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Abstract. We present a new elementary and elegant probabilistic proof of conditional
version of the Donati-Martin and Yor formula, more precisely, the conditional version of
the Laplace transform of

	
t

0
B2

udu given Bt = y, where B is a Brownian motion. Next, using
our form of conditional formula, we obtain the new results concerning Laplace transforms
of some processes and a kind of reflection principle.

1. Introduction

The functionals of Brownian motion play a central role in many applica-
tions of mathematics. Books of Borodin and Salminen [1], Revuz and Yor
[6] or Mansuy and Yor [5] are, among others, the excellent sources of refer-
ences for a lot of formulae associated with different functionals of Brownian
motion. The technique of establishing conditional functionals of Markov pro-
cesses using the knowledge of its semi-group is presented in [6] (for details
see, e.g., Proposition 3.1 p. 350). In [1], the main tool for establishing such
functionals is the Feynman–Kac theorem. In this note, we present a proba-
bilistic proof of conditional version of the Donati-Martin and Yor formula [2]
for the Laplace transform of

	t
0B

2
udu given Bt = y for a Brownian motion B

starting from x ∈ R. More precisely, in Theorem 2.1 we find the closed-form
formula for

(1) Hb,t,x(y) := E

[

exp

(

−b2

2

t�

0

B2
udu

)∣

∣

∣

∣

Bt = y

]

,
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where b > 0, y ∈ R. This result can be also derived by a straightforward cal-
culation from the following formula from Borodin and Salminen [1, formula
1.9.7 p. 168]

(2) E

{

exp

(

−b2

2

t�

0

B2
udu

)

;Bt ∈ dy

}

=

√
b

√

2π sinh(tb)
exp

(

−(x2 + y2)b cosh(tb)− 2xyb

2 sinh(tb)

)

dy,

where for random variables ξ and η the following notation is used

E(ξ; η ∈ dy) :=
∂

∂y
E(ξ1{η<y}) dy.

Our proof of Theorem 2.1 uses probability methods and is different from
that in [1] used for the proof of (2), and we believe that it is interesting
by itself. The formula presented by us can be very useful, especially in
computing Laplace transforms of vectors (g(Bt),

	t
0 B

2
udu) for a Brownian

motion starting from an arbitrary x ∈ R and some function g. Indeed, by
conditioning, we have the following formula

Ee−cg(Bt)− b
2

2

	
t

0
B2

udu = E
(

e−cg(Bt)Hb,t,x(Bt)
)

,

where the explicit form of Hb,t,x is given by Theorem 2.1. For the example of
usefulness of the above argumentation see, e.g., Jakubowski and Wiśniewol-
ski [3, Prop. 4.6].

Theorem 2.1 enables also to deduce some interesting property of Brown-
ian motion path. In Corollary 2.2 we show that Theorem 2.1 implies formula
(2) obtained by Borodin and Salminen. In Corollary 2.3 and Theorem 2.4
we investigate the conditional law of

	t
0B

2
sds given the set {Bt = y}. In The-

orem 2.4 we prove that the conditional law of
	t
0B

2
sds given the set {Bt = y}

is equal to the conditional law of
	t
0W

2
s ds given {Wt = y} for a Brownian

motion W starting from −y. Theorem 2.5 uses the result of Theorem 2.1 in
establishing the representation of

E

[

exp

(

−λ

	t
0B

2
udu

1 +
	t
0B

2
udu

)∣

∣

∣

∣

Bt = y

]

in terms of function Hb,t,x and a squared Bessel process of index (−1).

2. Results

We start from giving the explicite form of conditional expectation (1).
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Theorem 2.1. Let B be a Brownian motion starting from x ∈ R on some

probability space (Ω,F ,P). Then, for any b > 0, t > 0 and y ∈ R,

Hb,t,x(y)

=

√

bt

sinh(bt)
exp

(

− 1

2t

[

y2(bt coth(bt)− 1) + 2btx(x+ y)
cosh(bt)− 1

sinh(bt)

])

.

Proof. We use the well known formula for Laplace transform of vector
(B2

t ,
	t
0 B

2
udu) (see Mansuy and Yor [5, p. 18]). For any c > 0, b > 0 we

have

E

(

exp

(

−cB2
t −

b2

2

t�

0

B2
udu

))

=
1

√

cosh(bt) + 2c
b sinh(bt)

exp

(

x2
[

b

2
− (b/2 + c)ebt

cosh(bt) + 2c
b sinh(bt)

])

.

After some algebra, we obtain the equivalent formula which is suitable for
our purpose

(3) E

(

exp

(

−cB2
t −

b2

2

t�

0

B2
udu

))

=
1

√

cosh(bt) + 2c
b sinh(bt)

exp

(

−cx2 + x2
2
b

(

c2 − b2/4
)

coth(bt) + 2c/b

)

.

It is clear that for t = 0 we have Hb,0,x(y) = 1 for any y ∈ R, and 0 <
Hb,t,x ≤ 1. The function Hb,t,x(·) must satisfy, for all c > 0,

(4) E

(

exp

(

−cB2
t −

b2

2

t�

0

B2
udu

))

= E
[

e−cB2
t Hb,t,x(Bt)

]

.

It is easy to see that there can be only one such function Hb,t,x(y), y ∈ R.
Let us try to find it in the form

(5) Hb,t,x(y)

= F (b, t, x) exp

(

− 1

2t

[

(K(b, t, x)−1)(y−x)2+2L(b, t, x)(y−x)+R(b, t, x)

])

for some functions K,L,R, F of three variables b, t, x. To make calculations
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more clear we omit the arguments of the functions K,L,R, F . Since B is a
Brownian motion starting from x,

E
[

e−cB2
t Hb,t,x(Bt)

]

=
∞�

−∞

1√
2πt

F exp

(

−c(x+ y)2− 1

2t
[Ky2+2Ly+R]

)

dy

= F
1√

K +2tc
exp

(

−cx2+
1

2t

[

(L+2ctx)2

K +2ct
−R

])

.

We now match the last expression with (3) and guess that

F = F (b, t, x) = F (b, t) =

√

bt

sinh(bt)
,

K = K(b, t, x) = K(b, t) = bt coth(bt),

R = 2Lx,

0 = L2 − 2LKx+ b2x2t2.

The last equation has two solutions L1 = xbt(cosh(bt) + 1)/ sinh(bt) and
L2 = xbt(cosh(bt) − 1)/ sinh(bt) but the first one tends to infinity when
t tends to zero (causing H to be 0 in the limit). But from the Lebesgue
theorem we clearly see that

lim
t→0

EHb,t,x(Bt) = lim
t→0

E

(

exp

(

−b2

2

t�

0

B2
udu

))

= 1,

so what is left is the second solution that fits perfectly our computation.
Hence, with

L = L(b, t, x) = xbt
cosh(bt)− 1

sinh(bt)
,

R = R(b, t, x) = 2xB(b, t, x) = 2x2bt
cosh(bt)− 1

sinh(bt)
,

and F,K defined above, the function Hb,t,x satisfies the condition (4) by
construction. To conclude the proof we insert F,K,L,R just computed in
(5) and obtain the assertion of the theorem.

Corollary 2.2. Theorem 2.1 implies formula (2).

Proof. Using the notation of Theorem 2.1, we have

E

[

exp

(

−b2

2

t�

0

B2
udu

)

1{Bt≤y}

]

= E
[

Hb,t,x(Bt)1{Bt≤y}
]

=
y−x�

−∞

1√
2πt

e−z2/2tHb,t,x(z)dz
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=
y�

−∞

1√
2πt

e−(s−x)2/2tHb,t,x(s− x)ds,

and after inserting in the last expression the form of Hb,t,x given by Theorem
2.1 and some simple algebra the result follows.

The next corollary gives closed-form formula, which is much simpler then
formula 1.9.8 in [1] (page 169).

Corollary 2.3. Let t ≥ 0 be fixed and g be the density function of the

vector (Bt,
	t
0B

2
udu), where B is a Brownian motion starting from x ∈ R.

Then for y ∈ R and c > 0,

∞�

0

e−czg(y, z)dz =
1√
2π

√ √
2c

sinh(t
√
2c)

exp

(

−y2

2

√
2c coth(t

√
2c)

)

× exp

(

−2(x+ y)x
√
2c

cosh(t
√
2c)− 1

sinh(t
√
2c)

− 2yx− x2

2t

)

.

Proof. This is an immediate consequence of formula (1) with b =
√
2c, the

fact that
∞�

0

e−czg(y, z)dz = H√
2c,t,x(y)g1(y),

where g1(y) = 1√
2πt

e−(y−x)2/2t denotes the density function of the random

variable Bt + x, and the form of Hb,t,x given by Theorem 2.1.

Now, we deduce from Theorem 2.1 a very interesting property of Brow-
nian motion path. In a sense, it is a kind of reflection principle (see, e.g. [4,
& 2.2.6]).

Theorem 2.4. Fix t ≥ 0 and y ∈ R. Let B be a standard Brownian motion.

Then the conditional law of random variable
	t
0B

2
sds given {Bt = y} is equal

to the conditional law of random variable
	t
0W

2
s ds given {Wt = y}, where W

is a Brownian motion such that W0 = −y.

Proof. We use the notation of Theorem 2.1. Let X =
	t
0B

2
sds and Y =	t

0W
2
s ds. The key observation which leads to prove the theorem is that for

any λ > 0 we have Hλ,t,0(y) = Hλ,t,−y(y). It means that the conditional
Laplace transform of X given {Bt = y} is equal to the conditional Laplace
transform of Y given {Wt = y}, which means that these random variables
have the same conditional law.

The next theorem is an interesting application of Theorem 2.1.
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Theorem 2.5. Let λ > 0 and B be a Brownian motion starting from

x ∈ R. Then

E

[

exp

(

−
λ
	t
0B

2
udu

1 +
	t
0B

2
udu

)
∣

∣

∣

∣

Bt = y

]

= E(fRλ
1
2

(y)),

where fα(y) = H√
2α,t,x(y) for α > 0, and Rλ is a squared Bessel process of

index (−1) starting from λ.

Proof. Let Rλ be a squared Bessel process of index (−1) starting from λ and
independent of B. Using the Laplace transform of squared Bessel process
(see [6, Chapter XI, p. 441]), we infer that

E

[

exp
(

−Rλ
1

2

t�

0

B2
udu

)∣

∣

∣
Bt

]

= E

[

E

[

exp
(

−Rλ
1

2

t�

0

B2
udu

)∣

∣

∣
σ(Bu, u ≤ t)

]

Bt

]

= E

[

exp

(

−
λ
	t
0B

2
udu

1 +
	t
0B

2
udu

)∣

∣

∣

∣

Bt

]

.

Let us denote by ρR = ρR(t, λ, z)dz the density function of Rλ
t . Since pro-

cesses R and B are independent, we observe that for A ∈ σ(Bt)

E

[

1A exp
(

−Rλ
1

2

t�

0

B2
udu

)]

=
∞�

0

E

[

1A exp
(

−z
t�

0

B2
udu

)]

ρR(1/2, λ, z)dz

=
∞�

0

E

[

1AE
(

exp
(

−z
t�

0

B2
udu

)
∣

∣

∣
Bt

)]

ρR(1/2, λ, z)dz

=
∞�

0

E
(

1Afz(Bt)
)

ρR(1/2, λ, z)dz = E
(

1AfRλ
1

2

(Bt)
)

,

where in the last equation we use Theorem 2.1. This concludes the proof.
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