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FIXED POINT THEOREMS FOR NONCOMPATIBLE,

DISCONTINUOUS HYBRID PAIRS

OF MAPPINGS ON 2-METRIC SPACES

Abstract. In this paper, we prove some fixed point theorems for two hybrid pairs of
mappings in 2-metric spaces by using some weaker conditions.

1. Introduction

During sixties, the notion of 2-metric space was introduced by G
..
ahler

([10], [11]) as a generalization of the usual notion of metric space (X, d).
It has been developed extensively by G

..
ahler and many other mathemati-

cians ([5], [19], [20]). The topology induced by 2-metric space is called 2-
metric topology which is generated by the set of all open spheres with two
centres. Many authors used this topology in many applications for ex-
ample EI. Naschie [6] used this sort of topology in physical applications.
Many authors studied fixed point theorems in 2-metric spaces (Hsiao [12],
Iseki [13]).

It has been shown by G
..
ahler [9] that the 2-metric d is a continuous

function in any of its three arguments. It need not be continuous in two
arguments. A 2-metric which is continuous in all of its arguments is said to
be continuous.

In 1992, Dhage [2] introduced a new class of generalized metric spaces
called D-metric spaces. Dhage attempted to develop topological structures
in such spaces ([3], [4], [5]). But in 2003, Mustafa and Sims [19] proved that
most claims concerning the fundamental topological structures of D-metric
spaces are incorrect.

Sessa [33] introduced the concept of weakly commuting maps. Jungck
[14] defined the notion of compatible maps in order to generalize the concept
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of weak commutativity, and showed that weakly commuting mappings are
compatible but the converse is not true.

Jungck and Rhoades ([15], [16]) defined the concepts of δ−compatibility
and weak compatibility between a set valued mapping and a single-valued
mapping and generalized the weak commutativity defined in [8]. Several au-
thors used these concepts to prove some fixed point theorems ([7], [28]–[32]).

Monsef et al. [1] generalized some concepts in 2-metric spaces for set
valued mappings. They also proved some common fixed point theorems in
2-metric spaces.

Fixed point theorems for set valued and single valued mappings provide
technique for solving variety of applied problems in mathematical sciences
and engineering (e.g. Krzyska and Kubiaczyk [17], Sessa and Khan [34]).

Pant ([22] − [25]) initiated the study of noncompatible maps and intro-
duced pointwise R-weak commutativity of mappings in [22]. He also showed
that pointwise R-weak commutativity is a necessary, hence minimal, condi-
tion for the existence of a common fixed point of contractive type maps [23].

Pathak et al. [26] introduced the concept of R-weakly commuting maps
of type (A), and showed that they are not compatible.

Recently, Kubiaczyk and Deshpande [18] extended the concept of R-
weakly commutativity of type (A) for single valued mappings to set val-
ued mappings and introduced weak commutativity of type (KB) which is
a weaker condition than δ-compatibility. In fact, δ-compatible maps are
weakly commuting of type (KB) but converse is not true. For example we
can see [18], [35] and [36].

Recently, Sharma and Deshpande [35] proved a common fixed point the-
orem for two pairs of hybrid mappings by using weak commutativity of type
(KB) on a noncomplete metric space without assuming continuity of any
mapping.

In this paper, we improve, extend and generalize the results of Tas et al.
[37], Fisher [7], Rashwan and Ahmed [28], Sharma and Deshpande [35].

2. Preliminaries

Definition 1. [9] Let X denotes a nonempty set and R, the set of all
nonnegative numbers. Then X together with a function d : X×X×X → R,

is called a 2-metric space if it satisfies the following properties:

(1) For distinct points x, y ∈ X, there exists a point c ∈ X such that
d(x, y, c) 6= 0 and d(x, y, c) = 0 if at least two of x, y and c are equal,

(2) d(x, y, c) = d(x, c, y) = d(y, x, c) = d(y, c, x) = d(c, x, y) = d(c, y, x)
(Symmetry),
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(3) d(x, y, c) ≤ d(x, y, z)+ d(x, z, c)+ d(z, y, c) for x, y, c, z ∈ X. (Rectangle
inequality).

The function d is called a 2-metric for the space X and the pair (X, d)
denotes 2-metric space. It has been shown by G

..
ahler in [9] that 2-metric d

is non-negative and although d is a continuous function in any of its three
arguments, it need not be continuous in two arguments. A 2-metric d which
is continuous in all of its arguments is said to be continuous.

Geometrically, the value of a 2-metric d(x, y, c) represents the area of a
triangle with vertices x, y and c.

Throughout this paper, let (X, d) be a 2-metric space unless mentioned
otherwise, and let B(X) be the class of all nonempty bounded subsets of X.

Definition 2. [27] A sequence {xn} in (X, d) is said to be convergent to
a point x in X, denoted by lim

n→∞

xn = x if

lim
n→∞

d(xn, x, c) = 0 for all c in X.

The point x is called the limit of the sequence {xn} in X.

Definition 3. [27] A sequence {xn} in (X, d) is said to be a Cauchy
sequence if

lim
n→∞

d(xm, xn, c) = 0 for all c in X.

Definition 4. [27] The space (X, d) is said to be complete if every Cauchy
sequence in X converges to a point of X.

Remark 1. We note that, in a metric space a convergent sequence is a
Cauchy sequence and in a 2-metric space a convergent sequence need not
be a Cauchy sequence, but every convergent sequence is a Cauchy sequence
when the 2-metric d is continuous on X [21].

For all A,B,C ∈ B(X), let δ(A,B,C) and D(A,B,C) be the functions
defined by

δ(A,B,C) = sup{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C},

D(A,B,C) = inf{d(a, b, c) : a ∈ A, b ∈ B, c ∈ C}.

If A consists of a single point a we write δ(A,B,C) = δ(a,B,C). If B and
C also consists of single points b and c, respectively, we write

δ(A,B,C) = D(A,B,C) = d(a, b, c).

It follows immediately from the definition that:

δ(A,B,C) = δ(A,C,B) = δ(C,B,A) = δ(C,A,B) = δ(B,C,A)

= δ(B,A,C) ≥ 0,
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δ(A,B,C) ≤ δ(A,B,E) + δ(A,E,C)

+ δ(E,B,C) for all A,B,C,E ∈ B(X),

δ(A,B,C) = 0 if at least two of A,B and C are singleton.

Definition 5. [1] A sequence {An} of subsets of a 2-metric space (X, d)
is said to be convergent to a subset A of X if:

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An for
n = 1, 2, 3 . . . and lim

n→∞

d(an, a, c) = 0 for all c in X,

(ii) given ε > 0, there exists a positive integer N such that An ⊆ Aε for
n > N where Aε is the union of all open spheres with centers in A and
radius ε.

Definition 6. [1] The mappings F : X → B(X) and f : X → X are said
to be weakly commuting on X if fFx ∈ B(X) and for all C in B(X),

δ(Ffx, fFx,C) ≤ max{δ(fx, Fx,C), δ(fFx, fFx,C)}.

Note that if F is a single valued mapping, then the set fFx consists of a
single point. Therefore, δ(fFx, fFx,C) = D(fFx, fFx,C) = 0 for all C
in B(X) and the above inequality reduces to the condition given by Khan
(16), that is D(Ffx, fFx,C) ≤ D(fx, Fx,C).

Definition 7. [1] The mappings F : X → B(X) and f : X → X are said
to be compatible if lim

n→∞

d(Ffxn, fFxn, C) = 0, whenever {xn} is a sequence

in X such that lim
n→∞

fxn = t ∈ A = lim
n→∞

Fxn for some t ∈ X and A ∈ B(X).

Definition 8. [1] The mappings F : X → B(X), and f : X → X are
said to be δ-compatible if lim

n→∞

δ(Ffxn, fFxn, C) = 0, whenever {xn} is a

sequence in X such that fFx ∈ B(X), Fxn → {t} and fxn → t for some t

in X.

Definition 9. [14] The mappings F : X → B(X) and f : X → X are
said to be weakly compatible if they commute at a coincidence point u in X

such that Fu = {fu} we have Ffu = fFu.

Note that the equation Fu = {fu} implies that Fu is a singleton.

It can be easily shown that any δ-compatible pair {F, f} is weakly com-
patible but the converse is false.

Definition 10. [18] The mappings F : X → B(X) and f : X → X are said
to be weakly commuting of type (KB) at x if there exists some positive real
number R such that

δ(ffx, Ffx, C) ≤ Rδ(fx, Fx,C) for all C in B(X).
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Here F and f are weakly commuting of type (KB) on X if the above in-
equality holds for all x ∈ X.

Every δ-compatible pair of hybrid maps is weakly commuting of type
(KB) but the converse is not necessarily true. For example we can see [18],
[35] and [36].

Lemma 1. [1] If {An} and {Bn} are sequences in B(X) converging to A

and B in B(X), respectively, then the sequence {δ(An, Bn, C)} converges to

δ(A,B,C).

3. Main results

Theorem 1. Let (X, d) be a 2-metric space and f, g : X → X be self

mappings, and F,G : X → B(X) be set valued mappings such that

(1) G(X) ⊆ f(X) and F (X) ⊆ g(X),
(2) δ2(Fx,Gy,C) ≤ c1max

{

D2(fx, gy, C), δ2(fx, Fx,C), δ2(gy,Gy, C)
}

+ c2max {δ(fx, Fx,C).D(fx,Gy,C), D(gy, Fx, C).δ(gy,Gy,C)}

+ c3D(fx,Gy,C).D(gy, Fx, C)
for all x, y ∈ X and C ∈ B(X) where c1 + 2c2 < 1, c1 + c3 < 1,
c1, c2, c3 ≥ 0,

(3) one of f(X) or g(X) is complete,

(4) the pairs {F, f} and {G, g} are weakly commuting of type (KB) at co-

incidence points in X.

Then there exists a unique fixed point z in X such that

{z} = {fz} = {gz} = Fz = Gz.

Proof. Let x0 ∈ X be an arbitrary point in X. By (1), there exists a point
x1 in X such that gx1 ∈ Fx0 = Z0 and for this point x1 there exists a point
x2 in X such that fx2 ∈ Gx1 = Z1 and so on. Continuing in this manner,
we can define a sequence {xn} as follows:

gx2n+1 ∈ Fx2n = Z2n, fx2n+2 ∈ Gx2n+1 = Z2n+1, for n = 0, 1, 2, 3 . . .

Let Vn = δ(Zn, Zn+1, C) for n = 0, 1, 2, 3 . . . .. By (2), we have

V 2
2n = δ2(Z2n, Z2n+1, C) = δ2(Fx2n, Gx2n+1, C)

≤ c1max
{

D2(fx2n, gx2n+1, C), δ2(fx2n, Fx2n, C), δ2(gx2n+1, Gx2n+1, C)
}

+ c2max

{

δ(fx2n, Fx2n, C).D(fx2n, Gx2n+1, C),

D(gx2n+1, Fx2n, C).δ(gx2n+1, Gx2n+1, C)

}

+ c3D(fx2n, Gx2n+1, C).D(gx2n+1, Fx2n, C)
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≤ c1max
{

D2(Gx2n−1, Fx2n, C), δ2(Gx2n−1, Fx2n, C), δ2(Fx2n, Gx2n+1, C)
}

+ c2max

{

δ(Gx2n−1, Fx2n, C).D(Gx2n−1, Gx2n+1, C),

D(Fx2n, Fx2n, C).δ(Fx2n, Gx2n+1, C)

}

+ c3δ(Gx2n−1, Gx2n+1, C)

≤ c1max
{

δ2(Z2n−1, Z2n, C), δ2(Z2n, Z2n+1, C)
}

+ c2max {δ(Z2n−1, Z2n, C).δ(Z2n−1, Z2n+1, C), , δ(Z2n, Z2n+1, C)}

≤ c1max
{

V 2
2n−1, V

2
2n

}

+ c2max {V2n−1(V2n−1 + V2n), V2n}

= c1max
{

V 2
2n−1, V

2
2n

}

+ c2V2n−1(V2n−1 + V2n).

If V2n ≥ V2n−1, then we have

V 2
2n ≤ (c1 + 2c2)V

2
2n < V 2

2n.

Since c1 + 2c2 < 1, this is a contradiction. Thus

V2n < hV2n−1 where h =
√

(c1 + 2c2) < 1.

Similarly we have V2n+1 < hV2n and so

V2n = δ(Z2n, Z2n+1, C) = δ(Fx2n, Gx2n+1, C) ≤ . . . . ≤ h2nδ(Fx0, Gx1, C)

for n = 1, 2, 3 . . . . Let zn be an arbitrary point in Zn for n = 0, 1, 2, 3 . . .
Thus we have

D(zn, zn+1, C) ≤ δ(Zn, Zn+1, C) ≤ . . . . ≤ hnδ(Fx0, Gx1, C).

Since h < 1, therefore the sequence {zn} is a Cauchy sequence in X and
hence any subsequence thereof is a Cauchy sequence in X.

Suppose that g(X) is complete. Since

gx2n+1 ∈ Fx2n = Z2n for n = 0, 1, 2, 3 . . . ,

then

D(gx2m+1, gx2n+1, C) ≤ δ(Z2m, Z2n, C) < ε for m,n ≥ n0, n0 = 1, 2, 3.

Therefore {gx2n+1} is a Cauchy sequence and hence gx2n+1 → z = gv ∈
g(X) for v ∈ X. But fx2n ∈ Gx2n−1 = Z2n−1, so we have

D(fx2n, gx2n+1, C) ≤ δ(Z2n−1, Z2n, C) = V2n−1 → 0.

Consequently, fx2n → z. Moreover we have for n = 1, 2, 3 . . .

δ(Fx2n, z, C) ≤ δ(Fx2n, fx2n, C) + δ(fx2n, z, C).

Therefore δ(Fx2n, z, C) → 0. Similarly δ(Gx2n−1, z, C) → 0.
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By (2) for n = 1, 2, 3, . . . , we have

δ2(Fx2n, Gv, C)

≤ c1max
{

D2(fx2n, gv, C), δ2(fx2n, Fx2n, C), δ2(gv,Gv, C)
}

+ c2max {δ(fx2n, Fx2n, C).D(fx2n, Gv, C), D(gv, Fx2n, C).δ(gv,Gv, C)}

+ c3D(fx2n, Gv, C).D(gv, Fx2n, C)

≤ c1max
{

D2(fx2n, gv, C), δ2(fx2n, Fx2n, C), δ2(gv,Gv, C)
}

+ c2max {δ(fx2n, Fx2n, C).δ(fx2n, Gv, C), δ(gv, Fx2n, C).δ(gv,Gv, C)}

+ c3δ(fx2n, Gv, C).δ(gv, Fx2n, C)

and since δ(fx2n, Gv, C) → δ(z,Gv, C) when fx2n → z we get as n → ∞

δ2(z,Gv, C) ≤ c1δ
2(z,Gv, C).

Since c1 < 1, we see that Gv = {z} = {gv} .

But as G(X) ⊆ f(X), there exists u ∈ X such that {fu} = Gv = {gv} =
{z} . Now if Fu 6= Gv, δ(Fu,Gv,C) 6= 0. So by (2), we have

δ2(Fu,Gv,C) ≤ c1max
{

D2(fu, gv, C), δ2(fu, Fu,C), δ2(gv,Gv, C)
}

+ c2max {δ(fu, Fu,C).D(fu,Gv, C), D(gv, Fu, C).δ(gv,Gv,C)}

+ c3D(fu,Gv, C).D(gv, Fu, C)

≤ c1max
{

D2(fu, gv, C), δ2(fu, Fu,C), δ2(gv,Gv, C)
}

+ c2max {δ(fu, Fu,C).δ(fu,Gv, C), δ(gv, Fu, C).δ(gv,Gv,C)}

+ c3δ(fu,Gv, C).δ(gv, Fu, C).

So we have δ2(Fu,Gv,C) ≤ c1δ
2(Fu,Gv,C) and since c1 < 1 we can see

that

Fu = {fu} = {gv} = Gv = {z} .

Since Fu = {fu} and the pair {F, f} is weakly commuting of type (KB) at
coincidence points in X, we obtain δ(ffu, Ffu, C) ≤ Rδ(fu, Fu,C), which
gives {fz} = Fz.

Again since Gv = {gv} and the pair {G, g} is weakly commuting of type
(KB) at coincidence points in X, we obtain δ(ggv,Ggv, C) ≤ Rδ(gv,Gv, C),
which gives {gz} = Gz. By (2), we have

δ2(Fz, z, C) ≤ δ2(Fz,Gv,C)

≤ c1max
{

D2(fz, gv, C), δ2(fz, Fz, C), δ2(gv,Gv, C)
}

+ c2max {δ(fz, Fz, C).D(fz,Gv, C), D(gv, Fz, C).δ(gv,Gv, C)}

+ c3D(fz,Gv, C).D(gv, Fz, C)
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≤ c1max
{

D2(fz, gv, C), δ2(fz, Fz, C), δ2(gv,Gv, C)
}

+ c2max {δ(fz, Fz, C).δ(fz,Gv, C), δ(gv, Fz, C).δ(gv,Gv, C)}

+ c3δ(fz,Gv, C).δ(gv, Fz, C)

≤ (c1 + c3)δ
2(Fz, z, C).

Since c1 + c3 < 1, it follows that Fz = {z} .

Consequently, we have {z} = Fz = {fz} . Similarly {z} = Gz = {gz} .
Therefore we have

{z} = {fz} = {gz} = Fz = Gz.

Finally, we prove that z is unique. If not, let w be another common fixed
point such that z 6= w and {w} = {fw} = {gw} = Fw = Gw.

By (2), we have

D2(z, w,C) ≤ δ2(Fz,Gw,C)

≤ c1max
{

D2(fz, gw,C), δ2(fz, Fz, C), δ2(gw,Gw,C)
}

+ c2max {δ(fz, Fz, C).D(fz,Gw,C), D(gw, Fz, C).δ(gw,Gw,C)}

+ c3D(fz,Gw,C).D(gw, Fz, C)

≤ (c1 + c3)D
2(z, w,C).

Since c1 + c3 < 1 it follows that w = z. This completes the proof.

If F and G are single valued mappings in the Theorem 1, then we get
the following:

Corollary 1. Let (X, d) be a 2-metric space and f, g, F,G : X → X be

self mappings satisfying the conditions (1), (3), (4) and

(5) d2(Fx,Gy, c) ≤ c1max
{

d2(fx, gy, c), d2(fx, Fx, c), d2(gy,Gy, c)
}

+ c2max {d(fx, Fx, c).d(fx,Gy, c), d(gy, Fx, c).d(gy,Gy, c)}

+ c3d(fx,Gy, c).d(gy, Fx, c)

for all x, y, c ∈ X where c1 + 2c2 < 1, c1 + c3 < 1, c1, c2, c3 ≥ 0. Then there

exists a unique fixed point z in X such that z = fz = gz = Fz = Gz.

If we put c2 = c3 = 0 in Theorem 1, we obtain:

Corollary 2. Let (X, d) be a 2-metric space and f, g : X → X be self

mappings, and F,G : X → B(X) be set valued mappings satisfying the

conditions (1), (3), (4), and

(6) δ2(Fx,Gy,C) ≤ c1max
{

D2(fx, gy, C), δ2(fx, Fx,C), δ2(gy,Gy, C)
}

for all x, y ∈ X where c1 ≥ 0.
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Then there exists a unique fixed point z in X such that

{z} = {fz} = {gz} = Fz = Gz.

If we put F = G and f = g in Theorem 1, then we have the following:

Corollary 3. Let (X, d) be a 2-metric space and f : X → X be self

mapping, and F : X → B(X) be set valued mapping such that

(7) F (X) ⊆ f(X),

(8) δ2(Fx, Fy, C) ≤ c1max
{

D2(fx, fy, C), δ2(fx, Fx,C), δ2(fy, Fy, C)
}

+ c2max {δ(fx, Fx,C).D(fx, Fy, C), D(fy, Fx,C).δ(fy, Fy,C)}

+ c3D(fx, Fy, C).D(fy, Fx,C)

for all x, y ∈ X and C ∈ B(X) where c1+2c2 < 1, c1+ c3 < 1, c1, c2, c3 ≥ 0,

(9) f(X) is complete,

(10) the pair {F, f} is weakly commuting of type (KB) at coincidence points

in X.

Then there exists a unique fixed point z in X such that {z} = {fz} = Fz.

For a set valued map F : X → B(X) (respectively a single valued map
f : X → X), F ∗ (respectively f∗) will denote the set of fixed points of F
(respectively f).

Theorem 2. Let (X, d) be a 2-metric space and f, g : X → X be self

mappings, and F,G : X → B(X) be set valued mappings. If the condition

(2) holds for all x, y ∈ X, then

(f∗ ∩ g∗) ∩ F ∗ = (f∗ ∩ g∗) ∩G∗.

Proof. Let u ∈ (f∗ ∩ g∗) ∩ F ∗, then

δ2(u,Gu,C) = δ2(Fu,Gu,C)

≤ c1max
{

D2(fu, gu, C), δ2(fu, Fu,C), δ2(gu,Gu,C)
}

+ c2max {δ(fu, Fu,C).D(fu,Gu,C), D(gu, Fu,C).δ(gu,Gu,C)}

+ c3D(fu,Gu,C).D(gu, Fu,C)

= c1δ
2(u,Gu,C).

Since c1 < 1, it follows that {u} = Gu. Thus

(f∗ ∩ g∗) ∩ F ∗ ⊆ (f∗ ∩ g∗) ∩G∗.

Similarly, we can show that

(f∗ ∩ g∗) ∩G∗ ⊆ (f∗ ∩ g∗) ∩ F ∗.
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Hence

(f∗ ∩ g∗) ∩ F ∗ = (f∗ ∩ g∗) ∩G∗.

Theorem 1 and Theorem 2 imply the following:

Theorem 3. Let f, g : X → X and Fn : X → B(X), n ∈ N be mappings

satisfying the condition (3) and the following:

(11) F1x ⊆ g(X) and F2x ⊆ f(X),

(12) δ2(Fnx, Fn+1y, C)

≤ c1max
{

D2(fx, gy, C), δ2(fx, Fnx,C), δ2(gy, Fn+1y, C)
}

+ c2max {δ(fx, Fnx,C).D(fx, Fn+1y, C), D(gy, Fnx,C).δ(gy, Fn+1y, C)}

+ c3D(fx, Fn+1y, C).D(gy, Fnx,C)

for all x, y ∈ X where c1 + 2c2 < 1, c2 + c3 < 1, c1, c2, c3 ≥ 0, n ∈ N,

(13) the pairs {F1, f} and {F2, g} are weakly commuting of type (KB) at

coincidence points in X.

Then f, g and {Fn}n∈N have a unique common fixed point in X.
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