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Abstract. Principle of Conditioning is a well-known heuristic rule which allows
constructing limit theorems for sums of dependent random variables from existing limit
theorems for independent summands. In the paper we state a general limit theorem on
converegnce to stable laws, which is valid for stationary sequences and provides a link
between the Principle of Conditioning and ergodic theorems.

1. Introduction
Principle of Conditioning is a heuristic rule which allows constructing

limit theorems for sums of dependent random variables from existing limit
theorems for independent summands. For example, applying the Principle
of Conditioning to the Lindeberg–Feller Central Limit Theorem, one ob-
tains the Martingale Central Limit Theorem due to Brown and Eagleson
[4]. Indeed, in the Lindeberg–Feller theorem we deal with a triangular array
{Xn,j ; j = 1, 2, . . . , jn, n ∈ N} of random variables, which are independent
in rows and satisfy EXn,j = 0, EX2

n,j < +∞, j = 1, 2, . . . , jn, n ∈ N. Then
the conditions jn

∑

j=1

EX2
n,j → 1,

jn
∑

j=1

EX2
n,jI{|Xn,j| > ε} → 0, for every ε > 0,

held as n→ ∞, imply the convergence in distribution of sums in rows:

(1)

jn
∑

j=1

Xn,j −→
D

N (0, 1), as n→ ∞.
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The Principle of Conditioning says that if in the above conditions we replace:

• the expectations by conditional expectations with respect to the past,
• the summation to constants by summation to stopping times,
• the convergence of numbers by convergence in probability of random vari-

ables appearing in conditions,

then still the conclusion (1) will hold. In particular, we obtain a slight
refinement of the Martingale Central Limit Theorem given in [4]:

Theorem 1.1. Let {Xn,j ; j ∈ N, n ∈ N} be an array of random vari-
ables, which are row-wise adapted to a sequence of filtrations {{Fn,j ; j =
0, 1, . . .} ; n ∈ N}. For each n ∈ N, let τn be a stopping time with respect to
{Fn,j ; j = 0, 1, . . .}.

If E
(

Xn,j

∣

∣Fn,j−1

)

= 0, j, n ∈ N, (i.e. {Xn,j} is a martingale difference
array) and, as n→ ∞,

τn
∑

j=1

E
(

X2
n,j

∣

∣Fn,j−1

)

−→P 1,

τn
∑

j=1

E
(

X2
n,jI{|Xn,j| > ε}

∣

∣Fn,j−1

)

−→P 0, for every ε > 0,

then
τn
∑

j=1

Xn,j −→
D

N (0, 1), as n→ ∞.

The Principle of Conditioning is valid for more general theorems, includ-
ing convergence to infinitely divisible laws with finite variance [4], general
infinitely divisible laws [16], [2], limit theorems in Hilbert spaces [11], [13]
and in certain Banach spaces [21] and an extension to functional limit the-
orems for sums [6] and for semimartingales [10]. We refer the reader to the
expository paper [12], where detailed formulations, discussion and examples
are contained. Later developments related to the Principle of Conditioning
can be found in the well-known books by Kwapień and Woyczyński [17] and
de la Peña and Giné [5].

From the contemporary perspective the Principle of Conditioning looks
like an old-fashioned chapter of research, intensively developed in the period
1970–1985 and essentially closed nowadays.

This is not so, at least by two reasons. One of them is the fact that there
seems to be again a growing interest in limit theorems related to martingale
methods. Young people approach various problems in the limit theory by
advanced tools like the Malliavin calculus, sometimes with referencing to
the history [20] and sometimes not (see [19], where the results for quadratic
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forms from [14] were rediscovered). On the other hand the emergence of new
econometric models (see e.g. [22]) or physical motivations (see e.g. [15]) show
that there are still many problems where limit theorems “with conditioning”
lie in the heart of the reasoning.

The other reason is the tool that stands behind the verbal expression for
the Principle of Conditioning.

Main Lemma. [11] Let {Xn,j ; j = 1, 2, . . . , kn, n ∈ N} be an array of
random variables which are row-wise adapted to a sequence of filtrations
{{Fn,j}j=0,1,...,kn}n∈N. Define

φn,j(θ) = E(eiθXn,j |Fn,j−1), φn(θ) = φn,1(θ) · φn,2(θ) · . . . · φn,jn(θ).
If

(2) φn(θ) −→
P

C(θ) 6= 0,

where C(θ) is a constant, then also

Eeiθ(Xn,1+Xn,2+...+Xn,jn) → C(θ).

The Main Lemma admits a useful variant for normalized sequences (see
[12, Theorem 3.1]).

Main Lemma for Sequences. Let {Xj ; j ∈ N} be a sequence of
random variables adapted to a filtration {Fj ; j = 0, 1, 2, . . .}. Let Bn → ∞
be a sequence of constants. Define

φn,j(θ) = E(eiθXj/Bn |Fj−1), φn(θ) = φn,1(θ) · φn,2(θ) · . . . · φn,jn(θ).
If

(3) φn(θ) −→
P

C(θ),

where C(θ) is a random variable such that P
(

C(θ) 6= 0
)

= 1, then also

Eeiθ(X1+X2+...+Xjn)/Bn → EC(θ).

If (3) holds for every θ ∈ R
1 and

C(θ) = C(θ, ω) =
�

R1

eiθxµ(dx, ω),

for some random probability measure µ(·, ω), then
(

X1+X2+ . . .+Xjn

)

/Bn

converges in distribution to the mixture ν(·) = Eµ(·, ω) and the convergence
is stable in the Renyi sense.

We are going to demonstrate that the two above results can often be
applied directly, i.e. without verifying the whole list of conditions of the
type given in Theorem 1.1.
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2. Two special models

2.1. GARCH(1,1) processes. A GARCH(1,1) process is defined by the
system of recurrence equations

Xj = σjZj ,(4)

σ2j = β + λX2
j−1 + δσ2j−1 ,(5)

where the constants β, λ, δ are nonnegative, {Zj} is an i.i.d. noise, σj ≥ 0
and X0 and σ20 are given and independent of {Zj}j≥1. If δ = 0 in (5) then
the corresponding process is called ARCH(1) process.

The terminology (ARCH stands for “Autoregressive Conditionally Het-
eroskedastic", while GARCH is the “Generalized ARCH") was introduced by
Engle [8] and Bollerslev [3] in the context of modelling volatility phenomena
in econometric time series. There exists a huge literature on both theoret-
ical and practical aspects of GARCH processes. We refer the reader to the
mathematical introduction to ARCH processes given in [7] and to the recent
advanced source [9].

It is well known that if λ+ δ < 1, then there exists a strictly stationary
sequence {(Xj, σ

2
j )} built on the i.i.d. noise {Zj}, satisfying (4) and (5) and

such that

(6) Eσ2j = EX2
j =

β

1− λ− δ
.

Following Engle, let us assume that

(7) the noise variables are standard normal: Zj ∼ N (0, 1).

Theorem 2.1. Suppose that λ+ δ < 1, β > 0, (7) holds and (X0, σ
2
0) are

chosen to make the whole sequence {(Xn, σ
2
n)} stationary.

Then
X1 +X2 + . . .+Xn√

n
−→
D

N
(

0,
β

1− λ− δ

)

.

The above theorem seems to be well-known and can be proved in various
ways. One possible direction is based on mixing properties of GARCH pro-
cesses. Mikosch and Stărică [18] proved that GARCH(1,1) processes with
Gaussian multiplicative renewals are strongly (or α-)mixing with exponen-
tial rate. This means that α(n) ≤ Kρn for some constants K > 0 and
ρ ∈ (0, 1), where for a stochastic process {Yj}j∈N the well-known coefficient
α(n) = α(n, {Yj}) is defined as

α(n) = sup
{

|P (A ∩B)− P (A)P (B)| ; A ∈ Fm
1 , B ∈ F∞

m+n,m ∈ N
}

,

with Fm
1 = σ{Yj ; j ≤ m} and F∞

m+n = {Yj ; j ≥ m + n}. Since we have
exponential α-mixing and there exist moments higher than 2 (due to λ+δ <
1), it is easy to use the CLT for strongly mixing sequences. On the other
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hand {Xn,j =
Xj√
n
; j = 1, 2, . . . , n, n ∈ N} is a square integrable martingale

difference array, so one might use also the Martingale CLT.
We prefer another proof, based on our Main Lemma from Section 1.

Indeed, by (4), (5) and (7), the regular distribution of Xj given the “past"
is of the form

N (0, β + λX2
j−1 + δσ2j−1).

Hence

φn,j(θ) = E
(

eiθXj/
√
n
∣

∣Fj−1

)

= exp

(

− 1

2n
θ2(β + λX2

j−1 + δσ2j−1)

)

,

and by the Individual Ergodic Theorem

− lnφn(θ) =
1

n

n
∑

j=1

1

2
θ2(β + λX2

j−1 + δσ2j−1)

→ 1

2
θ2(β + λEX2

0 + δEσ20) a.s.

=
β

1− λ− δ
by (6).

If λ + δ = 1 then the stationary solution to (4) and (5) has infinite
variance and things become rather delicate. To bring out the flavour of
possible complications we state here a particular result for this case.

Theorem 2.2. Assume δ = 0, λ = 1 and β > 0. Then

X1 +X2 + . . .+Xn√
n lnn

−→
D

N
(

0, Cβ,1

)

,

where

Cβ,1 =
β

E
[

(

Z2
1 ) ln(Z

2
1 )
] ≈ 1.3705 · β.

Proof. Writing down lnφn(θ) as before we obtain

− lnφn(θ) =
1

n lnn

n
∑

j=1

1

2
θ2(β +X2

j−1) ∼
1

2
θ2

1

n lnn

n
∑

j=1

X2
j−1

and the convergence in probability of φn(θ) is not obvious at all, unless we
apply the proper tool - the weak law of large numbers due to Szewczak [23].

The reader is referred to [1] for discussion of the radically different case
λ+ δ > 1.

2.2. Martingale transforms with stable multiplicative noise. Sur-
gailis [22] discussed a class of complex GARCH-like models (“Quadratic
ARCH(∞)”) and showed that in some cases their limit behaviour can be
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reduced to limit theorems for “martingale transforms" of special shape. Fol-
lowing Appendix B in [22] let us consider the following class of stationary
processes.

• Xj = VjZj , j ∈ Z, is a stationary sequence adapted to a filtration {Fj}.
• The sequence {Vj} is stationary and predictable with respect to {Fj} (i.e.
Vj is Fj−1-measurable, j ∈ Z).

• The sequence {Zj} is i.i.d., adapted to {Fj} and for each j ∈ Z, Zj is
independent of Fj−1 (hence of Vj).

• The law of Zj belongs to the domain of normal attraction of a strictly
α-stable law να, α ∈ (1, 2). This means that as n→ ∞

(8)
Z1 + Z2 + . . .+ Zn

n1/α
−→
D

να,

where

(9) ν̂α(θ) = exp
(

− c|θ|α
(

1− iβ sgn(θ) tan(πα/2)
)

)

,

for some c > and β ∈ [−1, 1] and, in particular,

(10) EZj = 0, j ∈ Z.

Surgailis [22, Theorem B.1] proved the following result.

Theorem 2.3. For the model described above, if {Vj} is ergodic and for
some r > α

(11) E
∣

∣V0
∣

∣

r
< +∞,

then
X1 +X2 + . . .+Xn

n1/α
−→
D

µα,

where
µ̂α(θ) = exp

(

− c′|θ|α
(

1− iβ′ sgn(θ) tan(πα/2)
)

)

,

and

c′ = cE|V0|α, β′ =
βE

(

|V0|α sgn (V0)
)

E|V0|α
.

We are going to show that assumption (11) can be relaxed to

E|V0|α < +∞,

and it is possible to provide a formula for the limiting mixture of stable
distributions also in the non-ergodic case. This will be done in the next
section. Here we shall examine the simplest possible case via our Main
Lemma for Sequences.

Example 1. Let Zj ’s be symmetric α-stable, α ∈ (0, 2]. Then

φn,j(θ) = E
(

eiθXj/n
1/α∣

∣Fj−1

)

= exp
(

− c

n
|Vj |α|θ|α

)

,
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and by the Individual Ergodic Theorem

− lnφn(θ) = cθα
1

n

n
∑

j=1

|Vj |α

→ c|θ|αE
(

|V1|α
∣

∣I
)

a.s.,

where I is the invariant σ-field for the stationary process {Vj}. Hence

X1 +X2 + . . .+Xn

n1/α
−→
D

X∞,

where

EeiθX∞ = E exp
(

− c|θ|αE
(

|V1|α
∣

∣I
))

.

3. Convergence to mixtures of stable distributions

Let us consider a stationary sequence {Xj} adapted to a filtration {Fj}.
For each j, let µj be a version of the regular conditional distribution of
Xj given Fj−1. In what follows we will assume that {µj} is a stationary
sequence. In other words, for every bounded Borel function f : R1 → R

1,
the sequence of real random variables

(12)
{

E
(

f(Xj)
∣

∣Fj−1

)

}

j∈N
is stationary.

Such assumption is not extra demanding: it is enough that {Xj} is a se-
quence indexed by Z and that Fj = σ{(Xl, Al) ; l ≤ j} for some auxillary
stationary sequence {Aj}j∈Z.

Theorem 3.1. Let {Xj} be a stationary sequence adapted to a filtration
{Fj}. Suppose that (12) holds and for some Bn → ∞ the following conditions
are satisfied.

L1− lim
n→∞

n
∣

∣

∣
1− E

(

eiθX1/Bn
∣

∣F0

)

∣

∣

∣

2
= 0, θ ∈ R

1,(13)

L1− lim
n→∞

n
(

1− E
(

eiθX1/Bn
∣

∣F0

)

)

= Ψ1(θ), θ ∈ R
1,(14)

where L1−lim means taking the limit in L1.

Then for each θ ∈ R
1

(15)
n
∏

j=1

E
(

eiθXj/Bn
∣

∣Fj−1

)

−→
P

exp
(

−Ψ(θ)
)

,

where

(16) Ψ(θ) = L1− lim
n→∞

1

n

n
∑

j=1

Ψj(θ),
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with

(17) Ψj(θ) = L1− lim
n→∞

n
(

1− E
(

eiθXj/Bn
∣

∣Fj−1

)

)

.

Moreover, if the function

θ 7→ E exp
(

−Ψ(θ)
)

∈ C

is continuous at θ = 0, then (X1+X2+. . .+Xn)/Bn converges in distribution
to a random variable X∞ with the characteristic function given by

EeiθX∞ = E exp
(

−Ψ(θ)
)

,

and the convergence is stable in the Renyi sense.

Proof. Fix θ ∈ R
1 and for simplicity define ψn,j = E

(

eiθXj/Bn
∣

∣Fj−1

)

. It is
an easy computation to show that if z1, z2, . . . , zn are complex numbers such
that |zj| ≤ 1, j = 1, 2, . . . , n, then

(18)
∣

∣

∣

n
∏

j=1

zj − exp
(

n
∑

j=1

(zk − 1)
)∣

∣

∣
≤ 5

n
∑

j=1

∣

∣1− zj |2.

It follows that
∣

∣

∣

n
∏

j=1

ψn,j − exp
(

−
n
∑

j=1

(1− ψn,j)
)∣

∣

∣
≤ 5

n
∑

j=1

∣

∣1− ψn,j |2.

By (12) and (13)

E
n
∑

j=1

∣

∣1− ψn,j |2 = nE
∣

∣1− ψn,1|2 → 0,

hence it suffices to show that

(19) L1− lim
n→∞

n
∑

j=1

(1− ψn,j) = Ψ(θ).

First let us observe that random variables Ψj(θ) do exist, are in L1 by
stationarity and (14), and form a stationary sequence. Hence by the Mean
Ergodic Theorem there exists

Ψ(θ) = L1− lim
n→∞

1

n

n
∑

j=1

Ψj(θ).

It is now enough to notice that

E
∣

∣

∣

n
∑

j=1

(1− ψn,j)−
1

n

n
∑

j=1

Ψj(θ)
∣

∣

∣
=

1

n
E
∣

∣

∣

n
∑

j=1

(

n(1− ψn,j)−Ψj(θ)
)

∣

∣

∣
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≤ 1

n
E

n
∑

j=1

∣

∣n(1− ψn,j)−Ψj(θ)
∣

∣

= E
∣

∣n(1− ψn,1)−Ψ1(θ)
∣

∣ → 0.

The other statements are contained in the Main Lemma for Sequences given
in Section 1.

We are now ready to prove the announced result on convergence of mar-
tingale transforms.

Theorem 3.2. Let (Xj , Vj, Zj) be the model described in Section 2.2. If

(20) E
∣

∣V0
∣

∣

α
< +∞,

then stably in the Renyi sense

X1 +X2 + . . .+Xn

n1/α
−→
D

X∞,

where

EeiθX∞ = exp
(

−Ψ(θ)
)

,(21)

Ψ(θ) = c|θ|αE
(

|V1|α
(

1− iβ sgn(V1θ) tan(πα/2)
)

∣

∣

∣
I
)

,(22)

and I is the invariant σ-field for the stationary process {Vj}.
Proof. According to Theorem 3.1 we have to check (13) and (14) and identify
the limit Ψ(θ) in (16).

Let us first apply the standard estimates to
∣

∣1−E
(

eiθX1/Bn
∣

∣F0

)∣

∣, taking
into account relation (10).

∣

∣

∣
1− E

(

eiθV1Z1/n1/α∣
∣F0

)

∣

∣

∣

=
∣

∣

∣
E
(

1 +
iθV1Z1

n1/α
− eiθV1Z1/n1/α

∣

∣

∣
F0

)
∣

∣

∣

≤
∣

∣

∣
E
(

(

1 +
iθV1Z1

n1/α
− eiθV1Z1/n1/α)

I
{

|V1Z1| ≤ n1/α
}

∣

∣

∣
F0

)
∣

∣

∣

+
∣

∣

∣
E
(

(

1− eiθV1Z1/n1/α)

I
{

|V1Z1| > n1/α
}

∣

∣

∣
F0

)
∣

∣

∣

+
∣

∣

∣
E
(

( iθV1Z1

n1/α
I
{

|V1Z1| > n1/α
}

∣

∣

∣
F0

)∣

∣

∣

≤ |θ|2
2n2/α

V 2
1 E

(

Z2
1I

{

|V1Z1| ≤ n1/α
}∣

∣F0

)

+ 2P
(

|V1Z1| > n1/α
)
∣

∣F0

)

+
|θ|
n1/α

|V1|E
(

|Z1|I
{

|V1Z1| > n1/α
}
∣

∣F0

)

=W1(n, θ) +W2(n, θ) +W3(n, θ).
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It follows now from (8) that

(23) nP
(

|Z1| > n1/α
)

→ γ > 0,

hence there exists a constant K > 0 such that

(24) xαP (|Z1| > x) ≤ K, x ∈ R
+.

Using (24) we can estimate the quantities W1(n, θ),W2(n, θ) and W3(n, θ).

W1(n, θ) ≤
|θ|2
2n2/α

V 2
1 2

n1/α/|V1|�

0

tP
(

|Z1| > t
)

dt

≤ |θ|2V 2
1

n2/α
Kn(2−α)/α

(2− α)|V1|2−α
=

1

n
K|θ|2|V1|α.

W2(n, θ) ≤
1

n
K|V1|α.

W3(n, θ) =
|θ||V1|
n1/α

(

n1/α

|V1|
P
(

|V1Z1| > n1/α
∣

∣F0

)

+
∞�

n1/α

|V1|

P
(

|Z1| > t
)

dt

)

≤ 1

n

α

α− 1
K|θ||V1|α.

We conclude that

(25)
∣

∣

∣
1− E

(

eiθV1Z1/n1/α∣
∣F0

)

∣

∣

∣
→ 0, a.s.,

and

n
∣

∣

∣
1−E

(

eiθV1Z1/n1/α∣
∣F0

)

∣

∣

∣
≤ K

(

|θ|2 + 1 +
α

α− 1
|θ|

)

|V1|α,(26)

n
∣

∣

∣
1−E

(

eiθV1Z1/n1/α∣
∣F0

)

∣

∣

∣

2
≤ 2K

(

|θ|2 + 1 +
α

α− 1
|θ|

)

|V1|α.(27)

By (25) and (26)

n
∣

∣

∣
1−E

(

eiθV1Z1/n1/α∣
∣F0

)

∣

∣

∣

2
→ 0, a.s.

Since E|V |α < ∞, relation (27) gives the L1-domination and (13) follows.
Similarly, relation (26) gives the L1-domination for (14) and so it is enough
to show that for some Ψ1(θ),

n
(

1−E
(

eiθV1Z1/n1/α∣
∣F0

)

)

→ Ψ1(θ), a.s.

Here the crucial observation is that (8) - valid for independent centered
summands - implies the convergence

n
(

1− EeiθZ1/n1/α) → c|θ|α
(

1− iβ sgn(θ) tan(πα/2)
)

,
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(see (9)). Substituting in the above V1θ in place of θ we get that

n
(

1− E
(

eiθV1Z1/n1/α∣
∣F0

)

)

→ c|V1|α|θ|α
(

1− iβ sgn(V1θ) tan(πα/2)
)

=: Ψ1(θ) a.s.

Now formula (22) clearly follows from (16).
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