let (FD({x, y}), ·) be the free algebra on two generators x and y in
the variety of differential groupoids. As was shown in [13] each element in
(FD({x, y}), ·) may be expressed as xyk or yxn for some k, n ∈ N (xy0 := x
and yx0 := y). So the subalgebras of (FD({x, y}), ·) are any finite or infinite
subsets of sets {x, xy, xy2, xy3, . . .} or {y, yx, yx2, yx3, . . .} or subalgebras
generated by two elements xyk and yxn for some k, n ∈ N, i.e.:

〈{xyk, yxn}〉 = {xyk, xyk+1, xyk+2, . . .} ∪ {yxn, yxn+1, yxn+2, . . .}.

A differential modal is a modal whose mode reduct is a differential grou-
poid.

Example 4.2. Consider the free differential groupoid (FDi,i+j
({x, y}), ·)

on two generators x and y in the subvariety Di,i+j , for j > 1. The following
two sets:

{x}FDi,i+j
({x, y})i = {x, xy, . . . , xyi}

and

{x}FDi,i+j
({x, y})i+j = {x, xy, . . . , xyi, xyi+1, . . . , xyi+j−1}

are different.

By Corollary 3.3 the algebra (FDi,i+j
(X)P, ·,+), for any set X with more

than one element, is not free in the variety MDi,i+j
, where j > 1.

Example 4.3. In particular, consider the free differential groupoid

(FD0,2
({x, y}), ·)

on two generators x and y in the subvariety D0,2 defined by the identity:

x ≈ (xy)y.

Such a groupoid has 4 elements {x, y, xy, yx}, the following multiplication
table:

· x xy y yx

x x x xy xy

xy xy xy x x

y yx yx y y

yx y y yx yx

and 7 subalgebras, namely: a := {x}, b := {y}, c := {xy}, d := {yx},
e := {x, xy}, f := {y, yx}, g := {x, y, xy, yx}.

The multiplication table of the mode reduct of (FD0,2
({x, y})P, ·,+) is

the following:
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· a b c d e f g

a a c a c a c e

b d b d b d b f

c c a c a c a e

d b d b d b d f

e e e e e e e e

f f f f f f f f

g g g g g g g g

By [15], the modal (FD0,2
({x, y})P, ·,+) ∈ MD, but it is not a D0,2-modal:

(ag)g = ({x}{x, y, xy, yx}){x, y, xy, yx} = {x, xy} = e 6= {x} = a.

By Corollary 3.3, (FD0,2
({x, y})P, ·,+) is not free in the variety MD0,2

.
But it satisfies the non-linear identity: xy ≈ ((xy)y)y, hence

(FD0,2
({x, y})P, ·,+) ∈ MD1,3

.

Example 4.4. Consider the free differential groupoid (FDi,i+1
({x, y, z}), ·)

on three generators x, y and z in the subvariety Di,i+1. Let (A, ·) := 〈{y, z}〉
be the subalgebra of (FDi,i+1

({x, y, z}), ·) generated by y and z. It is easy

to check that {x}Ai = {xyi, xyi−1z, . . . , xyzi−1, xzi} and {x}Ai+1 =
{xyi, xyiz, . . . , xy2zi−1, xyzi, xzi}. Hence, for any set X with at least three
elements, the algebra (FDi,i+1

(X)P, ·,+) is not free in the variety MDi,i+1
.

Theorem 4.5. Let i ∈ N. The modal (FDi,i+1
({x, y})P, ·,+) is free in the

variety MDi,i+1
.

Proof. Let (FDi,i+1
({x, y}), ·) be the free differential mode on two generators

x and y in the subvariety Di,i+1. Any subalgebra of (FDi,i+1
({x, y}), ·) has

one of the three following forms:

A1 = 〈{xyk1 , . . . , xykn}〉 = {xyk1 , xyk2 , . . . , xykn}, for i ≥ k1, . . . , kn ∈ N,

A2 = 〈{xyk, yxl}〉, for i ≥ k, l ∈ N,

A3 = 〈{yxl1 , yxl2 , . . . , yxlm}〉={yxl1 , yxl2 , . . . , yxlm}, for i ≥ l1, . . . , lm∈N.

Hence, {xyk1 , . . . , xykn}{xyl1 , . . . , xylm} = {xyk1 , . . . , xykn};

{xyk1 , . . . , xykn}〈{xyk, yxl}〉i =

{xyk1 , . . . , xykn , xyk1+1, . . . , xykn+1, . . . , xyk1+i, . . . , xykn+i} =

{xyk1 , . . . , xykn , xyk1+1, . . . , xykn+1, . . . , xyk1+i+1, . . . , xykn+i+1} =

{xyk1 , . . . , xykn}〈{xyk, yxl}〉i+1;

{xyk1 , . . . , xykn}{yxl1 , . . . , yxlm}i = {xyk1+i, . . . , xykn+i} =

{xyk1+i+1, . . . , xykn+i+1} = {xyk1 , . . . , xykn}{yxl1 , . . . , yxlm}i+1;

〈{xyk, yxl}〉〈{xys, yxt}〉 = 〈{xyk, xyk+1, yxl, yxl+1}〉 = 〈{xyk, yxl}〉;
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〈{xyk, yxl}〉{yxl1 , yxl2 , . . . , yxlm}i = 〈{xyk+i, yxl}〉 = 〈{xyk+i+1, yxl}〉 =

〈{xyk, yxl}〉{yxl1 , yxl2 , . . . , yxlm}i+1.

It follows that the algebra (FDi,i+1
({x, y})P, ·,+) satisfies the identity (4.1)

for j = 1, and is free in the variety MDi,i+1
by Corollary 3.3.

Example 4.6. The free differential groupoid (FD1,2
({x, y}), ·) on two gen-

erators x and y also has four elements: {x, y, xy, yx}, the following multipli-
cation table:

· x xy y yx

x x x xy xy

xy xy xy xy xy

y yx yx y y

yx yx yx yx yx

and ten subalgebras: a := {x}, b := {y}, c := {xy}, d := {yx}, e := {x, xy},
f := {y, yx}, g := {xy, yx}, h := {x, xy, yx}, i := {y, xy, yx} and j :=
{x, y, xy, yx}. Its semilattice reduct is in Figure 1.

The multiplication table of the mode reduct of (FD1,2
({x, y})P, ·,+) is

the following:

· a b c d e f g h i j

a a c a c a c e e e e

b d b d b d b f f f f

c c c c c c c c c c c

d d d d d d d d d d d

e e c e c e c e e e e

f d f d f d f f f f f

g g g g g g g g g g g

h h g h g h g h h h h

i g i g i g i i i i i

j h i h i h i j j j j

It is not difficult to check that (FD1,2
({x, y})P, ·,+) ∈ MD1,2

. By Corol-
lary 3.3, (FD1,2

({x, y})P, ·,+) is free in the variety MD1,2
.

Let MV denote the class of all modals such that for each (M,Ω,+) ∈
MV there exists a set X of generators, such that its full Ω-mode subreduct
relative to X lies in V.

Corollary 3.10 raises the question whether for the free M-modal gener-
ated by a set X, for a given variety M ⊆ MV, its full Ω-mode subreduct
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Fig. 1. Semilattice reduct of (FD1,2
({x, y})P, ·,+)

relative to X is a free mode in V. By Theorem 3.4 this is the case for vari-
eties MV∗ , where V∗ is the linearization of V. The following example gives
a negative answer in general.

Example 4.7. Let (M, ·,+) be a modal with operations · and + defined
as follows:

· x y z u t

x x x x x x

y z y y y u

z y z z z u

u u u u u u

t t t t t t

+ x y z u t

x x t t t t

y t y u u t

z t u z u t

u t u u u t

t t t t t t

.

Consider the variety M ⊆ MD1,3 of modals generated by the modal
(M, ·,+). Obviously, (M, ·,+) is a free modal on two generators x and y
in the variety M. Now the free mode (FM{·}

({x, y}), ·) in the quasivariety
M{·} of {·}-subreducts of modals from M is isomorphic to the full subreduct
(〈{x, y}〉{·}, ·) defined as follows:

· x y z

x x x x

y z y y

z y z z

The free mode (FM{·}
({x, y}), ·) is also free in the variety V (M{·}) generated

by the quasivariety M{·}, but it is not free in the variety D1,3, although
(〈{x, y}〉{·}, ·) lies in this variety. This shows that V (M{·}) 6= D1,3.

5. The class MV of modals

In this section we will describe in more detail modals in the class MV.

Example 5.1. Let (M,Ω) = 〈Y 〉 be a mode generated by a set Y ⊆
M . The set X := {{y} | y ∈ Y } generates the modal (MP,Ω,+) and
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(〈X〉Ω, Ω) ∼= (M,Ω). If (M,Ω) lies in a variety V then (MP,Ω,+) belongs to
the class MV . In particular for the free mode (FV(X), Ω) in a variety V over
a set X, the modal (FV(X)P,Ω,+) is generated by the set {{x} | x ∈ X}.
Hence 〈{{x} | x ∈ X}〉Ω ∼= (〈X〉Ω, Ω) = (FV(X), Ω) and (FV(X)P,Ω,+)
belongs to the class MV.

Let (M,Ω,+) be a modal generated by a set X ⊆ M . An element r ∈ M
is said to be in disjunctive form if it is a join of a finite number of elements
from 〈X〉Ω. The following lemma shows that each element in a modal may
be expressed in such form.

Lemma 5.2. (Disjunctive Form Lemma) Let (M,Ω,+) be a modal gener-

ated by a set X ⊆ M . For each r ∈ M , there exist r1, . . . , rp ∈ 〈X〉Ω such

that r = r1 + . . .+ rp.

Proof. The proof goes by induction on the minimal number m of occurrences
of the semilattice operation + in the expression of r as a modal word in the
alphabet X.

Consider r = r1 with r1 ∈ 〈X〉Ω. Hence, the result holds for m = 0.
Now suppose that the hypothesis is established for m > 0 and let r ∈ M
be an element in which the semilattice operation + occurs m + 1 times.
Let r = r1 + r2, for some r1, r2 ∈ M . By induction hypothesis there are
r11, . . . , r1k, r21, . . . , r2n ∈ 〈X〉Ω such that

r = r1 + r2 = r11 + . . .+ r1k + r21 + . . .+ r2n.

Otherwise, r=ω(r1, . . . , rk+sk, . . . , rn) for some ω∈Ω and r1, . . . , rk, . . . , rn,
sk ∈ M . Then, by distributivity we have

r = ω(r1, . . . , rk + sk, . . . , rn) = ω(r1, . . . , rk, . . . , rn) + ω(r1, . . . , sk, . . . , rn).

Because ω(r1, . . . , rk, . . . , rn), ω(r1, . . . , sk, . . . , rn) ∈ M , this completes the
inductive proof.

Corollary 5.3. Let (M,Ω,+) be a modal generated by a set X ⊆ M .

There is a set Y ⊆ M of generators of the semilattice (M,+) such that

Y ⊆ 〈X〉Ω.

Theorem 5.4. Let V be a variety of Ω-modes satisfying an identity t ≈ u
and M ⊆ MV be a variety of modals (M,Ω,+) such that the word operation

t : Mn → M distributes over the operation +. Then the identity t ≈ u is

satisfied in M if and only if the word operation u : Mn → M distributes

over the operation +.

Proof. Let (M,Ω,+) ∈ M and let the word operation t : Mn → M dis-
tribute over the operation +. Because the variety M is, by assumption,
included in MV, there exists a set X of generators of (M,Ω,+), such that
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its full Ω-mode subreduct relative to X belongs to the variety V. Hence, the
identity t ≈ u is also true in (〈X〉Ω, Ω).

Suppose first that the word operation u : Mn → M distribute over the
operation + and let r1, . . . , rn ∈ M . By the Disjunctive Form Lemma 5.2
there exist r11, . . . , r1k1 , . . . , rn1, . . . , rnkn ∈ 〈X〉Ω such that for each 1 ≤ i ≤
n, ri = ri1 + . . . + riki . Then, by distributivity of operations t : Mn → M
and u : Mn → M

t(r1, . . . , rn) = t(r11 + . . .+ r1k1 , . . . , rn1 + . . .+ rnkn)

=
∑

1≤i≤n
ai∈{ri1,...,riki

}

t(a1, . . . , an) ≈
∑

1≤i≤n
ai∈{ri1,...,riki

}

u(a1, . . . , an)

= u(r11 + . . .+ r1k1 , . . . , rn1 + . . .+ rnkn)

= u(r1, . . . , rn).

The converse implication is obvious.

Lemma 5.5. Let (M,Ω,+) be a modal and let t be an n-ary linear Ω-term.

The word operation t : Mn → M distributes over the operation +.

Proof. The proof will go by induction on the minimal number m of occur-
rences of (symbols of) the basic Ω-operations in the corresponding linear
Ω-term.

By definition of a modal, the lemma is certainly true for m = 1. Now
suppose that the hypothesis is established for m > 1. Let t(x11, . . . , xkpk)
= ω(ν1(x11, . . . , x1p1), . . . , νk(xk1, . . . , xkpk)) be a linear Ω-term, for some
ω ∈ Ω, different variable symbols x11, . . . , x1p1 , . . . , xk1, . . . , xkpk and linear
Ω-words ν1, . . . , νk, in which the basic Ω-operations occur m+ 1 times.

By induction hypothesis, the Ω-word operations νi : Mpi → M , for
1 ≤ i ≤ k, distribute over the operation +. This implies that for any

x11, . . . , x1p1 , . . . , xi1, . . . , xij , yij , . . . , xipi , . . . , xk1, . . . , xkpk ∈ M,

t(x11, . . . , xij+yij , . . . , xkpk)

= ω(ν1(x11, . . . , x1p1), . . . , νi(xi1, . . . , xij+yij , . . . , xipi), . . . , νk(xk1, . . . , xkpk))

= ω(ν1(x11, . . . , x1p1), . . . , νi(xi1, . . . , xij , . . . , xipi)

+νi(xi1, . . . , yij , . . . , xipi), . . . , νk(xk1, . . . , xkpk))

= ω(ν1(x11, . . . , x1p1), . . . , νi(xi1, . . . , xij , . . . , xipi), . . . , νk(xk1, . . . , xkpk))

+ω(ν1(x11, . . . , x1p1), . . . , νi(xi1, . . . , yij , . . . , xipi), . . . , νk(xk1, . . . , xkpk))

= t(x11, . . . , xij , . . . , xkpk)+t(x11, . . . , yij , . . . , xkpk),

what finishes the proof.

Corollary 5.6. Let V be a variety of modes satisfying an identity t ≈ u,

where t is linear. The identity t ≈ u is true in a variety M ⊆ MV of
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modals if and only if the word operation u : Mn → M distributes over the

operation +.

Corollary 5.7. A variety M ⊆ MV of modals satisfies each linear

identity true in V.

Theorem 5.8. Let j ∈ N. The free modal on n generators in the variety

MD0,j
is isomorphic to the modal with the free semilattice on n generators

as the semilattice reduct and left-zero semigroup as the groupoid reduct.

Proof. Let (FD0,j
(A), ·) be the free differential mode on n generators A :=

{a1, . . . , an} in the subvariety D0,j . By results of [13] each element in

FD0,j
(A) may be expressed as aia

k1
1 . . . a

ki−1

i−1 a
ki+1

i+1 . . . aknn , for 1 ≤ i ≤ n and
0 ≤ k1, . . . , kn ≤ j − 1. Moreover, a subalgebra of (FD0,j

(A), ·) is generated
by any non-empty subset of A.

On the other hand, by Corollary 5.6, each modal in the variety MD0,j

has to satisfy the identity

x(y + y1)
j ≈ xyj + xyj1.(5.1)

Let (M, ·,+) ∈ MD0,j
be a modal generated by a set X. Let x, x1,

x2, y, y1, . . . , ym, z1, . . . , zs ∈ 〈X〉{·}. Note that in particular (〈X〉{·}, ·) ∈
D0,j . The identity (5.1) implies the following:

x(y + y1)
j =

∑

k+l=j
0≤k,l≤j

xykyl1 ≈ xyj + xyj1 ≈ x

⇒ x+ xy + xy2 + . . .+ xyj−1 ≈ x

⇒ xyk ≈ x, for 0 ≤ k ≤ j − 1

⇒ xyk11 . . . ykmm ≈ x, for 0 ≤ k1, . . . , km ≤ j − 1

⇒

p∑

i=1

xy
k1,i
1 . . . y

km,i
m ≈ x

⇒

p∑

i=1

x1y
k1,i
1 . . . y

km,i
m +

r∑

j=1

x2z
l1,j
1 . . . z

ks,j
s ≈ x1 + x2.

This shows that the +-reduct of the MD0,j
-replica of (FD0,j

(A)P, ·,+) is
isomorphic to a semilattice of all non-empty subsets of an n-element set
and in fact is isomorphic to the free semilattice on n generators. Note also,
that groupoid reduct of the MD0,j

-replica of (FD0,j
(A)P, ·,+) belongs to the

variety D0,1.

The variety D0,j is locally finite, so Theorem 5.8 implies the following:
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Corollary 5.9. The free modal over the set X in the variety MD0,j
is

isomorphic to the modal with the semilattice of all non-empty finite subsets

of X as the semilattice reduct and a left-zero semigroup as the groupoid

reduct.

Example 5.10. We showed in Example 4.3 that (FD0,2
({x, y})P, ·,+) is

not free in the variety MD0,2
. Using the “Universal Algebra Calculator” [3]

written by R. Freese, E. Kiss and M. Valeriote, we can check that the modal
(FD0,2

({x, y})P, ·,+) has 7 congruences. Only 4 of them contain the MD0,2
-

replica congruence ΘMD0,2
({x, y}). In fact, the relation ΘMD0,2

({x, y}) has

three classes: A := {a, c, e}, B := {b, d, f}, A+B := {g}.
The three-element quotient algebra ({A,B,A+B}, ·,+) ∈ MD0,2

is the
free differential modal on two generators in MD0,2

.

By Theorem 5.4, Lemma 5.5 and Example 5.1 we immediately obtain
the well-known result that the algebra of finitely generated subalgebras of a
given mode (M,Ω) satisfies each linear identity true in (M,Ω).

Corollary 5.11. For any variety V of modes,

MV ⊆ MV ⊆ MV∗ .

In particular, MV∗ = MV∗ .

In general, the class MV is not a variety.

Example 5.12. Consider the modal (FD0,2
(x, y)P, ·,+) ∈ MD0,2. Using

the same notation as in Example 4.3 we can observe that the only sets of
generators of the subalgebra ({a, e, g}, ·,+) of (FD0,2

(x, y)P, ·,+) are {a, e, g}
and {a, g}. But the mode (〈{a, g}〉{·}, ·) = ({a, e, g}, ·) is not in the vari-
ety D0,2. This shows that the class MD0,2 is not closed under subalgebras.

Lemma 5.13. The class MV is closed under homomorphic images and

finite subdirect products.

Proof. Let (M,Ω,+) ∈ MV be a modal generated by a set X such that
(〈X〉Ω, Ω) ∈ V and let h : (M,Ω,+) → (A,Ω,+) be a surjective modal
homomorphism. It is clear that 〈h(X)〉Ω = h(〈X〉Ω), (h(〈X〉Ω), Ω) ∈ V
and A = h(M) = h(〈X〉) = 〈h(X)〉. This implies that a generating set of
(A,Ω,+) is included in h(X) and (A,Ω,+) ∈ MV.

For each i = 1, . . . , n, let (Mi, Ω,+) ∈ MV be a modal generated by a set
Xi ⊆ Mi such that (〈Xi〉Ω, Ω) ∈ V and let (M,Ω,+) be a subdirect product
of the algebras (Mi, Ω,+). Let a = (a1, . . . , an) ∈ M . By assumption, for
each i = 1, . . . , n, ai ∈ πi(M) = Mi = 〈Xi〉, where πi is the projection
operator onto the i-th factor. By the Disjunctive Form Lemma 5.2, there
are ti1, . . . , tiki ∈ 〈Xi〉Ω such that ai =

∑ki
j=1 tij . Then by idempotency of
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the operation + we have

a = (a1, . . . , an) =
( k1∑

j=1

t1j , . . . ,

kn∑

j=1

tnj

)
=

n∑

i=1

ki∑

j=1

(t11, t21, . . . , tij , . . . , tn1).

This shows that there is a set X ⊆
∏n

i=1〈Xi〉Ω ⊆ M which generates the
modal (M,Ω,+) and (〈X〉Ω, Ω) ∈ V.

Classes of algebras closed under homomorphic images and finite subdirect
products were investigated by L. Shemetkov and A. Skiba under the name
formation of algebras (see [16]).

The next example shows that the class MV is not closed under arbitrary
products.

Example 5.14. Let X := {xn | n ∈ N} be an infinite countable set and let
(FD0,2

(X), ·) be the free D0,2 - differential mode over X. By Example 5.1,
the set X := {{xn} | n ∈ N} generates the modal (FD0,2

(X)P, ·,+) and

(FD0,2
(X), ·) ∼= ({{a} | a ∈ FD0,2

(X)}, ·) = (〈X〉{·}, ·) ∈ D0,2.

Let I := N and for each i ∈ I, let (Mi, ·,+) := (FD0,2
(X)P, ·,+). By

Definition (2.2) it is clear that for each n ∈ I,

〈{x1, . . . , xn}〉 = {x1}+ . . .+ {xn} = {x1x
ε1,2
2 . . . x

ε1,n
n }+ . . .+

+ {xix
εi,1
1 . . . x

εi,i−1

i−1 x
εi,i+1

i+1 . . . x
εi,n
n }+ . . .+ {xnx

εn,1

1 . . . x
εn,n−1

n−1 },

where εk,j = 0 or εk,j = 1. Moreover, for xn+1 /∈ {x1, . . . , xn}

{x1}+ . . .+ {xn} = (FD0,2
({x1, . . . , xn}), ·) 6= (FD0,2

({x1, . . . , xn, xn+1}), ·).

This implies that for the element

m := ({x1}, {x1}+ {x2}, . . . , {x1}+ . . .+ {xn}, . . .) ∈
∏

i∈I

Mi

there is no {·,+}-word t such that m = t(a1, . . . , ak), and a1, . . . , ak ∈∏
i∈I〈X〉{·}. Hence,

∏
i∈I〈X〉{·} does not generate the modal (

∏
i∈I Mi, ·,+).

Without loss of generality we can assume that for any set Z of generators
of the modal (

∏
i∈I Mi, ·,+), there is some n ∈ I, such that πn(Z) includes

subalgebras (A, ·) := 〈{x1}〉 and (B, ·) := 〈{x2, x3, . . . , xk}〉 of (FD0,2
(X), ·).

Thus

AB2 = {x1} ∪ {x1yz | y 6= z ∈ {x2, x3, . . . , xk}} = {x1} = A ⇔ x1y = x1z,

what is impossible, because x2, x3, . . . , xk are free generators of (FD0,2
(X), ·).

It follows that for any set Z of generators of the modal (
∏

i∈I Mi, ·,+),
there is some n ∈ I, such that (〈πn(Z)〉{·}, ·) /∈ D0,2.
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Lemma 5.15. Let (M,Ω,+) ∈ MV be a modal generated by a set Y ⊆ M ,

such that (〈Y 〉Ω, Ω) ∈ V. Then each mapping h : X → Y can be uniquely

extended to a modal homomorphism h : (FV(X)P,Ω,+) → (M,Ω,+).

Proof. Obviously, any mapping h : X → Y →֒ 〈Y 〉Ω can be uniquely

extended to a mode homomorphism h = ιh̃ : (FV(X), Ω) → (M,Ω), which

is a composition of the unique homomorphism h̃ : (FV(X), Ω) → (〈Y 〉Ω, Ω)
and the canonical embedding ι : (〈Y 〉Ω, Ω) → (M,Ω). By Lemma 3.1, the Ω-
mode homomorphism h may be extended to a unique modal homomorphism

h : (FV(X)P,Ω,+) → (M,Ω,+).

Theorem 5.16. Each modal (M,Ω,+) ∈ MV generated by a set X is

a homomorphic image of (FV(X)P,Ω,+).

Proof. Let (〈X〉Ω, Ω) ∈ V be the full Ω-mode subreduct of (M,Ω,+) ∈

MV. By Lemma 5.15 the composite X
id
−→ X →֒ 〈X〉Ω can be uniquely

extended to a modal homomorphism id : (FV(X)P,Ω,+) → (M,Ω,+),

where id is an extension of the composition of the Ω-mode homomorphism
ĩd : (FV(X), Ω) → (〈X〉Ω, Ω) and the embedding ι : (〈X〉Ω, Ω) → (M,Ω).

Note that 〈X〉Ω ⊆ FV(X) and ĩd/〈X〉Ω is in fact the identity homomorphism
on (〈X〉Ω, Ω).

Moreover, for each subalgebra (A,Ω) of (FV(X), Ω) finitely generated by

a set S, id(A) =
∑

s∈S ĩd(s) ∈ M . By the Disjunctive Form Lemma 5.2,
each element m ∈ M may be expressed in a form m = m1+. . .+mr for some
m1, . . . ,mr ∈ 〈X〉Ω. Let (A,Ω) be a subalgebra of (FV(X), Ω) generated

by the set {m1, . . . ,mr}. Then id(A) =
∑r

i=1 ĩd(mi) =
∑r

i=1 id(mi) = m.

This shows that the mapping id is a surjective modal homomorphism and

(M,Ω,+) = id((FV(X)P,Ω,+)).

Corollary 5.17. For any variety V of modes

MV = H{(FV(X)P,Ω,+) | X 6= ∅}.

Proof. By Theorem 5.16, the inclusion MV ⊆ H{(FV(X)P,Ω,+) | X 6= ∅}
is obvious. On the other hand, by Example 5.1, for each set X, the modal
(FV(X)P,Ω,+) ∈ MV. Additionally, by Lemma 5.13, the class MV is
closed under homomorphic images, so the inclusion

MV ⊇ H{(FV(X)P,Ω,+) | X 6= ∅}

is also clear.

Example 5.18. Let (M, ·,+) be the modal described in Example 4.7.
As a set of generators take the set X = {x, y}. The full {·}-mode sub-
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reduct (〈{x, y}〉{·}, ·) is a differential groupoid which lies in the subvari-
ety D0,2. By Theorem 5.16 the modal (M, ·,+) is a homomorphic image of

the modal (FD0,2
({x, y})P, ·,+) with x = id({x}) = id({xy}) = id({x, xy}),

y = id({y}), z = id({yx}), u = z + y = id({y, yx}) and t = z + x =

id({x, y, xy, yx}).

It is easy to see that in any entropic modal (M,Ω,+) each Ω-word oper-
ation distributes over the operation +. Hence, by Theorem 5.4 any variety
M ⊆ MV of entropic modals satisfies each identity true in V.

Corollary 5.19. The entropic modals in the class MV form a subvariety

of MV .

Example 5.20. Consider the variety M of entropic differential modals. It
was proved in [17] that each differential entropic modal satisfies the identity
xy = (xy)y, which means that M ⊆ MD1,2

.

In Example 4.6 we showed that the algebra (FD1,2
({x, y})P, ·,+)∈MD1,2

,
but it is easy to see that (a + d)(b + c) = h 6= g = ab + dc. So, it is not
entropic, hence it is not free in M.

It was also shown in [17] that the free differential entropic modal on {x, y}
is isomorphic to the algebra ({x, y, xy, yx, x+ y}, ·,+), where x+ xy = xy,
y+ yx = yx, x+ yx = y+xy = xy+ yx = x+ y and the groupoid operation
is defined in the following way:

· x y xy yx x+ y

x x xy x xy xy

y yx y yx y yx

xy xy xy xy xy xy

yx yx yx yx yx yx

x+ y x+ y x+ y x+ y x+ y x+ y

Using once again the “Universal Algebra Calculator”, we can obtain that
the modal (FD1,2

({x, y})P, ·,+) has 45 congruences. Only 9 of them contain
the M-replica congruence ΘM({x, y}). The relation ΘM({x, y}) has five
congruence classes: {x}, {y}, {xy, x+ xy}, {yx, y + yx} and {xy + yx, x+
yx, y + xy, x+ y}.

Hence, in fact the algebra ({x, y, xy, yx, x+ y}, ·,+) is isomorphic to the
M-replica of (FD1,2

({x, y})P, ·,+). In particular, by Theorem 5.16

({x, y, xy, yx, x+ y}, ·,+) = id(FD1,2
({x, y})P, ·,+),
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where

x = id({x}), y = id({y}),

xy = id({xy}) = id({x, xy}), yx = id({yx}) = id({y, yx}),

x+ y = id({xy, yx})= id({x, xy, yx})= id({y, xy, yx})= id({x, y, xy, yx}).

6. Representation theorem for modals

For any variety V of modes, Theorem 3.1 serves to represent general
V∗-modals as quotients of subalgebra modals.

Theorem 6.1. (Modal Representation Theorem [12]) For any variety V
of Ω-modes, each V∗-modal (M,Ω,+) is a quotient of the modal of finitely

generated non-empty submodes of its mode reduct (M,Ω).

Lemma 5.15 gives a representation of general modals in any class MV ,
based on extended power algebras.

Let (M,Ω) be a mode and X,Y ⊆ M . We can define on the set P>0M
a relation α in the following way: X α Y ⇔ 〈X〉 = 〈Y 〉.

Let Conid(P
<ω
>0 M) denote the lattice of congruence relations γ on the

extended power algebra (P<ω
>0 M,Ω,∪) of a mode (M,Ω), such that the

quotient (P<ω
>0 M

γ , Ω) is idempotent. The relation α is the least element in
this lattice. (For all details see [10].)

Theorem 6.2. [10] Let (M,Ω) be a mode. The quotient algebra (P>0M
α,

Ω,∪) is isomorphic to the modal (MS,Ω,+) of all non-empty subalgebras of

(M,Ω) and the quotient algebra (P<ω
>0 M

α, Ω,∪) is isomorphic to the modal

(MP,Ω,+) of all finitely generated subalgebras. The isomorphism is given

by the following mapping: h : P>0M
α → MS; Xα 7→ 〈X〉Ω.

Theorem 6.3. (Power Representation Theorem) Each modal (M,Ω,+)
generated by a set X is a quotient of a subalgebra of the extended power

algebra of the full mode subreduct (〈X〉Ω, Ω).

Proof. Consider the following mapping:

h : P<ω
>0 〈X〉αΩ → M ; {m1, . . . ,mp}

α 7→ m1 + . . .+mp.

Assume that for some m1, . . . ,mp, s1, . . . , sk ∈ 〈X〉Ω,

{m1, . . . ,mp}
α = {s1, . . . , sk}

α.

So by the definition of the relation α,

〈{m1, . . . ,mp}〉 = 〈{s1, . . . , sk}〉.

This means that for each element mi ∈ 〈{s1, . . . , sk}〉, mi = q(x1, . . . , xl) for
some l-ary Ω-term q and {x1, . . . , xl} ⊆ {s1, . . . , sk}.
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According to the Sum-Superiority Lemma 2.3 one has that

mi = q(x1, . . . , xl) ≤ x1 + . . .+ xl ≤ s1 + . . .+ sk.

Thus m1 + . . . +mp ≤ s1 + . . . + sk. The reverse inequality is obtained by
symmetry, whence m1 + . . .+mp = s1 + . . .+ sk and the mapping h is well
defined.

For classes {m11, . . . ,m1p1}
α, . . . , {mn1, . . . ,mnpn}

α ∈ P<ω
>0 〈X〉αΩ and an

n-ary operation ω ∈ Ω we obtain

h(ω({m11, . . . ,m1p1}
α, . . . , {mn1, . . . ,mnpn}

α))

= h(ω({m11, . . . ,m1p1}, . . . , {mn1, . . . ,mnpn})
α)

= h({ω(a1, . . . , an) | ai ∈ {mi1, . . . ,mipi}}
α)

=
∑

1≤i≤n
ai∈{mi1,...,mipi

}

ω(a1, . . . , an)

= ω(m11 + . . .+m1p1 , . . . ,mn1 + . . .+mnpn)

= ω(h({m11, . . . ,m1p1}
α), . . . , h({mn1, . . . ,mnpn}

α)).

Hence h is an Ω-homomorphism. Moreover

h({m11, . . . ,m1p1}
α ∪ {m21, . . . ,m2p2}

α)

= h(({m11, . . . ,m1p1} ∪ {m21, . . . ,m2p2})
α)

= h({m11, . . . ,m1p1 ,m21, . . . ,m2p2}
α)

= m11 + . . .+m1p1 +m21 + . . .+m2p2

= h({m11, . . . ,m1p1}
α) + h({m21, . . . ,m2p2}

α),

which shows that h is a semilattice homomorphism.
By the Disjunctive Form Lemma 5.2, for each m ∈ M there exist m1, . . . ,

mp ∈ 〈X〉Ω such that m = m1 + . . .+mp = h({m1, . . . ,mp}
α). Hence h is a

surjection and

(M,Ω,+) = h((P<ω
>0 〈X〉αΩ, Ω,∪)) ∼= ((P<ω

>0 〈X〉αΩ)
kerh

, Ω,∪).

By the Second Isomorphism Theorem (M,Ω,+) ∼= (P<ω
>0 〈X〉βΩ, Ω,∪), where

β∈Conid(P
<ω
>0 〈X〉Ω, Ω,∪). This implies (M,Ω,+)∈HS(P>0〈X〉Ω, Ω,∪).

By Theorem 6.2 we immediately obtain the next corollary.

Corollary 6.4. Each modal (M,Ω,+) generated by a set X is a homo-

morphic image of (〈X〉ΩP,Ω,+).

Example 6.5. The modal (M, ·,+) given in Example 4.7 is isomorphic to
the modal (〈{x, y}〉{·}P, ·,+) by the isomorphism h given by: x = h({x}),
y = h({y}), z = h({z}), u = h({y, z}) and t = h({x, y, z}).
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7. Open problems

As shown in [9] and [1], it is usually very difficult to determine which iden-
tities (apart from idempotent and linear ones) holding in a mode (M,Ω),
also hold in the algebra (MS,Ω). This is in contrast with the power algebra
of subsets. According to results of G. Grätzer and H. Lakser in [4], the class
of all power algebras of algebras from a fixed variety V preserves precisely the
consequences of linear identities holding in V. There is no such characteri-
zation for algebras in the class of all algebras of subalgebras of V-algebras.
However there is a conjecture formulated in the following problem.

Problem 7.1. Is it true that for a variety V of modes, the class of alge-

bras of subalgebras of V-algebras satisfies precisely the consequences of the

idempotent and linear identities true in V?

As Theorem 5.4 shows, settling this conjecture is closely related to the
general structure of modals.

In [17], the lattice of varieties of differential entropic modals was de-
scribed.

Problem 7.2. Describe the structure of other classes of modals using their

relationship with the structure of power algebras.

By Corollary 5.11, for a variety V of modes defined by linear identities,
the class MV is a variety and MV = MV . Is the converse true?

Problem 7.3. Is it true that for a variety V of modes the equality MV =
MV implies that V is defined by linear identities?
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