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Abstract. A single period, zero-sum, multi-player game is constructed. Each player
can either exit the game for a fixed payoff or stay and split the remaining payoff with
the other non-exiting players. The emphasis is put on the rivalrous nature of the payoffs,
meaning that the sum of all payoffs is fixed, but the exact allocation is based on the
players’ decisions. The value at which Nash and optimal equilibria are attained is shown
to be unique and it is constructed explicitly.

1. Introduction

The classic Dynkin game, introduced by Dynkin [3] and extended by
Neveu [12], is a zero-sum, optimal stopping game between two players where
each player can stop the game for a payoff observable at that time. Much re-
search has been done on this as well as its related problems (see, for instance,
[1, 4, 9, 11, 13, 14, 15, 17] and the references therein). One application of
Dynkin games is in the study of a game contingent claim, or a game option,
as defined by Kifer [10] (see also Kallsen and Kühn [7]), who proved the
existence and uniqueness of its arbitrage price.

Various formulations of multi-player Dynkin games can be found in the
literature. Solan and Vieille [15] introduced a quitting game, which ter-
minates when any player chooses to quit; then each player receives a payoff
depending on the set of players quitting the game. Under certain payoff con-
ditions, a subgame-perfect uniform ǫ-equilibrium using cyclic strategies can
be found. In Solan and Vieille [16], another version is presented, in which the
players are given the opportunity to stop the game in a turn-based fashion.
A subgame-perfect ǫ-equilibrium was again shown to exist and consisted of
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pure strategies when the game is not degenerate. Hamadène and Hassani [6]
presented a nonzero-sum Dynkin game where each player has his own sep-
arate payoff process. These processes are independent of the other players’
decisions. Consequently, in the event where a player does not stop first, his
payoff does not depend on who stopped the game exactly.

The purpose of this work is to formulate a simple variant of the Dynkin
game with more than two players in a manner that allows for the construc-
tion of a multi-player extension of the financial game option. A zero-sum,
simultaneous multi-player game is introduced, with a focus on designing the
dependence between the payoffs of all players and their stopping decisions.
In effect, we are modelling a multilateral ‘contract’ where all the players are
sharing a fixed total sum of wealth. But each player also has the option to
exit or terminate the contract for a predetermined benefit. The non-exiting
players will receive an adjusted benefit to reflect the discrepancies caused
by these exiting decisions. These adjustments are distributed among the
remaining players according to their ‘powers’, a predetermined property of
each player, to ensure that the total wealth is fixed.

Specifically, we present a new variant of a deterministic stopping game
with a single opportunity for simultaneous exercise. The main result of the
paper is Theorem 3.2 in which we show that the game has the unique payoff
value, where Nash equilibria, as well as optimal equilibria, are achieved. The
uniqueness of the value (but not its existence and explicit construction) can
be seen as a special case of results due to Kats and Thisse [8] and De Wolf [2],
who showed that, in any weakly unilaterally competitive game, all Nash
equilibria and optimal equilibria achieve the same value. For completeness,
an independent proof of this property for the particular game considered in
this work is provided. The existence of the optimal equilibrium is shown by
explicit construction and the value of the game is expressed as the projection
onto a simplex in a fixed-sum coordinate system.

It is worth noting that a study of the game introduced in this paper is
merely a preliminary step towards an analysis of nonzero-sum multi-player
stochastic stopping games. Indeed, there are many opportunities for further
generalisations and extensions. In particular, all results can be applied to
the stochastic case where both terminal and exercise payoffs are allowed to
be random and adapted to some filtration. Analogous multi-player financial
game options can be constructed as well, where the properties of the optimal
equilibrium will be reflected in the super-hedging arguments used to price
these options within the framework of a complete model of the financial mar-
ket. Some of these extensions are presented in the follow-up paper by Guo [5].

The paper is organised as follows. In Section 2, we construct the game
and discuss its basic features. Various concepts of equilibrium are introduced
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and some preliminary results are established. In Section 3, we present the
existence and uniqueness of the value of the game by analysing projections
in a fixed sum coordinate system. The crucial feature of the game is a con-
structive way of obtaining its value. Throughout this paper, the game option
terminology of ‘exercise’ will be utilised when referring to the ‘stopping’ or
‘quitting’ of the game by the players. The corresponding payoff from doing
so will be called ‘exercise payoffs’.

2. Preliminary results

Let us first recall briefly the mechanism of a two player game option, as
defined in Kifer [10]. The game option is a contract where the buyer can
exercise the option at any time t for a payoff Xt, while the seller can cancel
(or also ‘exercise’) the option at any time t for a cancellation fee of Yt paid
to the buyer. In the case of a two player game option, it is common to
postulate that the inequality Xt ≤ Yt holds for every t. In other words, the
cancellation fee should always at least as great as the exercise payoff. This
ensures that the outcome of the contract will always be well defined. When
the buyer exercises, it will cost the seller at least as much if he also cancels.
Similarly, when the seller cancels, the buyer can only lose by exercising. If
the players are exercising optimally, simultaneous exercise only occurs when
the equality Xt = Yt is true, in which case the payoff is still well defined.

There are various way to generalise the exercising mechanism of the two
player version. In this work, we restrict ourselves to the special case where
the players are only allowed to exercise at one predetermined time. Another
issue is the ‘burden’ of one player exercising. In the two player version, when
one player exercises, the entirety of that payoff (or ‘cost’), whether positive
of negative, is paid for by the other player. In the multi-player version, this
burden will be paid for by all of the non-exercising players. It will be split
up according to the ‘power’ of each player, which is agreed before the game
is played. The restriction Xt ≤ Yt in the two player contract translates to∑

k Xk ≤ 0 with k running over the set of all players. This is required to pre-
vent the possibility of everyone from exercising simultaneously without being
able to fund the cost of the outcome. In fact, the value of the sum can be
changed from 0 to any constant C, but we still refer to it as a zero-sum game.

We will now set up the notation for a zero-sum, single-period, determin-
istic game with m players. There are m players , that is, parties involved in
the contract, enumerated by the indices 1, 2, . . . ,m; the set of all players is
denoted by M. The terminal payoff Pk is the amount received by player k
if no player exercises. The vector of terminal payoffs [P1, . . . , Pm] is denoted
by P . The exercise payoff Xk is the amount received by player k if he exer-
cises at time 0. The vector of exercise payoffs [X1, . . . , Xm] is denoted by X.
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We define the total value of the game as the sum of the terminal payoffs and
we denote it by C, that is, C :=

∑
k∈M Pk. Intuitively, the total value of the

game can be understood as the total contribution by the players to enter the
game in the first place. The following standing assumption is crucial, since
it ensures that, no matter how the players exercise, the total payoffs can be
financed by the total initial investment C (see Lemma 2.1).

Assumption 2.1. We postulate that
∑

k∈M

Xk ≤
∑

k∈M

Pk = C.

The strategy sk ∈ Sk of player k specifies whether player k will exercise,
where Sk = {0, 1} is the space of strategies for player k. In particular, sk = 0
means that player k will exercise at time 0, whereas sk = 1 means that player
k will not exercise. We define

U =
∏

k∈M

Sk

to be the space of all m-tuples of strategies and we call any u ∈ U a strategy
profile. Given a strategy profile u ∈ U , the exercise set , denoted by E(u), is
the set of players who exercised at time 0.

The main difference between the game introduced here and its counter-
parts studied in [6, 15, 16] is the rivalrous nature of the payoffs, meaning
that the total value of the game is fixed and shared between the players.
Hence each exercise action causes a suitable redistribution of the payoffs.
The difference due to exercise, denoted by D(u), equals

D(u) =
∑

k∈E(u)

(Xk − Pk).

For any strategy profile u ∈ U , we define the weights wk(u) for all k ∈
M \ E(u) as real numbers such that wk(u) ≥ 0 and

∑
k∈M\E(u) wk(u) = 1.

Given a strategy profile u ∈ U , the modified payoff of player k, denoted
by Vk(u), is the actual payoff received by player k if a strategy profile u is
carried out. By definition, it equals

Vk(u) =

{
Xk, k ∈ E(u),

Pk(u), k ∈ M \ E(u),

where Pk(u) := Pk − wk(u)D(u) specifies the payoff for a non-exercising
player k. The vector of modified payoffs [V1(u), . . . , Vm(u)] is denoted as
V (u). We are in a position to define the class of games examined in this work.

Definition 2.1. The zero-sum m-player game, denoted by G, is defined
by:
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(i) the set of m players M = {1, 2, . . . ,m},
(ii) the real valued exercise and terminal payoffs, Xk and Pk for every

k ∈ M,
(iii) the class U =

∏
k∈M Sk of strategy profiles,

(iv) the weights wk(u) ≥ 0, k ∈ M \ E(u) for any strategy profile u ∈ U ,
where E(u) is the exercise set of a strategy profile u,

(v) the modified payoffs Vk(u) for all k ∈ M and each strategy profile u.

The following result justifies the term zero-sum used in Definition 2.1.

Lemma 2.1. (i) If a strategy profile u is such that not all players exercise
at time 0, that is, E(u) 6= M, then

∑
k∈M Vk(u) = C.

(ii) If all players exercise at time 0, that is, E(u)=M, then
∑

k∈M Vk(u)≤C.

Proof. The first statement is an immediate consequence of the definition of
the vector of modified payoffs. The second statement follows from Assump-
tion 2.1, since

∑
k∈M Vk(u) =

∑
k∈MXk ≤ C.

2.1. Nash equilibrium. A strategy profile is referred to as a Nash equilib-
rium if no player can improve his modified payoff by altering only his own
strategy.

Definition 2.2. A strategy profile u∗ ∈ U is a Nash equilibrium if, for all
k ∈ M,

(1) Vk

([
s∗k, s

∗
−k

])
≥ Vk

([
sk, s

∗
−k

])
, ∀ sk ∈ Sk.

We will now examine some basic features of a Nash equilibrium for our
game. We show, in particular, that any player, whose terminal payoff is less
than his exercise payoff, will exercise in any Nash equilibrium.

Proposition 2.1. Let a strategy profile u∗ be a Nash equilibrium. Then:

(i)
∑

k∈M Vk(u
∗) = C,

(ii) D(u∗) ≥ 0,
(iii) for each player k ∈ M we have that Xk ≤ Vk(u

∗),
(iv) for each player k ∈ M \ E(u∗) we have that Vk(u

∗) ≤ Pk,
(v) if Xk > Pk then k ∈ E(u∗).

Proof. To prove part (i), we argue by contradiction. Assume that u∗ is a
Nash equilibrium and

∑
k∈M Vk(u

∗) < C. Then, by Lemma 2.1, we must
have E(u∗) = M, so every player exercised. If player i decides to not exercise
instead, his new payoff becomes C−

∑
k 6=i Vk(u

∗) > Vi(u
∗), which shows that

u∗ is not a Nash equilibrium.
We will now show that part (ii) is valid. Suppose the contrary, that is,

D(u∗) < 0. Then there must exists a player k ∈ E(u∗) with Xk − Pk < 0.
Let us write u∗ = [0, s∗−k] and let us consider the modified strategy profile
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û = [1, s∗−k], meaning that player k chooses not to exercise. Then E(û) =
E(u∗) \ {k} and his modified payoff equals

Pk(û) = Pk − wk(û)
∑

i∈E(û)

(Xi − Pi).

Since u∗ is a Nash equilibrium, we have Vk(û) = Pk(û) ≤ Xk = Vk(u
∗).

Therefore,

Xk − Pk(û) = Xk − Pk + wk(û)
∑

i∈E(û)

(Xi − Pi) ≥ 0,

which in turn implies that
∑

i∈E(û)(Xi−Pi) ≥ 0 (since Xk−Pk < 0). Finally,

0 ≤ wk(û) ≤ 1 and thus

D(u∗) =
∑

i∈E(u∗)

(Xi − Pi) ≥ Xk − Pk + wk(û)
∑

i∈E(û)

(Xi − Pi) ≥ 0,

which contradicts the assumption that D(u∗) < 0.
To establish (iii), assume that Xk > Vk(u

∗) for some k ∈ M. Then we
have

Vk

([
s∗k, s

∗
−k

])
< Xk = Vk

([
0, s∗−k

])

so that u∗ is not a Nash equilibrium and thus (iii) is valid. For part (iv), we
note that for every k ∈ M \ E(u∗)

Vk(u
∗) = Pk(u

∗) = Pk − wk(u
∗)D(u∗) ≤ Pk,

since D(u∗) ≥ 0, by part (ii). To prove (v), assume that k ∈ M \ E(u∗),
meaning that player k did not exercise. Since u∗ is a Nash equilibrium, the
modified payoff of player k should be at least as great as his exercise payoff,
that is,

Pk(u
∗) = Pk − wk(u

∗)D(u∗) ≥ Xk > Pk.

This implies that D(u∗) < 0, which in turn contradicts part (ii).

2.2. Optimal equilibrium. The next definition strengthens the concept
of a Nash equilibrium.

Definition 2.3. A strategy profile u∗ ∈ U is an optimal equilibrium if, for
all k ∈ M,
(2)
Vk

([
s∗k, s−k

])
≥ Vk

([
s∗k, s

∗
−k

])
≥ Vk

([
sk, s

∗
−k

])
, ∀ sk ∈ Sk, ∀ s−k ∈ S−k.

A vector V ∗ ∈ Rm is called a value of the game G if there exists an optimal
equilibrium u∗ with V ∗ = V (u∗) = [V1(u

∗), . . . , Vm(u∗)].

The right-hand side inequality in (2) makes it clear that an optimal
equilibrium is a Nash equilibrium. Let us examine the basic features of an
optimal equilibrium in the present context.
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Lemma 2.2. Let u∗ be any optimal equilibrium. For each player k, it is not
possible to guarantee a payoff greater than Vk(u

∗).

Proof. Assume, on the contrary, that it is possible for player k to guarantee
a payoff greater than Vk(u

∗) with some strategy s′k ∈ Sk, that is,

(3) min
s−k∈S−k

Vk

([
s′k, s−k

])
> Vk

([
s∗k, s

∗
−k

])
= Vk(u

∗).

Consider the strategy profile u′ = [s∗1, . . . , s
∗
k−1, s

′
k, s

∗
k+1, . . . , s

∗
m], where every

other player uses their optimal equilibrium strategy. In view of (3), we should
thus have Vk(u

′) > Vk(u
∗). By the left-hand side inequality in (2), Vi(u

′) ≥
Vi(u

∗) for all i 6= k. By Lemma 2.1, the inequality
∑

i∈M Vi(u
′) ≤ C holds,

whereas part (i) in Proposition 2.1 yields
∑

i∈M Vi(u
∗) = C. Consequently,

Vk(u
′) ≤ C −

∑

i 6=k

Vi(u
′) ≤ C −

∑

i 6=k

Vi(u
∗) = Vk(u

∗),

which contradicts the inequality Vk(u
′) > Vk(u

∗). Hence the assertion of the
lemma follows.

Proposition 2.2. The value V ∗ = [V ∗
1 , . . . , V

∗
m] of the game G is unique.

Moreover, the vector V ∗ satisfies Xk ≤ V ∗
k and

∑
k∈M V ∗

k = C.

Proof. Assume there exists a value V ∗ = V (u∗) with a corresponding op-
timal equilibrium u∗. If there is a second value V ′ = V (u′) 6= V ∗, cor-
responding to an optimal equilibrium u′, then there must exist a player k
for which Vk(u

∗) 6= Vk(u
′). Without loss of generality, we may assume that

Vk(u
′) > Vk(u

∗). By Lemma 2.2, it is not possible for player k to guarantee
a payoff greater than Vk(u

∗). However, since u′ is an optimal equilibrium, it
is possible to guarantee a payoff of Vk(u

′) > Vk(u
∗), yielding an immediate

contradiction. In view of Proposition 2.1, the value V ∗ satisfies Xk ≤ V ∗
k

and
∑

k∈M V ∗
k = C.

There are a couple of other properties worth noting. We will merely state
these properties, since their proofs are immediate consequences of definitions.

Proposition 2.3. (i) A strategy profile u∗ ∈ U is an optimal equilibrium
if and only if for any proper subset E ⊂ M we have that

∑

k∈E

Vk

([
s∗E , s

∗
−E

])
≥

∑

k∈E

Vk

([
sE , s

∗
−E

])
, ∀ sE ∈ SE :=

∏

k∈E

Sk.

(ii) If there exists an optimal equilibrium u∗ then the corresponding unique
value V ∗ = V (u∗) satisfies

Vk(u
∗) = V ∗

k = min
s−k∈S−k

max
sk∈Sk

Vk

([
sk, s−k

])
= max

sk∈Sk

min
s−k∈S−k

Vk

([
sk, s−k

])

where S−k =
∏

i 6=k Si.
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At the intuitive level, the ‘fair value’ of the game for player k is the
highest amount one would offer to take up the position of player k. We
claim that this value is equal to the unique value V ∗

k , provided that it exists.
Indeed, by the definition of an optimal equilibrium, this amount not only can
be guaranteed by player k by playing optimally no matter what the decisions
of all other players are, but it is also the highest possible payoff for player
k, if everyone else also plays perfectly.

2.3. Weakly unilaterally competitive games. In order to proceed fur-
ther, we need to be more explicit about the way in which the weights wk(u)
are specified. We find it convenient to express them in terms of players’
powers. The power of each player is used to compute the weight and thus to
determine how the payoffs are redistributed among non-exercising players.
For the rest of the paper, we work under the following standing assumption.

Assumption 2.2. For any strategy profile u ∈ U and any k ∈ M \ E(u),
the weight wk(u) is given by the equality

(4) wk(u) =
ak∑

i∈M\E(u) ai
,

where, for each i ∈ M, a strictly positive number ai represents the power of
player i.

In the distribution of the difference due to exercise, D(u), the weights
given by (4) induce an important property. Assume some players change
their strategies from non-exercising to exercising, thus changing the strategy
profile from u to u′. Instead of recalculating the distribution of D(u′), we can
simply split up D(u′)−D(u) according to the powers and adjust the modified
payoffs of the remaining non-exercising players. These weights can also be
described to be invariant under projection, allowing for the construction of
subgames (see Section 3.3).

In papers by De Wolf [2] and Kats and Thisse [8], a game is said to be
weakly unilaterally competitive if for arbitrary k, l ∈ M and all sk, s

′
k ∈ Sk

and s−k ∈ S−k

Vk

([
sk, s−k

])
> Vk

([
s′k, s−k

])
⇒ Vl

([
sk, s−k

])
≤ Vl

([
s′k, s−k

])
,

Vk

([
sk, s−k

])
= Vk

([
s′k, s−k

])
⇒ Vl

([
sk, s−k

])
= Vl

([
s′k, s−k

])
.

As shown in [2, 8], in a weakly unilaterally competitive game, all Nash equi-
libria must have the same value, where optimal equilibria are also achieved.
When the weights are defined in terms of powers through formula (4), it is
easy to check that the game introduced in Definition 2.1 is weakly unilater-
ally competitive, irrespective of a choice of the exercise and terminal payoffs.
Consequently, the Nash equilibria must coincide with the optimal equilibria
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in terms of the value. For the sake of completeness, we present in the next
section an independent proof of this result for our game. More importantly,
we provide also explicit constructions of the game’s value and an optimal
equilibrium.

3. Construction of an optimal equilibrium

The goal of this section is to establish the existence and uniqueness of the
game’s value. We first examine, in Theorem 3.1, the case of the degenerate
game. Next, in Proposition 3.3, any Nash equilibrium is shown to also be
an optimal equilibrium. Finally, we show in Theorem 3.2 that an optimal
equilibrium always exists and any optimal equilibrium attains the unique
value. We also provide an explicit construction of the value by projection
and we propose an algorithm for finding an optimal equilibrium. Recall that
we work under the standing Assumptions 2.1 and 2.2.

3.1. Value of the degenerate game. Recall that the strategy of each
player consists of a binary choice of whether to exercise at time 0 or not.
Hence the map E : U → 2M is a bijection between the class of all strategy
profiles and the class of all exercise sets. The degenerate game is charac-
terised by the equality

∑
k∈MXk = C where C :=

∑
k∈M Pk. It is worth

noting that Theorem 3.1 can be seen as a special case of Theorem 3.2 when
the simplex S and the hyperplane HM, introduced in Section 3.2 below, are
degenerate, specifically, S = HM = X. This feature motivates the terminol-
ogy degenerate game.

Theorem 3.1. If
∑

k∈MXk = C then the unique value V ∗ to the game G
satisfies V ∗ = X. Moreover, the strategy profile u∗ = [0, . . . , 0] is an optimal
equilibrium.

Proof. The uniqueness is a consequence of Proposition 2.2, but we will
demonstrate it anyway for this case. Assume there exists an optimal equi-
librium u∗ with

V (u∗) = [V1(u
∗), . . . , Vm(u∗)] 6= [X1, . . . , Xm] = X.

By part (i) in Proposition 2.1,
∑

k∈M Vk(u
∗) = C =

∑
k∈MXk, so that

Vi(u
∗) < Xi for some i ∈ M (indeed, otherwise Vk(u

∗) = Xk for all k ∈
M, which contradicts the assumption). By part (iii) in Proposition 2.1, a
strategy profile u∗ cannot be an optimal equilibrium.

To show the existence of an optimal equilibrium, let us consider the
strategy profile u∗ = [0, . . . , 0] that corresponds to all players exercising
at time 0. Since each player exercises, his payoff is guaranteed to be Xk,
regardless of the other players’ decisions. In fact, one easily check that (2)
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holds, that is, u∗ is an optimal equilibrium. It is also obvious that u∗ attains
the required values, since manifestly V (u∗) = X = V ∗.

Remark 3.1. Let us stress that when
∑

k∈MXk = C not every strategy
profile u such that V (u) = V ∗ is an optimal equilibrium. Consider, for
instance, the two player game where P = [0, 0] and X = [1,−1]. An optimal
equilibrium occurs when both players exercise, so that u∗ = [0, 0], and the
value is V ∗ = [1,−1]. But if only player 2 exercises, so that u = [1, 0], the
same value is reached since V (u) = [1,−1]. The strategy profile u is not
an optimal equilibrium, however, as player 2 could now do better by not
exercising. Indeed, for the strategy profile û = [1, 1] we obtain V (û) = [0, 0],
and thus V2(û) > V2(u).

3.2. Value space and projections. Our next goal is to examine the non-
degenerate game, meaning that

∑
k∈MXk < C. Recall that P and V can

be seen as vectors in Rm. We define the hyperplane

(5) H =

{
x ∈ R

m :
m∑

k=1

xk = C

}
,

so that P lies on H. In addition, by part (i) in Proposition 2.1 and Definition
2.3, any value V of the game must also lie on H. The value space of the
game G is the hyperplane H in Rm.

We endow the space Rm with the the norm ‖ · ‖ generated by the following
inner product

〈x,y〉 =
m∑

k=1

(
xkyk
ak

)
.

The following auxiliary result summarises some standard properties of pro-
jections.

Lemma 3.1. For any vector P and any closed convex set K in Rm, there
exists a unique projection of P onto K, denoted by πK(P ), such that πK(P ) ∈
K and

‖πK(P )− P ‖ ≤ ‖Q− P ‖ , ∀Q ∈ K.

If K is a hyperplane then the projection is orthogonal, that is, πK(P ) is the
unique vector in K such that

〈πK(P )− P ,Q− πK(P )〉 = 0, ∀Q ∈ K.

Let J be a closed convex subset of the hyperplane K. Then for any vector P

we have πJ(P ) = πJ(πK(P )).
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For any proper subset E ⊂ M, we define the hyperplane

(6) HE =

{
x ∈ R

m : xi = Xi for all i ∈ E and
m∑

k=1

xk = C

}
.

It is clear from (5) that H∅ = H and HE ⊆ H. For completeness, we also
denote

HM =

{
x ∈ R

m : xi = Xi for all i ∈ M

}
= X.

Observe that HM = X /∈ H, unless the equality
∑

k∈MXk = C holds.

Lemma 3.2. Let E be a proper subset of M and let ci, i ∈ E and α be
any real numbers. Then the vector v = [v1, . . . , vm] is orthogonal to the

hyperplane Ĥ given by

Ĥ =

{
x ∈ R

m : xi = ci for all i ∈ E and
∑

k∈M\E

(
vkxk
ak

)
= α

}
.

Proof. It suffices to check that for every x1,x2 ∈ Ĥ we have that 〈x1 −
x2,v〉 = 0.

Proposition 3.1 gives us an elegant and alternate way of representing
and computing the modified payoffs when the exercise set is known. It also
justifies ex post our choice of the norm.

Proposition 3.1. Let u ∈ U be any strategy profile such that E(u) is a
proper subset of M. Then the vector V (u) of modified payoffs equals

V (u) = πHE(u)
(P ) .

Proof. For the sake of brevity, we denote E := E(u). If E = M then, clearly,
the equalities V (u) = X = HM hold. If E is a proper subset of M then the
vector V (u) equals

V (u) =
[
Vi(u) = Xi, i ∈ E , Vi(u) = Pi(u) = Pi − wi(u)D(u), i ∈ M \ E

]
.

Note that V (u) lies on HE since, by Lemma 2.1(i),
∑

i∈M Vi(u) = C. Let

v := P − V (u) =
[
vi = Pi −Xi, i ∈ E , vi = wi(u)D(u), i ∈ M \ E

]
.

Upon setting ci = Xi and

α =
D(u)

(
C −

∑
i∈E Xi

)
∑

i∈M\E ai
,

we deduce from Lemma 3.2 that v = P − V (u) is orthogonal to HE . We
conclude that V (u) is the orthogonal projection of P onto HE , as required.
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Consider the simplex S given by the formula

(7) S =

{
x ∈ R

m : xk ≥ Xk, 1 ≤ k ≤ m and
m∑

k=1

xk = C

}
.

Remark 3.2. In the case where
∑

k∈MXk < C, the simplex S is non-
degenerate. If, on the contrary,

∑
k∈MXk = C then S = HM = X.

By Proposition 2.1, if a strategy profile u∗ is a Nash equilibrium then
necessarily V (u∗) ∈ S. Moreover, by Proposition 2.2, the unique value V ∗

of the game G belongs to S.
Let us observe that for any proper subset E ⊂ M we have that HE∩S 6= ∅.

Note also that the inclusions HE ⊂ S and S ⊂ HE do not hold, in general.
The following auxiliary results will be used in the proof of the main result
of this work, Theorem 3.2. Lemma 3.3 shows that the projection of a point
inside the simplex still lies in the simplex. From Lemma 3.4, it follows that
if a point lies on the side of a face opposite the simplex, then the projection
must lie on that face. Finally, Lemma 3.5 demonstrates that projecting onto
the simplex is the same as projecting onto a particular hyperplane of the
simplex.

Lemma 3.3. Assume that P ∈ S. Then πHE
(P ) ∈ S for any proper subset

E ⊂ M.

Proof. By Proposition 3.1, the projection πHE
(P ) corresponds to the modi-

fied payoff when E is the set of exercising players. Let u be the corresponding
strategy profile. In particular, for any i ∈ E

[πHE
(P )]i = Xi ≤ Pi

and thus D(u) =
∑

i∈E(Xi − Pi) ≤ 0. Consequently, for any i ∈ M \ E

[πHE
(P )]i = Vi(u) = Pi − wi(u)D(u) ≥ Pi ≥ Xi

and thus πHE
(P ) ∈ S.

Lemma 3.4. Let k ∈ M. If πS(P ) /∈ H{k} then Pk > Xk. Equivalently, if
Pk ≤ Xk then πS(P ) ∈ H{k}.

Proof. Suppose that Pk ≤ Xk and assume that πS(P ) /∈ H{k}. Then the
projection Q = πH{k}

(πS(P )) is still in S (by Lemma 3.3) and it is distinct
from πS(P ) (since πS(P ) /∈ H{k}). We will show that

‖P −Q‖ < ‖P − πS(P )‖ ,(8)

which contradicts the definition of πS(P ). In the case of Pk = Xk, we have
P ,Q ∈ H{k} and πS(P )−Q being orthogonal to P −Q. Hence

‖P −Q‖2 < ‖P −Q‖2 + ‖πS(P )−Q‖2 = ‖P − πS(P )‖2 .
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To establish (8) in the case Pk < Xk, we introduce a hyperplane Ĥ{k} parallel
to H{k} by setting

Ĥ{k} =

{
x ∈ R

m : xk = Pk and
m∑

i=1

xi = C

}
,

so that, in particular, P ∈ Ĥ{k}. Let R = π
Ĥ{k}

(πS(P )), so that also

R = π
Ĥ{k}

(
πH{k}

(πS(P ))
)
= π

Ĥ{k}
(Q) .

Since Pk < Xk, R ∈ Ĥ{k} and πS(P ) ∈ S \H{k} lie on opposite sides of the
hyperplane H{k}. It is thus clear that

‖R−Q‖ < ‖R−Q‖+ ‖Q− πS(P )‖ = ‖R− πS(P )‖ .(9)

Finally, since P −R is orthogonal to both R−Q and R− πS(P ), we have

‖P −Q‖2 = ‖P −R‖2 + ‖R−Q‖2

and

‖P − πS(P )‖2 = ‖P −R‖2 + ‖R− πS(P )‖2 .

Therefore, (9) implies (8), as required.

Lemma 3.5. For any P , there exists a proper subset E ⊂ M such that
πS(P ) = πHE

(P ). In particular, if P ∈ S then E = ∅, so that HE = H∅ = H.

Proof. For P ∈ S the statement is trivial. For P /∈ S, we will proceed by
induction with respect to m. The base case when the number of players
m = 2 is easily verified.

Let us assume that P /∈ S. Then, by definition of S, there exists k ∈ M
such that Pk < Xk, and thus, by Lemma 3.4, the projection πS(P ) ∈ H{k}.
Hence by Lemma 3.1

πS(P ) = πS∩H{k}
(P ) = πS∩H{k}

(
πH{k}

(P )
)
.

By applying the induction hypothesis to P ′ = πH{k}
(P ) and S′ = S∩H{k},

while working under the domain of H{k} (instead of Rm), we can find E ′ ⊂
M \ {k} such that

πS′

(
P ′

)
= πHE′∩H{k}

(
P ′

)
= πHE′∩H{k}

(
πH{k}

(P )
)

= πHE′∩H{k}
(P ) = πHE′∪{k}

(P ) .

To complete the induction step, it suffices to set E = E ′ ∪ {k}.

3.3. Subgames. Consider a proper subset E ⊂ M and assume that every
player in E exercises at time 0. Then the game G reduces to the subgame
GM\E for players from M\E . In particular, G = GM. Let us denote by UM\E

the class of all strategy profiles for G such that si = 0 for i ∈ E . Formally,
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by the subgame GM\E we mean the game G with the reduced class UM\E of
strategy profiles. Since xi = Xi for i ∈ E , the value space of the subgame
GM\E is equal to HE .

Lemma 3.6. The terminal payoffs of the subgame GM\E can be identified
with P ′ = πHE

(P ) .

Proof. Let u be any strategy profile of G such that E(u) is a proper subset of
M such that E ⊆ E(u). This means, in particular, that u belongs to UM\E .
Set E ′(u) = E(u) \ E . By Proposition 3.1, the vector of modified payoffs
V (u) is given by

V (u) = πHE(u)
(P ) = πHE∪E′(u)

(P ) .

Since HE∪E′(u) ⊆ HE are both hyperplanes, from Lemma 3.1, we obtain

V (u) = πHE∪E′(u)
(πHE

(P )) = πHE∪E′(u)

(
P ′

)
.

By applying again Proposition 3.1, we conclude that we may identify the
vector P ′ with the vector of terminal payoffs of the subgame GM\E .

According to Lemma 3.6, the subgame GM\E can be seen as the game
with the class UM\E of strategy profiles (i.e., with active players from M\E)
and the terminal payoffs πHE

(P ). In view of Lemma 3.6, the following result
can be easily checked by the definition of an optimal (or Nash) equilibrium.

Proposition 3.2. Let u∗ = [s∗1, . . . , s
∗
m] ∈ U be an optimal (or Nash)

equilibrium of G. If for some proper subset E ⊂ M the inclusion E ⊆ E(u∗)
holds then u∗ is an optimal (or Nash) equilibrium of the subgame GM\E , that
is, the game with the class UM\E of strategy profiles and the terminal payoffs
πHE

(P ).

3.4. Value of the non-degenerate game. The following result shows that
any Nash equilibrium u∗ is also an optimal equilibrium. In other words, if
player k chooses his Nash equilibrium strategy s∗k, he is guaranteed a payoff
at least as much as the value payoff, regardless of other players’ strategies.

Proposition 3.3. Let u∗ = [s∗1, . . . , s
∗
m] be a Nash equilibrium of the

game G. Then it is also an optimal equilibrium, meaning that for any k ∈ M,
we also have that

Vk[s1, . . . , sk−1, s
∗
k, sk+1, . . . , sm] ≥ Vk[s

∗
1, . . . , s

∗
k−1, s

∗
k, s

∗
k+1, . . . , s

∗
m](10)

for all s1, . . . , sk−1, sk+1, . . . , sm ∈ S.

Proof. Consider a particular player k. If s∗k = 0 then he is exercising at time
0 and his payoff Xk is then independent of the decisions of other players,
so that (10) is valid. If s∗k = 1, we will argue by contradiction. Suppose
there exists u = [s1, . . . , sk−1, 1, sk+1, . . . , sm] such that Vk(u) < Vk(u

∗). We
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proceed by induction on the number of players. For the base case of m = 2
players, it can be easily verified that such a u does not exist.

Let us then consider any m ≥ 3. Assume first that E(u) ∩ E(u∗) 6= ∅.
Then there exists j ∈ E(u) ∩ E(u∗), meaning that player j is exercising
under both u and u∗ and, obviously, j 6= k. Hence we can consider the
reduced subgame G{−j} in which we deal with decisions of m− 1 remaining
players. By Lemma 3.6, the vector of terminal payoffs for the subgame G{−j}

can be identified with πH{j}
(P ). Next, by Proposition 3.2, any optimal

equilibrium in G is also an optimal equilibrium in G{−j}, after considering
exercise decision of player j. By the induction hypothesis on G{−j}, which
only has m − 1 players, the inequality Vk(u) ≥ Vk(u

∗) holds, and thus we
arrive at a contradiction.

Assume now that E(u) ∩ E(u∗) = ∅, so that for every i ∈ E(u) we have
that i /∈ E(u∗). By the contra-positive of part (v) in Proposition 2.1, Pi ≥ Xi

for every i ∈ E(u). Then the difference due to exercising

D(u) =
∑

i∈E(u)

(Xi − Pi) ≤ 0.

Consequently, the payoff for player k equals

Vk(u) = Pk − wk(u)D(u) ≥ Pk ≥ Vk(u
∗),

where the last inequality follows from part (iv) in Proposition 2.1. This
again yields a contradiction.

We are in a position to establish the main result of this paper, which
shows that the unique value of the game can be computed by projecting P

on the simplex S. Recall that we now assume that
∑

k∈MXk < C.

Theorem 3.2. (i) A strategy profile u∗ ∈ U is an optimal equilibrium for
the game G if and only if the set of exercising players E(u∗) is such that

πHE(u∗)
(P ) = πS(P ) .(11)

(ii) A strategy profile u∗ satisfying (11) always exists and the unique value
of the game G equals

V ∗ = V (u∗) = [V1(u
∗), . . . , Vm(u∗)] = πS(P ) .

Proof. We first demonstrate part (i) of the theorem.
(⇐) Let u∗ ∈ U be any strategy profile, such that E(u∗) satisfies

πS(P ) = πHE(u∗)
(P ) = V (u∗),

where the second equality follows from Proposition 3.1. We will prove that
u∗ is a Nash equilibrium and thus, by Proposition 3.3, it is also an optimal
equilibrium. Let us fix k ∈ M. We need to show that condition (1) is
satisfied.
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We first assume that k is not in E(u∗), so that s∗k = 1. Observe that, by
the definition of S, the condition V (u∗) = πS(P ) ∈ S implies that Vk(u

∗) ≥
Xk. Consequently,

Vk

([
1, s∗−k

])
= Vk(u

∗) ≥ Xk = Vk

([
0, s∗−k

])

and thus (1) holds. Suppose now that k belongs to E(u∗), so that s∗k = 0.
We need to show that

Vk

([
0, s∗−k

])
= Xk ≥ Vk

([
1, s∗−k

])
= Vk(u

′),(12)

where u′ is the strategy profile where k no longer exercises, whereas all other
players follow the strategy profile u∗. We thus have that E(u′) = E(u∗)\{k}
and V (u′) = πHE(u′)

(P ) is the new modified payoff. It is clear that (12)

fails to hold whenever Vk(u
′) > Xk. To complete the proof of the first

implication, it thus suffices to show that the inequality Vk(u
′) > Xk leads to a

contradiction. To this end, it suffices to show that there exists R ∈ S∩HE(u′)

such that
∥∥R− V (u′)

∥∥ <
∥∥V (u∗)− V (u′)

∥∥ .(13)

Indeed, let us suppose that such an R exists. Then, by Proposition 3.1,
V (u′) = πHE(u′)

(P ) and thus P −V (u′) is orthogonal to HE(u′). Recall that

R,V (u′) ∈ HE(u′) and also V (u∗) ∈ HE(u∗) ⊂ HE(u′). Consequently,

‖P −R‖ < ‖P − V (u∗)‖ ,

and this clearly contradicts the assumption that πS(P ) = V (u∗). We con-
clude that a strategy profile u∗ is an equilibrium, as desired.

It thus remains to show that if Vk(u
′) > Xk then there exists R ∈

S ∩ HE(u′) such that (13) holds. Let Q be the point representing the zero-
dimensional hyperplane HM\{k}, that is,

Q =
[
X1, . . . , Xk−1, X̂k, Xk+1, . . . , Xm

]
,

where X̂k = C −
∑

i∈M\{k}Xi > 0. Since the simplex S is non-degenerate,

Q and V (u′) both lie on the same side of H{k}.

If Q,V (u∗) and V (u′) are collinear, as shown in Figure 1, Q and V (u′)
must lie on the same side of V (u∗) and distinct from V (u∗). Choose R to be
any point on the interval joining V (u′) and V (u∗). Then (13) is manifestly
satisfied.

If Q,V (u∗) and V (u′) are not collinear, as shown in Figure 2, let the two-
dimensional plane containing them be A. Note that A is a subset of HE(u′).
Let the intersection of A and H{k} be the line ℓ. Now, by an application of
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Lemma 3.1, we obtain

V (u∗) = πHE(u∗)
(P ) = πH{k}∩HE(u′)

(
πHE(u′)

(P )
)

= πH{k}∩HE(u′)

(
V (u′)

)
= πℓ

(
V (u′)

)
.

The last equality holds because V (u∗) ∈ ℓ and

ℓ =
(
H{k} ∩ A

)
⊂

(
H{k} ∩HE(u′)

)
.

Therefore, V (u∗) is the orthogonal projection of V (u′) onto ℓ.

Q

V (u∗)

V (u′)

R

H{k}

Fig. 1. A plane containing Q,V (u∗) and V (u′) when they are collinear

Q

V (u′)

V (u∗)

R

ℓ

B

Fig. 2. The plane A when Q,V (u∗) and V (u′) are not collinear

Consider the closed ball on A, centered at V (u′) with radius
∥∥V (u∗)− V (u′)

∥∥ ,
name it B. Under our norm, B is an ellipse and ℓ is the tangent at V (u∗).
Since Q lies on the same side of ℓ as V (u′), the interval joining Q and V (u∗)
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must contain a point R lying on the interior of B. Hence
∥∥R− V (u′)

∥∥ <
∥∥V (u∗)− V (u′)

∥∥

which completes this part of the proof.

(⇒) We start by noting that Lemma 3.5 yields the existence of a strategy
profile u∗ such that πHE(u∗)

(P ) = πS(P ). The first part of this proof implies
that u∗ is also an optimal equilibrium. Suppose that there exists another
optimal equilibrium u′ corresponding to the value V (u′). From Proposition
2.2, we deduce that V (u′) = V (u∗). Consequently,

πS(P ) = V (u′) = πHE(u′)
(P ) ,

where the last equality follows from Proposition 3.1. Part (ii) is an immediate
consequence of Lemma 3.5, Proposition 2.2 and Proposition 3.1.

Recall that in the degenerate case, we have S = X = HM (see Remark
3.2). Hence, for any P we obtain πS(P ) = X = πHM

(P ). This shows that
Theorem 3.1 can be reformulated as a special case of Theorem 3.2. The result
for the non-degenerate case

∑
k∈MXk < C is similar to the result obtained

for the degenerate case
∑

k∈MXk = C, except that in the former case any
strategy profile u corresponding to the value V ∗ is an equilibrium, which is
not necessarily true in the latter case (see Remark 3.1 for a counterexample).
Recall also that, by Lemma 2.2, for any optimal equilibrium u∗, the value
payoff of Vk(u

∗) is the greatest payoff player k can guarantee. Player k can
ensure this payoff by simply carrying out his optimal equilibrium strategy
s∗k implicit in the strategy profile u∗. To summarise, the game has the
unique value V ∗ at which the equilibria are achieved. The value V ∗ also
represents the largest possible payoff each player can guarantee, irrespective
of strategies of other players. Hence the value V ∗ is also the unique value
of the game at time 0. Furthermore, V ∗ is financed precisely by the total
initial investment, meaning that

∑
k∈M Vk(u

∗) = C.

Remark 3.3. An algorithm of finding an optimal equilibrium u∗ with the
property πHE(u∗)

(P ) = πS(P ) can be inferred from Lemma 3.5 and its proof.
Basically, if P does not belong to S then there exists k ∈ M with Pk < Xk.
This means that s∗k = 0 and thus player k should exercise at time 0. The
game is then reduced to the subgame G{−k} with one less player, with the
new terminal payoff πH{k}

(P ), the value space H{k} and the sub-simplex
S∩H{k}. This is repeated recursively until the point lies inside the simplex,
which will occur within m− 1 iterations.
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