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UPPER BOUNDS ON THE SIZES

OF FINITELY GENERATED ALGEBRAS

Abstract. We present an upper bound for the cardinality of any n-generated algebra
in a locally finite variety V of algebras. This upper bound depends only on some funda-
mental numerical invariants of the n-generated subdirectly irreducible algebras in V. A
theorem characterizing those varieties that contain algebras whose cardinalities achieve
the upper bound is proved. Several explicit methods for computing the exact values of
these invariants are described. The final section contains detailed concrete examples il-
lustrating applications of the characterization theorem and of the various methods for
computing the upper bound.

1. Introduction

Let B be an algebra in a locally finite variety V with B generated by
a finite set X = {x1, . . . , xn}. We wish to provide an upper bound on the
cardinality of B in terms of n and some general parameters for V. These
parameters will be based on numerical invariants involving the n-generated
subdirectly irreducible algebras in V. In Section 2 the upper bound is pre-
sented and the varieties and algebras for which this upper bound is obtained
are characterized. Section 3 contains a number of methods for actually com-
puting these upper bounds for a given algebra or variety. Section 4 contains
applications and examples of the material presented in the earlier sections
of the paper.

In general our definitions and notation for algebraic notions follows that

in [9] or [16]. For algebras A and B we write A ⊳B (A
∼
⊳ B) to denote that

A is (isomorphic to) a subalgebra of B. For a set A, the equivalence relation
A×A is denoted 1A and the diagonal relation is denoted 0A. So the top and
bottom elements of the congruence lattice ConA are 1A and 0A.
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Stirling numbers appear in several places in this paper. Let S(p, q) de-
note the Stirling number of the second kind, that is, the number of ways to
partition a set of p elements into q disjoint nonempty subsets. Thus, q!S(p, q)
is the number of onto functions from a p-element set to a q-element set. An
inclusion-exclusion argument gives

S(p, q) =
1

q!

q
∑

i=0

(−1)i
(

q

i

)

(q − i)p.

Suppose C is the upper triangular k by k matrix with entries Cij =
S(j, i). The matrix C has 1’s on its main diagonal and hence is invertible.
Let s(i, j) denote Stirling numbers of the first kind. From the standard
identity

(1)
k
∑

r=1

S(i, r)s(r, j) = δij

it follows that the inverse of C is the upper triangular matrix M with Mij =
s(j, i). Such matrices are often referred to as Stirling matrices, e.g., [10].

2. The upper bound and when it is obtained

Let Sn be a transversal with respect to isomorphism of the at most n-
generated subdirectly irreducible algebras in a locally finite variety V. For
a given algebra B ∈ V generated by a set X with |X| = n let β1, . . . , βm
denote those congruence relations of B that are meet irreducible in ConB.
Thus, each B/βi is subdirectly irreducible and every homomorphism h from
B onto a subdirectly irreducible algebra has kerh = βi for some i. Let
B1, . . . ,Bm be such that B/βi ∼= Bi ∈ Sn and let ki be an isomorphism
from B/βi onto Bi. Then B is subdirectly embedded in the product of the
Bi by

k : B ֌

m
∏

i=1

Bi with k(b) = (. . . , ki(b/βi), . . .).

Thus, we have the upper bound

(2) |B| ≤
m
∏

i=1

|Bi|.

Suppose hi : B → Bi is the onto homomorphism given by hi(b) = ki(b/βi).
Note that ker(hi) = βi. Let ui : X → Bi be defined by ui(x) = hi(x) for all
x ∈ X. The set ui(X) generates the algebra Bi. Each ui is an example of a
valuation.

Definition 2.1. Let X be a set, A an algebra with universe A and
f ∈ AX .
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1. The subalgebra of A generated by f(X) is denoted Alg(f).
2. If f(X) generates A, then f is a valuation. The set of all valuations in

AX is val(X,A). If no set of size |X| generates A, then val(X,A) = ∅.
3. For K a class of algebras, val(X,K) denotes the collection of all f ∈

val(X,A) for A ∈ K.

The paper [3] explores the way val(X,A) and the cardinality of this set
may be used to describe and understand the structure of free algebras in the
variety generated by A.

By using the notion of a valuations the upper bound in (2) becomes

(3) |B| ≤
m
∏

i=1

|Alg(ui)|.

In the present paper we explore the implications of this inequality and char-
acterize those varieties that contain algebras B for which the inequality in
(3) is an equality.

Definition 2.2. For a variety V, two valuations v and w in val(X,V) are
called equivalent, denoted v ∼ w, if there exists an isomorphism k of Alg(v)
onto Alg(w) such that k(v(x)) = w(x) for all x ∈ X.
The equivalence class of a valuation f with respect to the equivalence relation
∼ is denoted f/ ∼.

The following is easily proved.

Proposition 2.3. Suppose B is generated by X and that hi : B → Bi,

i = 1, 2 are onto homomorphisms. There exists an isomorphism f from B1

onto B2 with fh1(x) = h2(x) for all x ∈ X if and only if kerh1 = kerh2 in

ConB.

From this proposition, if in (3) the valuations ui and uj are such that
ui ∼ uj , then i = j, since the congruences βi are all pairwise distinct.

Let Un be a transversal with respect to the equivalence relation ∼ of
val(X,Sn). Then the value of m in (3) is bounded above by |Un|. The next
lemma provides a formula for the cardinality of Un. The lemma is an easy
consequence of Burnside’s Lemma but we present a direct proof.

Lemma 2.4. Let B be an algebra generated by X with f ∈ val(X,B). There

is a bijection between AutB and {g ∈ val(X,B) : g ∼ f}.

Proof. Consider the map k 7→ kf for k ranging over AutB. The function kf
is in val(X,B). If g ∼ f , then g = kf for some k ∈ AutB and kf ∈ f/ ∼ by
Definition 2.2. So the map is onto f/ ∼. Let k1f = k2f and suppose b ∈ B.
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Since f(X) generates B there is a term p for which b = p(f(x1), . . . , f(xn)).
Then k1(b) = p(k1(f(x1)), . . . , k1(f(xn))) = p(k2(f(x1)), . . . , k2(f(xn))) =
k2(b).

Corollary 2.5. If B is a finite algebra generated by a set X, then the

equivalence relation ∼ on val(X,B) has all of its equivalence classes of cardi-

nality |AutB|. Hence the transversal of val(X,B) with respect to ∼ contains

exactly |val(X,B)|/|AutB| valuations.

Corollary 2.6. Suppose V is a locally finite variety, |X| = n, and Sn

is a transversal with respect to ∼= of the subdirectly irreducible algebras in V
that are at most n-generated. Let Un be a transversal with respect to ∼ of

val(X,Sn). Then |Un| =
∑

S∈Sn
|val(X,S)|/|Aut S|.

Proof. If S1 and S2 are two distinct algebras in Sn, then val(X,S1) and
val(X,S2) are pairwise disjoint.

Definition 2.7. A variety is arithmetical if it is congruence distributive
and congruence permutable. A variety V is called n-semisimple if every
at most n-generated subdirectly irreducible algebra in V is simple and V is
semisimple if every subdirectly irreducible algebra in V is simple. An algebra
A is hereditarily simple if every nontrivial subalgebra of A is simple. A finite
algebra is called quasiprimal if it is hereditarily simple and generates an
arithmetical variety. Every quasiprimal algebra A has a discriminator term,
i.e., a ternary term t such that tA(a, b, c) = a if a 6= b and tA(a, b, c) = c
if a = b. A discriminator variety is any variety generated by a class of
algebras possessing a common discriminator term. The free algebra in a
variety V generated by a set X of free generators is denoted FV(X) while
FV(n) denotes the free algebra generated by n free generators.

Theorem 2.8. Suppose V is a locally finite variety, |X| = n, and Sn is

a transversal with respect to ∼= of the subdirectly irreducible algebras in V
that are at most n-generated. Let Un be a transversal with respect to ∼ of

val(X,Sn). Then for any n-generated algebra B ∈ V,

(4) |B| ≤
∏

u∈Un

|Alg(u)| =
∏

S∈Sn

|S|
|val(X,S)|
|Aut S| .

Moreover, if n ≥ 3, the following are equivalent:

(i) There is an n-generated B ∈ V for which equality holds in (4),
(ii) V is arithmetical and n-semisimple.

Proof. The inequality in (4) is the inequality (2) and the equality in (4)
follows from Corollary 2.6.

Now, if V is arithmetical and n-semisimple, and if A ∈ V is n-generated,
then the congruence lattice of A, ConA, is finite and every θ ∈ ConA is
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the meet of coatoms. So ConA is a finite Boolean lattice of permuting
congruence relations. Thus A is isomorphic to the product of the A/α,
where α ranges over the coatoms of ConA. If u ∈ val(X,Sn), then by the
universal mapping property of free algebras, there exists a homomorphism
h : FV(X) → Alg(u) such that h(x) = u(x) for all x ∈ X. Then kerh is a
coatom in Con (FV(X)). The number of coatoms in Con (FV(X)) is equal
to |Un| by virtue of Proposition 2.3. Thus |FV(n)| =

∏

u∈Un
|Alg(u)|.

Next, suppose B ∈ V is generated by X and that |B| =
∏

u∈Un
|Alg(u)|.

By Proposition 2.3 there is an injection δ from the set M of all meet-
irreducible congruences in ConB into Un given by δ(θ) = u for B/θ ∼= S ∈ Sn

with x/θ corresponding to u(x) ∈ S for all x ∈ X. Then B is subdirectly
embedded in

∏

u∈Un
Alg(u). Thus
∏

u∈Un

|Alg(u)| ≤ |B| ≤
∏

u∈δ(M)

|Alg(u)|.

Therefore δ is a bijection between M and Un since B is finite. It follows
that we may write B =

∏

u∈Un
Alg(u). Suppose Un = {u1, . . . , um}. Let

τ1, . . . , τm be the congruences of B for which B/τi is Alg(ui), 1 ≤ i ≤ m.
That is, τi is the kernel of the projection map from B onto Alg(ui). Each
τi 6= 1B since Alg(u)i is subdirectly irreducible and thus nontrivial. Since
B =

∏

u∈Un
Alg(u) the set {τ1, . . . , τm} forms a factorizing set, i.e.

0B =
m
∧

j=1

τj and 1B = τi ◦
∧

j 6=i

τj for each i.

If τ1 < τ2, say, then 0B = τ1 ∧ τ3 ∧ · · · ∧ τm and 1B = τ1 ◦ (τ2 ∧ · · · ∧ τm) ≤
τ1 ◦ (τ3 ∧ · · · ∧ τm). So τ1 and τ3 ∧ · · · ∧ τm form a factorizing pair for B. But
|B| =

∏

1≤j≤m |B/τj| while |B| = |B/τ1| × |B/(τ3 ∧ · · · ∧ τm)| ≤ |B/τ1| ×
|B/τ3|×· · ·×|B/τm|, which is a contradiction since B/τ2 is nontrivial. Hence
the τi form an antichain in ConB. The τi are also meet-irreducible in ConB

and every meet-irreducible element of ConB is a τi for some i. Hence the set
of all τi is the set of all coatoms of ConB since for every congruence θ 6= 1B
there is a coatom α with θ ≤ α. Thus, every algebra in Sn is simple.

We next show that the lattice ConB is distributive and that all the
congruence relations of B permute. As is the case for every congruence
relation θ of a finite algebra, θ is the meet of meet-irreducible congruences
and thus each θ ∈ ConB is the meet of those τj for which θ ≤ τj . But
by considering the kernels of projection maps of B =

∏

1≤j≤mAlg(uj) we
see that every set of coatoms determines a unique congruence relation of B.
Thus, the congruence lattice of B is isomorphic to the lattice of subsets of
{1, . . . ,m} and is therefore distributive. That the congruence relations of B
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permute follows easily from the fact that every congruence relation of B is
the kernel of a projection homomorphism.

Finally, if the upper bound for |B| is obtained, then B must be the free
algebra for V with n free generators since V is locally finite. From the as-
sumption that n ≥ 3 we have that all congruences of FV(3) permute and
Con (FV(3)) is distributive. Therefore the variety V is congruence distribu-
tive and congruence permutable, e.g., [9, p. 81].

The upper bound presented in (4) of Theorem 2.8 may be viewed as an
extension of G. Birkhoff’s classic theorem from 1935 that bounds the size of
a finitely generated algebra:

Theorem 2.9 (Birkhoff). Let K any set of algebras A1, . . . ,Ar. The

cardinality of any algebra generated by n elements and obeying the equations

of K is at most
r
∏

i=1

|Ai|
|Ai|

n

.

Sioson [20] provides a companion characterization theorem: The upper
bound in Birkhoff’s theorem is obtained for finite algebras if and only if
the A1 . . . ,Ar form a primal cluster. Thus, Theorem 2.8 is an extension
of Birkhoff’s’s upper bound theorem and Sioson’s characterization theorem.
Further extensions of this kind are presented in [4].

Note that if the two equivalent conditions of Theorem 2.8 hold for V, then

the free algebra on n free generators for V is
∏

S∈Sn
S

|val(X,S)|
|Aut S| . Thus, given

the set Sn of n-generated subdirectly irreducible algebras in a locally finite
variety V, an upper bound for the cardinality of any n-generated algebra in
V is given completely in terms of |AutS| and |val(X,S)| where S ranges over
the algebras in the transversal Sn. In the next section we consider effective
methods for actually computing |val(X,A)| for A an arbitrary finite algebra.

3. Finding the cardinality of val(X,A)

In this section we present general methods for determining the exact
value of |val(X,A)| for A a finite algebra. Four methods are given. The
first is based on the Möbius function for a finite partially ordered set. This
method is completely general but in order to use the method to actually
compute |val(X,A)| one must know the behavior of the Möbius function
on the partially ordered set of subuniverses of A. The second method is
based solely on knowledge of the cardinalities of the maximal subuniverses
of A and of the subuniverses that are the intersections of maximal subuni-
verses. A third method, which provides an especially simple computation
for |val(X,A)|, may be used when the algebra A is known to be uniquely
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generated. The fourth method, which is also completely general, aggregates
isomorphic subuniverses together in the computation and makes use of ma-
trix inversion.

Note that if A is an algebra and X is a set, then val(X,A) is nonempty if
and only if A is generated by a set of cardinality at most |X|. If B1 ⊳A and
B2 ⊳A with B1 6= B2, then val(X,B1) ∩ val(X,B2) = ∅. These comments
lead to the following:

val(X,A) = AX \
(

⋃

B⊳A
B6=A

val(X,B)
)

and

(5) |val(X,A)| = |A||X| −
(

∑

B⊳A
B6=A

|val(X,B)|
)

.

Although formula (5) is completely general, it is unwieldy in application
since it is recursively presented and at least on a prima facie level, requires
knowledge of |val(X,B)| for all proper subalgebras B of the given algebra
A. However, we can overcome these obstacles by means of Möbius inversion.

Let A be a finite algebra and S1, . . . ,Sr the subalgebras of A, listed so
that Si ⊳ Sj implies i ≤ j. In particular, Sr is A. Consider any set Q of
functions from X to A. For most of our work on determining |val(X,A)| we
use Q = AX , but for some applications we work with Q a proper subset of
AX . For each k, with 1 ≤ k ≤ r, let

qk = |Q ∩ SX
k | and vk = |Q ∩ val(X,Sk)|.

Proposition 3.1. For a finite algebra A and SubA = {S1, . . . ,Sr} with

qk and vk as above,

qk =
∑

Sp⊳Sk

vp.

Proof. For each f ∈ Q ∩ SX
k there is a unique p with Sp ⊳ Sk and a unique

g ∈ val(X,Sp) such that f(X) generates the algebra Sp and f(x) = g(x)
for all x ∈ X. Conversely, for every Sp ⊳ Sk, if g ∈ Q ∩ val(X,Sp), then
g ∈ Q ∩ SX

k .

We use Möbius inversion in Proposition 3.1 to express the vk in terms
of the qp, for 1 ≤ p ≤ k. Our terminology and notation follows that of
Aigner [1].

Let ζ be the zeta-function associated with the poset SubA. That is,
ζ : (SubA)2 → R is given by

ζ(Si,Sj) =

{

1 if Si ⊳ Sj

0 otherwise.
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Then Proposition 3.1 may be expressed as

(6) qk =
∑

Sp⊳Sk

vp =
∑

1≤p≤k

vp ζ(Sp,Sk).

If µ : (SubA)2 → R is the Möbius function for the poset SubA, then, by
Möbius inversion, formula (6) yields the following formula for |Q∩val(X,Sk)|:

(7) vk =
∑

1≤p≤k

qp µ(Sp,Sk).

We rewrite (6) and (7) in matrix notation. Let Z be the r × r matrix
defined by Zij = ζ(Si,Sj). By virtue of the fact that Si ⊳ Sj implies i ≤ j,
we have that Z is an upper triangular matrix. The matrix Z is therefore
invertible since Z has 1’s on the main diagonal. If M denotes the inverse
of the matrix Z, then Mij = µ(Si,Sj). If q and v denote the row vectors
(q1, . . . , qr) and (v1, . . . , vr), then we have

q = v Z and v = qM.

By letting Q = AX in (7) we obtain a general formula for |val(X,A)|.

Theorem 3.2. Let A be a finite algebra with SubA = {S1, . . . ,Sr} listed

so that Si ⊳ Sj implies i ≤ j. Let µ be the Möbius function for the poset

SubA. Then

|val(X,A)| =
∑

1≤p≤r

|Sp|
nµ(Sp,Sr).

The only information about A needed to apply this formula is the cardi-
nality of each subalgebra of A and the Möbius function for the poset SubA.

Example 3.3. Let K = {A1,A2, . . . } be a set of nonisomorphic algebras
indexed by the positive integers such that Ai ⊳Aj if and only if i divides j.
Thus, for every k the lattice Sub (Ak) is isomorphic to the lattice of positive
divisors of k. The set K, having ⊳ as its partial order, is lattice isomorphic
to the divisibility lattice of the positive integers. There are a number of
examples of this phenomenon for varieties that occur as algebras of logic.
One such is analyzed in Example 4.2. For each k the Möbius function on
the poset Sub (Ak) corresponds to the usual Möbius function µ of number
theory. Thus,

µ(Ai,Ak) =































1 if i = k or k
i

is a product of an even number

of distinct primes,

−1 if k
i

is a product of an odd number

of distinct primes,

0 otherwise,

= µ

(

k

i

)

.
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Theorem 3.2 then gives for the algebras in K:

(8) |val(X,Ak)| =
∑

i|k

µ

(

k

i

)

|Ai|
n.

For every Ak ∈ K the value of |val(X,Ak)| is uniquely determined by the
cardinalities of those Ai for i | k.

Example 4.2 provides a detailed example of a variety for which (8) applies
and for which the upper bound (4) of Theorem 2.8 is obtained.

A different formula for |val(X,A)| based on intersections of maximal
proper subalgebras of A may be obtained by use of an inclusion-exclusion
argument directly on AX and the observation that f ∈ val(X,A) if and only
if f(X) is not contained in any maximal proper subalgebra of A. Thus,

Proposition 3.4. If A is a finite algebra with C1, . . . ,Cm the maximal

proper subalgebras of A, then

val(X,A) = AX \
(

m
⋃

i=1

CX
i

)

and

(9) |val(X,A)| = |A||X| −
∑

1≤i≤m

|Ci|
|X| +

∑

1≤i<j≤m

|Ci ∩ Cj |
|X|

−
∑

1≤i<j<k≤m

|Ci ∩ Cj ∩ Ck|
|X| + · · ·+ (−1)m|C1 ∩ · · · ∩ Cm||X|.

By virtue of Proposition 3.4 the cardinality of val(X,A) for any finite
algebra A is completely determined by the cardinalities the universes of the
maximal proper subalgebras of A and the cardinalities of the intersections
of all of these sets. Once these maximal proper subuniverses are determined
no other algebraic properties of A need be considered in order to compute
|val(X,A)|. Thus if A1 and A2 are two finite algebras sharing the same
universe and with the same maximal proper subalgebras, then |val(X,A1)| =
|val(X,A2)|. For example, if A is any finite algebra that has exactly one
maximal proper subalgebra C, then |val(X,A)| = |A||X| − |C||X|.

Another immediate consequence of Proposition 3.4 is that for every finite
algebra A

lim
|X|→∞

|val(X,A)|

|A||X|
= 1.

Formula (9) can be simplified if the maximal subalgebras of A are well-
behaved. For example, if there is a set G ⊆ A such that an algebra C ⊳A
is maximal proper if and only if C = A \ {g} for g ∈ G, then the formula
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becomes

|val(X,A)| =
∑

0≤j≤|G|

(−1)j
(

|G|

j

)

(|A| − j)|X|.

If A has such a subset G, then A has the property that G generates A and
every generating set for A must contain G. The algebra A is said to be
uniquely generated by G in this case. The paper [5] contains a discussion of
uniquely generated algebras and related notions. We slightly extend these
ideas with an eye to applications of Proposition 3.4 later in the paper.

Proposition 3.5. Suppose A is an algebra with G a nonempty subset of

A, and ≡ is an equivalence relation on G with blocks D1, D2, . . . , Dm. The

following are equivalent.

1. The maximal proper subuniverses of A are precisely the sets A \ Di for

1 ≤ i ≤ m.

2. Every transversal of G with respect to ≡ generates A, and for every Di

and every fundamental operation f of A,

f(a1, . . . , ar) ∈ Di implies at least one aj ∈ Di.

Proof. If (1) holds, then every transversal of G with respect to ≡ is not in
any maximal proper subalgebra of A. Hence the transversal generates all
of A. If f(a1, . . . , ar) ∈ Di, then at least one aj ∈ Di else all aj are in the
subuniverse A \Di.

If (2) holds, then for each i the set A \Di is a proper subuniverse since
if a1, . . . , ar ∈ A \ Di, then f(a1, . . . , ar) cannot be in Di. No A \ Di is a
subset of any other A \ Dj since the Di form a partition of G. If B is a
subuniverse that is not a subset of any A \ Di, then for each i there is at
least one b ∈ B ∩Di. So B contains a transversal of ≡ and is therefore A.
Hence each A \Di is the subuniverse of a maximal proper subalgebra, and
every maximal proper subalgebra must have universe A \Di.

Definition 3.6. For an algebra A, a nonempty set G ⊆ A, and an
equivalence relation ≡ on G, we say that A is uniquely generated by G/≡ if
the equivalent conditions of Proposition 3.5 hold. If A is uniquely generated
by G/0G, then A is said to be uniquely generated by G.

If the algebra A is uniquely generated by G/ ≡, and if the cardinali-
ties of the blocks of ≡ are well–behaved, then explicit simple formulas for
|val(X,A)| based on (9) may be possible. The following proposition illus-
trates this and will be used later in the paper for providing explicit formulas
for the cardinalities of free algebras, e.g., in Example 4.3 for certain varieties
of residuated monoids and in Example 4.8 for many varieties of orthomodular
lattices.
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Proposition 3.7. Suppose A is a finite algebra uniquely generated by

G/ ≡ with ≡ having m equivalence classes, all of the same cardinality d.
Then

|val(X,A)| =
m
∑

j=0

(−1)j
(

m

j

)

(|A| − jd)|X|

=
n
∑

p=m

(

n

p

)

S(p,m)m! dp (|A| − |G|)n−p.

Proof. The first summation is (9) in Proposition 3.4. Each summand in
the second sum is a product of five factors. The first two factors are the
number

(

n
p

)

of ways to choose p elements from X and the Stirling number

of the second kind S(p,m), which is the number of ways to partition these p
elements into m nonempty blocks. The factor m! is the number of bijections
between these m blocks and the m equivalence classes of ≡. The fourth factor
dp counts the number of ways to assign each x of the p chosen members of
X to one of the d elements of the equivalence class of ≡ that corresponds to
the block of the partition that contains x. The final factor is the number of
ways to assign each of the other n−p members of X to an element of A\G.

We note that in these formulas the value of |val(X,A)| depends only on
the values of |X|, |A|, |G| and d, with m = |G|/d.

We now give a fourth method for computing |val(X,A)|. This method
may be used to find formulas that depend only on the cardinalities of the
subalgebras of A, and for each pair B and C of subalgebras of A, the number
iso (B,C) of subalgebras of C that are isomorphic to B. This method does
not explicitly use the Möbius function, but it requires finding the inverse of
the matrix that codes all the values of iso (B,C). The method is completely
general. It is particularly effective for computing |val(X,A)| when A has
many subalgebras but the equivalence relation of isomorphism on the set
SubA has relatively few equivalence classes. By aggregating with respect to
isomorphism in this manner the number of summands in an expression for
|val(X,A)| can thereby be reduced.

Our presentation of this method is phrased in a wider context in order
to use the method in certain applications later in the paper. Thus, for a
given set D of algebraic constants in the language of the algebra A, we are
interested in those f in AX or in val(X,A) for which f(X) ∩ D = ∅. We
are sometimes interested in situations in which the family of subalgebras
considered extends beyond SubA for some single finite algebra A.

Definition 3.8. For two finite algebras B and C, let iso (B,C) denote
the number of subalgebras of C that are isomorphic to B.
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Definition 3.9. Let K be either the set of all positive integers or some
nonvoid initial segment of them. Suppose K = {Ak | k ∈ K} is a family of
pairwise nonisomorphic algebras, all of the same similarity type, indexed by
K. We say K is hereditarily closed if for each k ∈ K every subalgebra of Ak

is isomorphic to Ap for some p ∈ K with 1 ≤ p ≤ k.

Note that if K is a hereditarily closed family and Ap
∼
⊳ Ak, then p ≤ k.

If A is a finite algebra, then any transversal with respect to isomorphism of
the subalgebras of A can be listed in such a way so as to form a hereditarily
closed family. Likewise, if {Ai | i ∈ I} is any finite or countably infinite
collection of finite algebras of the same similarity type, then any transversal
with respect to isomorphism of

⋃

i∈I Sub (Ai) can be indexed to form a
hereditarily closed family.

Suppose K = {Ak | k ∈ K} is a hereditarily closed family of finite
algebras and that D is a set, possibly empty, of algebraic constants in the
language of K.

We introduce the following notation:

• Qk denotes (Ak \D)X .
• q(n, k) := |Qk| = (|Ak| − |D|)n.
• v(n, k) := |Qk ∩ val(X,Ak)|.

Typically in applications D = ∅ in which case Qk = AX
k , q(n, k) = |Ak|

n

and v(n, k) = |val(X,Ak)|.

Lemma 3.10. Suppose B1 and B2 are isomorphic finite algebras and D is

a set of algebraic constants in the language of the Bi. Then

|val(X,B1) ∩ (B1 \D)X | = |val(X,B2) ∩ (B2 \D)X |.

Proof. Let α : B1 → B2 be an isomorphism. The lemma follows from the
fact α(d) = d for every d ∈ D and that a set G generates B1 if and only if
α(G) generates B2.

Since every f ∈ (A \D)X is a valuation to some subalgebra B of A and
hence f is in val(X,B) ∩ (B \D)X , we have

(10) (A \D)X =
⋃

B⊳A

val(X,B) ∩ (A \D)X =
⋃

B⊳A

val(X,B) ∩ (B \D)X .

Then (10), by virtue of Lemma 3.10, yields

(11) q(n, k) := |Ak \D|n =
∑

1≤p≤k

v(n, p) iso (Ap,Ak).

Theorem 3.11. Let K = {Ak | k ∈ K} be a hereditarily closed family

of algebras and D any set of algebraic constants in the language of K. For
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k ∈ K let q = (q(n, 1) . . . , q(n, k)) and v = (v(n, 1), . . . , v(n, k)) be row

vectors and let C the upper triangular k × k matrix with Cij = iso (Ai,Aj).
If M denotes the inverse of the matrix C, then

q = vC and hence v = qM.

In particular, if D = ∅, then

|val(X,Ak)| =
∑

1≤p≤k

|Ap|
nMpk.

Proof. The matrix C is upper triangular because K is hereditarily closed. C
has 1’s on the main diagonal. So the inverse M exists. The matrix equation
q = vC is essentially (11). If D = ∅, then q(n, p) = |Ap|

n for all p.

Theorem 3.11 provides a general formula for computing |val(X,A)| that
depends only on the cardinalities of the members of a transversal with respect
to isomorphism of the subalgebras of A and the inverse of the matrix whose
entries are iso (Ai,Aj) where Ai and Aj range over the algebras in this
transversal. For some familiar algebras the matrix C with entries iso (Ai,Aj)
and its inverse M have an especially pleasant form.

One upper triangular invertible k by k matrix that we will consider is the
matrix B of binomial coefficients with entries Bij =

(

j−1
i−1

)

for 1 ≤ i, j ≤ k.
From the standard identity

q
∑

t=p

(

t

p

)(

q

t

)

(−1)t−p = δpq

it follows that the inverse M of B is given by

(12) Mij = (−1)j−iBij =

{

(−1)j−i
(

j−1
i−1

)

if j ≥ i

0 if j < i.

Further details on Pascal matrices such as these may be found in [10]. Exam-
ple 4.1 provides an example of the matrix method applied when the entries
of the matrix C in Theorem 3.11 are a collection of binomial coefficients.

Example 3.12. To illustrate this method we consider |val(X,Ak)| for Ak

a Boolean algebra with k atoms. The formulas we obtain will be used in
Example 4.8. Every subalgebra of Ak is isomorphic to Ap for 1 ≤ p ≤ k. If
Ap is a subalgebra of Ak, then each atom of Ap is the join of atoms of Ak.
So Ap is determined by a partition of the k atoms of Ak into p nonempty
blocks. Conversely, every such partition of the atoms of Ak determines
a unique subalgebra of Ak. The lattice SubAk is dually isomorphic to the
lattice of partitions of the set {1, 2, . . . , k}. So the matrix C in Theorem 3.11
has Cij = S(j, i) and as observed in (1) the inverse of C is the matrix
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M with Mij = s(j, i), with s(j, i) a Stirling number of the first kind. By
Theorem 3.11

|val(X,Ak)| =
∑

1≤p≤k

(2p)ns(k, p) =
∑

1≤p≤k

s(k, p)(2n)p(13)

= 2n(2n − 1) . . . (2n − k + 1) =

(

2n

k

)

k!.

Here the third equality is based on the identity
k
∑

p=1

s(k, p)xp = x(x− 1)(x− 2) . . . (x− k + 1).

We present an easy application of the previous paragraph to monadic
algebras. The variety M of monadic algebras is known to be (e.g., [18])
semisimple arithmetical and the subdirectly irreducible algebras in M are
Boolean algebras Bk with a closure operator C as a fundamental operation
such that C(⊥) = ⊥ and C(x) = ⊤ for all x 6= ⊥. If Mk denotes the
simple monadic algebra with k atoms, then val(X,Mk) = val(X,Bk) and
|AutMk| = k!, since Mk and Bk have the same subuniverses and the same
automorphisms. Therefore by (13)

|val(X,Mk)|

|Aut (Mk)|
=

(

2n

k

)

.

Thus, from Theorem 2.8

(14) FM(n) =

2n
∏

k=1

M
(2

n

k )
k .

R. Quackenbush, in his paper on quasiprimal algebras [18], presents a dif-
ferent proof that |val(X,Bk)| = k!

(

2n

k

)

for |X| = n and he uses this fact to
derive (14). Other proofs of (14) in the literature include that of Bass [2].

In Lemmas 4.10 and 4.11 we present a similar argument in order to
provide new results concerning the cardinalities of free algebras in varieties
of orthomodular lattices generated by algebras that are horizontal sums of
Boolean algebras.

4. Applications and examples

In this section we consider applications of the upper bound for the size of
free algebras presented in Theorem 2.8 and of the methods for determining
the cardinality of val(X,A) for an arbitrary finite algebra A as presented in
Section 3. We find explicit formulas for the free spectra of some important
semisimple varieties and revisit some varieties for which formulas for the
free spectra have previously appeared in the literature. Indeed, our original
motivation for the present paper was noticing in various published articles
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formulas for the free spectra of varieties that had the general format of the
upper bound presented in Theorem 2.8. This theorem emerged from our
attempt to unify these different results into one general framework, and the
methods presented in Section 3 resulted from our attempt to find some uni-
form methods to replace the ad hoc arguments that have appeared in various
sources. Examples 4.1 and 4.2 illustrate this. Having obtained Theorem 2.8
and the methods for computing |val(X,A)| in Section 3, we applied them
to obtain new results for the structure and cardinality of FV(n) for specific
V or families of varieties, or we extended previous results on FV(n) in the
literature to larger n or to a wider family of varieties. Examples 4.3 and 4.8
are representative of this type of result.

Example 4.1. An algebra A = 〈A,∧,∨,⇒,∼, 0, 1〉 is called a symmetric

Heyting algebra if 〈A,∧,∨,⇒, 0, 1〉 is a Heyting algebra and 〈A,∧,∨,∼, 0, 1〉
is a De Morgan algebra. The variety and many subvarieties of symmet-
ric Heyting algebras have been extensively studied. A long paper [17] by
A. Monteiro contains a wealth of results about these algebras, many of which
he obtained in the 1960’s and 1970’s. In this paper Monteiro considers for
each positive integer m a variety ImK. He shows that the subdirectly ir-
reducible algebras in ImK are the symmetric Heyting algebras C2, . . .Cm,
where for any integer k ≥ 2 the universe of Ck is

Ck =

{

0 =
0

k − 1
,

1

k − 1
, . . .

k − 2

k − 1
,
k − 1

k − 1
= 1

}

with the order structure a chain and with ∼ i
k−1 = k−1−i

k−1 . If FImK(n) is the
free algebra for ImK on n free generators, then he argues that

FImK(n) = C
p2
2 × · · · ×Cpm

m

where the pk are non-negative integers. He then shows the value of each pk
is the number of functions f from the set X of n free generators to Ck for
which f(X) generates Ck. That is, in our terminology, pk = |val(X,Ck)|. In
pages 139–149 he finds explicit formulas for the pk. He shows that if k = 2t,
then

(15) pk = 2n
t−1
∑

i=0

(−1)i
(

t− 1

i

)

(t− i)n,

and if k = 2t+ 1, then

(16) pk =
t−1
∑

i=0

(−1)i
(

t− 1

i

)

(2t− 2i+ 1)n − 2n
t−1
∑

i=0

(−1)i
(

t− 1

i

)

(t− i)n.

The facts that the free algebraFImK(n) is the direct product of subdirectly
irreducibles Ck and that the number of copies of each Ck is |val(X,Ck)|
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suggest that Theorem 2.8 and the techniques for computing the cardinality
of val(X,A) of Section 3 might apply to give a proof of the results of Monteiro
[17] for ImK described above.

To this end consider the variety ImK with (ImK)SI = {C2, . . . ,Cm}.
Each Ck is easily seen to be simple. The subuniverses of Cm consist precisely
of those sets S that contain 0 and 1 and for which i

m−1 ∈ S if and only if
m−1−i
m−1 ∈ S. Thus, every subalgebra of Cm is isomorphic to some Ck for

2 ≤ k ≤ m. Hence each Cm is semisimple and so is the variety ImK. Heyting
algebras are known to be congruence distributive and congruence permutable
so, in particular, ImK is an arithmetical variety. Therefore Theorem 2.8
applies. Since each Cm has a linear order, |Aut (Ck)| = 1 for all k. Thus

FImK(n) =
m
∏

k=2

C
|val(X,Ck)|
k .

Now, we use the methods of Section 3 to determine |val(X,Ck)| for arbi-
trary k. Since (ImK)SI = {C2, . . . ,Cm} is a hereditarily closed family and
the values of iso (Cp,Ck) are readily found, we use the matrix methods of
Theorem 3.11. Note if k is even and p is odd, then iso (Cp,Ck) = 0. From
this and from the characterization of subalgebras of Ck given above we have

iso (C2s+1,C2t) = 0

and

iso (C2s,C2t) = iso (C2s+1,C2t+1) = iso (C2s,C2t+1) =

(

t− 1

s− 1

)

.

If D is the m by m matrix with Dij = iso (Ci,Cj), and if M denotes the
inverse of D, then arguing as in (12) for Pascal matrices, it can be seen that

Mij = Dij(−1)γ = iso (Ci,Cj)(−1)γ ,

where

γ =

{

t− s− 1, if i = 2s, j = 2t+ 1;

t− s, otherwise.

Then letting q = (1n, 2n, . . . , kn) in Theorem 3.11 we get

|val(X,Ck)| =
k
∑

p=1

pnMpk =



























t
∑

j=1

(2j)n
(

t− 1

j − 1

)

(−1)t−j , if k = 2t;

t
∑

j=1

(2j)n
(

t− 1

j − 1

)

(−1)t−j+1 + (2j + 1)n
(

t− 1

j − 1

)

(−1)t−j , if k = 2t+ 1.
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Substituting t− i for j and factoring 2n outside the summation sign, Mon-
teiro’s formulas (15) and (16) are obtained.

Example 4.2. We present a specific example of the situation described in
Example 3.3 for algebras Ł = 〈A,→,∧, 1〉 that are the algebraic counterpart
of the {→,∧}-fragment of Łukasiewicz’s many-valued logic.

For each nonnegative integer k let Łk+1 be the set {e0, e1, . . . , ek}. The
algebra Łk+1 = 〈Łk+1,→,∧, 1〉 is a (k + 1)-element algebra with the meet
operation ∧ corresponding to the order 1 = e0 > e1 > · · · > ek and with the
residuation operator → given by

ei → ej =

{

1 if i ≥ j

ej−i otherwise.

It is easily checked that the subuniverses of Łk+1 consist of all sets of the
form {e0, eℓ, e2ℓ, . . . , eqℓ} with 0 ≤ ℓ ≤ k and positive integers q for which
qℓ ≤ k.

The paper [11] by Figallo, Figallo, Figallo and Zilani provides a formula
for the cardinality of the free algebra on n free generators for the variety
generated by Łk+1. They do this by observing that each Łk+1 is quasi-primal
with its nontrivial subalgebras consisting of algebras isomorphic to Łi+1 for
1 ≤ i ≤ k. Therefore the free algebra in this variety is

k
∏

i=1

Ł
|val(X,Łi+1)|
i+1 .

They then argue that the cardinality of val(X,Łi+1) for |X| = n is given
recursively by

|val(X,Łi+1)| = (i+ 1)n − in −
∑

j|i
j 6=i

|val(X,Łj+1)|.

We now use the matrix method of Theorem 3.11 to give a description
of this free algebra by providing an explicit formula for the cardinality of
val(X,Łi+1).

Every subalgebra of Łk+1 is isomorphic to either the trivial algebra Ł1

or to Łp for some 2 ≤ p ≤ k + 1. Thus the subalgebras of Łk+1 form a
hereditarily closed family K = {Ł1, . . . ,Łk+1}. With this scheme we have
that iso (Łp,Łr) = 1 if p = 1 and iso (Łp,Łr) = ⌊( r−1

p−1)⌋ if 2 ≤ p ≤ r ≤ k+1.
If, say, we let Qp be all pn functions from X to the p-element set Łp, then
in order to apply the matrix method to find a formula for |val(X,Łk+1)| we
are faced with the problem of finding the inverse of the k+1 by k+1 matrix
C = (cpr) in which cpr = 1 if p = 1 and cpr = ⌊( r−1

p−1)⌋ if p > 1. This appears
to be difficult.
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A more workable approach for finding |val(X,Łk+1)| is to first observe
that any valuation f ∈ val(X,Łk+1) must have ek ∈ f(X). For each i, with
1 ≤ i ≤ k, let Ai denote the algebra obtained from Łi+1 by adding the
element ei, the least element in the order relation, to the similarity type as
a constant. The family K = {A1, . . . ,Ak} forms a hereditarily closed family
with |Ai| = i + 1 for 1 ≤ i ≤ k. For 1 ≤ i ≤ j ≤ k, if iso (Ai,Aj) denotes
the number of subalgebras of Aj isomorphic to Ai, then we have

iso (Ai,Aj) =

{

1 if i|j

0 otherwise.

Let Qp denote the set of all f : X → Ap for which ep ∈ f(X). Then
q(n, p) := |Qp| = (p+1)n−pn. As observed in Example 3.3 the inverse of the

matrix C formed from the iso (Ai,Aj) is the matrix M with Mij = µ( j
i
) if i

divides j, with µ the usual Möbius function of number theory, and Mij = 0
otherwise.

We therefore have by Theorem 3.11

|val(X,Łk+1)| =
∑

t|k

µ

(

k

t

)

((t+ 1)n − tn).(17)

If k = pe11 · · · pemm for m distinct primes p1, . . . , pm and positive exponents ei,
and if

h(t) := (t+ 1)n − tn,

then by the definition of the Möbius function we have from (17)

|val(X,Łk+1)| =
∑

I⊆{1,...,m}

(−1)|I|h

(

k
∏

i∈I pi

)

,(18)

where
∏

i∈I pi = 1 for I = ∅. Note that the values of the expressions that
appear on the right sides of (17) and (18) depend only on the values of k
and |X| and the primes that appear in the prime factorization of k.

Let Lk+1 denote the variety generated by Łk+1 for k ≥ 1. As observed in
[11] this algebra is quasiprimal, its nontrivial subalgebras are isomorphic to
Łi+1 for 1 ≤ i ≤ k, and each subalgebra is rigid since the underlying order
is a finite chain. Therefore by Theorem 2.8

FLk+1
(n) =

k
∏

i=1

Ł
|val(X,Li+1)|
i+1 =

k
∏

i=1

Ł

∑
t|i µ(

i
t)((t+1)n−tn)

i+1 .

Example 4.3. Algebras that lend themselves well to the analysis of Sec-
tion 3 are certain varieties of pocrims considered by Blok and Raftery in [8].
I thank James Raftery for suggesting and outlining this example. A pocrim

(partially ordered commutative residuated integral monoid) is an algebra
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A = 〈A; ·,→, 1〉 in which · is a commutative monoid operation with identity
1 that is obtained from a partially ordered monoid on A having 1 as greatest
element and → is a residuation operation with

z ≤ x → y if and only if x · z ≤ y.(19)

(I work with the order dual of the definition of a pocrim given in [8].) It
follows from (19) that the order ≤ and the residuation → are linked by
x → y = 1 if and only if x ≤ y.

For every positive integer n, let Ms
n denote the variety generated by all

simple pocrims that satisfy the monoid identity xn = xn+1. As shown in [8],
the varieties Ms

n are semisimple and they are discriminator varieties.
The variety Ms

1 is the variety of generalized Boolean algebras and is
generated by the 2-element algebra B = 〈{0, 1}; ·,→, 1〉. Then val(X,B)
consists of all of {0, 1}X except for the constant function 1. The automor-
phism group of B is trivial, so by Theorem 2.8 we have the well-known fact
that

FMs
1
(X) = B2|X|−1.

As shown in [8] the varieties Ms
n for n ≥ 3 are not locally finite but

the variety Ms
2 is. Moreover, the subdirectly irreducible algebras of this

variety are explicitly described. We use this description to investigate the
free algebras for the variety Ms

2 and for some of its subvarieties.
In addition to the generalized Boolean algebra B described above, the

other subdirectly irreducible algebras in Ms
2 have the partial order

a2 < P < a < 1,

where P denotes an arbitrary partially ordered set, 1 is the monoid identity,
and for any x, y ≤ a, we have x · y = a2. If P is the empty set, then we get
the usual 3-element Łukasiewicz chain, which we denote by Ł. For a poset
P let AP denote this subdirectly irreducible (and hence simple) member
of Ms

2.
Note that for any x, y ∈ P , either x → y = 1 or x → y = a in AP .

Also, if x ∈ P , then x → a2 = a. Thus if P 6= ∅, then condition (2) of
Proposition 3.5 holds for P with ≡ being the identity relation 1P . So if P is
nonempty, then P uniquely generates the algebra AP as in Definition 3.6. If
P = ∅, then the Łukasiewicz 3-chain Ł is uniquely generated by the set {a}.

It is easily checked that if Q is a subposet of P , then AQ is a subalgebra
of AP . The subuniverses of AP are {1}, {1, a2}, {1, a, a2} and {1, a, a2} ∪Q
where Q ranges over all nonvoid subposets of P . There is an obvious bijection
between the automorphisms of AP and the order automorphisms of the
partially ordered set P since the partial order on AP is definable in terms
of the fundamental operations of the algebra.
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These observations and Proposition 3.7 yield the following.

Lemma 4.4. Let P be a finite partially ordered set with |P | = p ≥ 1 and

let AP ∈ Ms
2. Suppose |X| = n.

|val(X,AP )| =

p
∑

j=0

(−1)j
(

p

j

)

(p+ 3− j)n.(20)

Definition 4.5. For n and p positive integers let e(n, p) denote the value
of the function of n and p given by (20) in Lemma 4.4. Note that e(n, p) = 0
if n < p.

Lemma 4.6. Let V be any subvariety of Ms
2 that contains the 3-element

Łukasiewicz chain Ł. The free algebra FV(n) is a direct product of the simple

algebras B, Ł, and those AP ∈ V with 1 ≤ |P | = p ≤ n. The algebra B

appears as a direct factor 2n − 1 times, Ł appears as a direct factor 3n − 2n

times, and each AP appears as a direct factor
e(n,p)

|Aut (P )| times.

Proof. The variety V is a discriminator variety since Ms
2 is. So it is locally

finite, n-semisimple and arithmetical. Thus Theorem 2.8 applies.

Corollary 4.7. Let n be a positive integer and let P be a transversal

with respect to order isomorphism of all nonvoid partially ordered sets with

at most n elements. Then

FMs
2
(n) = B2n−1Ł3n−2n

∏

P∈P

A

e(n,|P |)
|Aut P |

P

and

|FMs
2
(n)| = 22

n−133
n−2n

n
∏

k=1

(k + 3)
e(n,k)
a(k) ,

with

a(k) =
∑

P∈P, |P |=k

1

|Aut P |
.

We apply Corollary 4.7 for small values of n. The number of partially
ordered sets with 1, 2 and 3 elements is 1, 2 and 5 respectively.

|FMs
2
(1)| = 22−133−244−3 = 24,

|FMs
2
(2)| = 22

2−133
2−2244

2−325
3
2
(52−2·42+32) = 23354753 = 3981312000,

|FMs
2
(3)| = 22

3−133
3−2344

3−335
3
2
(53−2·43+33)6

19
6
(63−3·53+3·43−33)

= 27319437536619.
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Every finite simple member of Ms
2 is quasiprimal. For a finite partially

ordered set P let V be the variety generated by the quasiprimal algebra AP .
Let T be a transversal with respect to order isomorphism of the nonvoid
subposets of P . Then we have

FV(n) = B2n−1Ł3n−2n
∏

Q∈T

A

e(n,|Q|)
|Aut Q|

Q .(21)

Although e(n, |Q|) depends only on the values of n and |Q|, the sets Q
and values of |Q| depend on the order structure of P , and thus evaluation
of the formula (21) may require detailed knowledge of the order structure of
P . However, for certain familiar and important classes of partially ordered
sets we can find relatively simple expressions for (21) that depend only on n
and |P |.

Let P be a finite linearly ordered set with |P | = p and let V be the variety
generated by AP . The transversal T in (21) consists of one linearly ordered
set Qk of size k, for every 1 ≤ k ≤ p. Each AQk

is rigid. Hence we have

FV(n) = B2n−1Ł3n−2n
p
∏

k=1

A
e(n,k)
Qk

,

and

|FV(n)| = 22
n−133

n−2n
p
∏

k=1

(k + 3)e(n,k).

At the other extreme, let P be an antichain of cardinality p. The transver-
sal T consists of one antichain Qk of size k for 1 ≤ k ≤ p. Each antichain
Qk has k! automorphisms. This gives

FV(n) = B2n−1Ł3n−2n
p
∏

k=1

A
e(n,k)

k!
Qk

,

and

|FV(n)| = 22
n−133

n−2n
p
∏

k=1

(k + 3)
e(n,k)

k! .

Example 4.8. The variety of modular ortholattices, MO, is known to
be congruence distributive, congruence permutable, and finitely semisimple.
This variety and its subvarieties therefore lend themselves well to our anal-
ysis. An ortholattice is an algebra A = 〈A;∧,∨,′ , 0, 1〉, that is a bounded
lattice with a complement operation ′ that satisfies the De Morgan laws and
x′′ = x. An ortholattice is modular if the underlying lattice is modular. The
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finite subdirectly irreducible algebras in MO are the 2-element Boolean al-
gebra B, and for each integer k ≥ 2 the ortholattice MOk with universe
{0, 1, a1, . . . , ak, b1, . . . , bk} that is a lattice of height 2 having a′i = bi and
b′i = ai for all i. We note that MOk is not hereditarily simple since for each
i the 4-element subalgebra of MOk with universe {0, 1, ai, bi} is not simple.

Let MOk denote the variety generated by MOk. The subdirectly irre-
ducible algebras in MOk consist of B and MOℓ for 2 ≤ ℓ ≤ k. Each MOk

is k-generated and is not (k − 1)-generated. Hence for every n ≥ 2 we have
FMO(n) = FMOn(n). However, it is known that the variety MO is not
generated by its finite members.

The structure and cardinality of the finitely generated free algebras in
MO and the MOk are determined in the papers [12] and [13] using methods
of natural duality. We consider these free algebras using Theorem 2.8. (A
similar approach to determining the structure of free algebras in MOk is
given in Chapter 6 of [6].) Let |X| = n. A transversal with respect to
isomorphism of the n-generated subdirectly irreducible algebras in MO is
{B,MO2, . . . ,MOn}. Since MO is arithmetical and finitely semisimple,
Theorem 2.8 gives us

FMO(n) = Be0 ×MOe2
2 × · · · ×MOen

n ,

where

e0 =
|val(X,B)|

|AutB|
and ek =

|val(X,MOk)|

|AutMOk|
, for 2 ≤ k ≤ n.

As already observed, e0 = 2n, the number of functions from X to {0, 1}.
It is easily seen that |Aut MOk| = 2kk! since every automorphism is

determined by a permutation π of {1, . . . , k} and for each i, whether ai is
mapped to aπ(i) or to bπ(i).

To determine the cardinality of val(X,MOk) for 2 ≤ k ≤ n, we first note
that if R is the equivalence relation on G = {a1, . . . , ak, b1, . . . , bk} consisting
of k blocks {ai, bi}, then MOk is uniquely generated by G/R since condition
(2) of Proposition 3.5 is satisfied. By Proposition 3.7 we have

|val(X,MOk)| =
k
∑

j=0

(−1)j
(

k

j

)

(2k + 2− 2j)n

= 2n
k
∑

j=0

(−1)j
(

k

j

)

(k − j + 1)n =
2n

k + 1

k
∑

j=0

(−1)j
(

k + 1

j

)

(k − j + 1)n+1

= 2nk!S(n+ 1, k + 1),

where S(n, k) denotes a Stirling number of the second kind.
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Thus,

FMO(n) = B2n ×
n
∏

k=2

MO
2n−kS(n+1,k+1)
k .

|FMO(1)| = 21 = 2

|FMO(2)| = 2461 = 96

|FMO(3)| = 2861281 = 4458050224128

|FMO(4)| = 2166100820101 ≈ .4936335952× 10102.

We use the next lemma to determine the structure of FV(n) for a wide
collection of orthomodular lattice varieties.

Lemma 4.9. Suppose |X| = n and B is the Boolean algebra with k atoms.

If w(n, k) denotes the number of valuations from X to B having neither have

⊥ nor ⊤ in their range, then

w(n, k) =
k
∑

j=1

s(k, j)(2j − 2)n = 2n
k
∑

j=1

s(k, j)(2j−1 − 1)n.

Proof. We use hereditarily closed families and the matrix method of Theo-
rem 3.11. As observed in Example 3.12, the finite Boolean algebras Bk for
k ≥ 1 form a hereditarily closed family with Cij = iso (Bi,Bj) = S(j, i).
We let Qk denote all f : X → Bk for which f(X) contains neither ⊥ nor
⊤. Thus q(n, k) = (2k − 2)n. So, as in Example 3.12, the inverse M of
matrix C has Mkp = s(k, p) for s(k, p) a Stirling number of the first kind.
An application of Theorem 3.11 completes the proof.

For positive integers r and k1 ≥ · · · ≥ kr ≥ 2 let A(k1, . . . , kr) denote the
orthomodular lattice that is the horizontal sum of the r Boolean algebras
B1, . . . ,Br. The top and bottom elements of A(k1, . . . , kr) are denoted by
⊤ and ⊥ and this lattice has k1 + · · ·+ kr atoms and k1 + · · ·+ kr coatoms.
If r = 1, then A(k1) is the Boolean algebra Bk1 and if r > 1 and all ki = 2,
then we have the simple modular ortholattice MOk. If r ≥ 2, then every
A(k1, . . . , kr) is a simple.

Lemma 4.10. For |X| = n and positive integers k1 ≥ · · · ≥ kr ≥ 2

|val(X,A(k1, . . . , kr))| =
∑

n0+···+nr=n
ni≥1 for i>0

(

(

n

n0 n1 . . . nr

)

2n0

r
∏

i=1

w(ni, ki)

)

where the w(n, j) are as defined in Lemma 4.9.

Proof. Let f : X → A(k1, . . . , kr) be an arbitrary function. Let n0 be the
number of elements of X sent into the set {⊥,⊤} and let nj be the number
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of elements of X sent into Bj \{⊥,⊤}. Then f is a valuation if and only if for
each 1 ≤ j ≤ r, the image of the set of nj elements of X sent to Bj \ {⊥,⊤}
generates Bj . Hence, for a given choice of positive integers n1, . . . , nr whose
sum is at most n, and for n0 = n− (n1 + · · ·+ nr), there are

(

n

n0 n1 . . . nr

)

2n0 × w(n1, k1)× · · · × w(nr, kr)

functions f that are valuations. Note that if 1 ≤ nj for 1 ≤ j ≤ r and no
set of nj elements generates Bj , then w(nj , kj) = 0. So summing over all
choices of nonnegative n0 and positive n1, . . . , nr whose sum is n gives the
desired formula for the number of valuations.

Lemma 4.11. For positive integers k1 ≥ · · · ≥ kr ≥ 2

|AutA(k1, . . . , kr)| = k1!× · · · × kr!×m1!× · · · ×mt!

where there are t distinct values among the kj and m1, . . . ,mt are the mul-

tiplicities of these t values.

Let V denote the variety of orthomodular lattices generated by all alge-
bras A(k1, . . . , kr) where r and the ki are integers, r ≥ 2 and k1 ≥ · · · ≥ kr ≥
2. The subvariety generated by all the algebras A(2, 2, . . . , 2) is the variety
generated by the modular ortholattices MOk that we have just considered.
The structure and cardinality of the free algebras for those subvarieties of V
generated by A(3, 2, . . . , 2) is the subject of [14] and the varieties generated
by A(3, . . . , 3) is the subject of [15]. The arguments presented there, as in
[12] and [13], make use of duality theory. The formulas of Lemmas 4.10 and
4.11 may be used to determine the structure of FW(n) for any subvariety
W of V. We now compute the actual cardinalities of these free algebras
for n ≤ 3. This work is summarized in the following table. The entries
in a cell in a row indexed by a value of n and a column headed by an al-
gebra is the number of valuations into the algebra from a set X of size n.
The rightmost column gives the cardinalities of the FV(n). Note that the
subdirectly irreducible algebras in V generated by 3 or fewer elements are
B1,A(2, 2),A(2, 2, 2),A(3, 2) and A(4, 2).

B1 A(2, 2) A(2, 2, 2) A(3, 2) A(4, 2) |FV(n)|

|A| 2 6 8 10 18

|AutA| 1 8 48 12 48

n = 1 2 22 = 4

n = 2 4 8 2461 = 96

n = 3 8 96 48 144 144 28612811012183
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