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COINCIDENCE AND COMMON FIXED POINT THEOREMS

FOR HYBRID CONTRACTIONS IN SYMMETRIC SPACES

Abstract. Using compatibility of type (N) and (E-A) property of hybrid pair of
mappings we obtain some new coincidence and common fixed point theorems under strict
contractive conditions in symmetric (semi-metric) space.

1. Introduction

Amari and E. L. Montawakil [1], [2] introduced (E-A) property and ob-
tain some relatively more general common fixed point theorems for strict
contractive conditions in metric space. Imdad at al. [4] and Cho et al. [3]
obtained some coincidence and fixed point theorems in symmetric (semi-
metric) space, under strict contractions using (E-A) property. Kamran [8]
obtained some coincidence and fixed point theorems by extending this (E-A)
property for pair of single-valued and multi valued mappings i.e. for hybrid
pair of mappings. On the other hand Shrivastava, Bawa and Singh [14] have
introduced the notion of compatibility of type (N) which is a generalization
of compatibility and weak compatibility of hybrid pairs.

The aim of this paper is to obtain some new coincidence and common
fixed point theorems under strict contractions in symmetric (semi-metric)
spaces using compatibility of type (N) hybrid pair.

2. Preliminaries

Definition 1. A symmetric on a set X is a function d : X ×X → [0,∞)
such that for all x, y ∈ X

(i) d(x, y) = 0 ⇔ x = y

(ii) d(x, y) = d(y, x).
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If d is symmetric on a set X, then for x ∈ X and ε > 0, we write
S(x, ε) = {y ∈ X : d(x, y) < ε}. A topology τ(d) on X is given by U ∈ τ(d)
if and only if for each x ∈ X, B(x, ε) ⊂ U for some ε > 0. A set S ⊂ X

is a neighborhood of b ∈ X iff there exists U ∈ τ(d) such that b ∈ U ⊂ S.

A symmetric d is a semi-metric if for each x ∈ X and for each ε > 0, B(x, ε)
is a neighborhood of x in topology τ(d). Note that limn→∞ d(xn, x) = 0 iff
xn → x in the topology τ(d).

Definition 2. A semi-metric space X is a topological space whose topol-
ogy τ(d) on X is induced by semi-metric d. In what follows symmetric space
as well as semi-metric space will be denoted by (X, d).

The distinction between a symmetric and a semi-metric is evident as one
can easily construct a symmetric d such that S(x, ε) need not be a neighbor-
hood of x in τ(d). For a symmetric d on X the following two axioms were
given by Wilson [15]:

[W3] Given {xn}, x and y in X, d(xn, x) → 0 and d(xn, y) → 0 imply that
x = y.

[W4] Given {xn}, {yn} and x in X, d(xn, x) → 0 and d(xn, yn) → 0 imply
that d(yn, x) → 0.

Here it may be noted that for a semi-metric d if τ(d) is Hausdorff, then [W3]
holds.

Now we state some definitions:

Definition 3. ([4], [8]) Let X be a symmetric (semi-metric) space with
symmetric d. Then, for x ∈ X and A ⊂ X, d(x,A) = inf{d(x, y) : y ∈ A}.

We denote by CB(X) the class of all non empty bounded closed subsets
of X.

Let H be Hausdorff symmetric with respect to d, i.e.

H(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(y,A)} ∀A,B ∈ CB(X).

Definition 4. ([4], [8]) Let (X, d) be a symmetric (semi-metric) space.
Then maps f : X → X and F : X → CB(X) are said to be compatible if
fFx ∈ CB(X) for all x ∈ X and H(fFxn, Ffxn) → 0 whenever {xn} is
a sequence in X such that Fxn → A ∈ CB(X) and fxn → t ∈ A.

Definition 5. ([4], [8]) Let (X, d) be a symmetric (semi-metric) space.
Then maps f : X → X and F : X → CB(X) are said to be non com-
patible if fFx ∈ CB(X) for all x ∈ X and there exists at least one se-
quence {xn} in X such that Fxn → A ∈ CB(X) and fxn → t ∈ A. But
limn→∞H(fFxn, Ffxn) is either non zero or non existent.
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Definition 6. ([4], [8]) Let (X, d) be a symmetric (semi-metric) space.
Then maps f : X → X and F : X → CB(X) are said to be weakly
compatible if they commute at their coincidence points. i.e. fFx = Ffx

whenever fx ∈ Fx.

Definition 7. ([3], [5], [12]) Let (X, d) be a symmetric (semi-metric)
space. Then maps f : X → X and F : X → CB(X) are said to be R-weakly
commuting if, for given x ∈ X, fFx ∈ CB(X), and there exists some positive
real number R such that H(fFx, Ffx) ≤ Rd(fx, Fx).

Definition 8. ([1], [3], [5]) Let (X, d) be a symmetric (semi-metric) space.
Then maps f : X → X and F : X → CB(X) are said to satisfy the property
(E-A) if there exists a sequence {xn} in X, for some t ∈ X and A ∈ CB(X)
such that

(2.1) lim
n→∞

fxn = t ∈ A = lim
n→∞

Fxn.

Example 1. Consider X = [1,∞) with the symmetric d(x, y) = (x− y)2,
define f : X → X and F : X → CB(X) such that fx = x + 1 and
Fx = [1, x+ 2] for all x ∈ X.

Clearly X is symmetric because

1 = d(1, 2) >
1

4
+

1

4
= d

(

1,
3

2

)

+ d

(

3

2
, 2

)

.

Further consider the sequence {xn} = { 1

n
}. Then clearly limn→∞ fxn = 1 ∈

[1, 2] = limn→∞ Fxn. Thus f and F satisfy property (E-A).

Example 2. Let X = [2,∞) be a symmetric space with metric d(x, y) =
(x − y)2. Define f : X → X and F : X → CB(X) such that fx = x and
Fx = {2x} for all x ∈ X. Suppose that the property (E-A), holds then there
exists a sequence {xn} in X such that for some t ∈ X and A ∈ CB(X)

lim
n→∞

fxn = t ∈ A = lim
n→∞

Fxn.

Then limn→∞ fxn = t, A = {2t}. Obviously t does not belong to A. Thus f

and F do not satisfy the property (E-A).

Definition 9. ([2], [13]) Let (X, d) be a symmetric (semi-metric) space
and maps f : X → X and F : X → CB(X) then pair (f, F ) is said to be
compatible of type N iff fx ∈ Fx ⇒ ffx ∈ Ff(x).

Example 3. Let X = [1,∞) with d(x, y) = (x − y)2. Let f : X → X,

F : X → CB(X) such that f(x) = 2x and Fx = [1, 2x+ 1], ∀x ∈ X. Then
fx = 2x ∈ [1, 2x + 1] = Fx and ffx = 4x ∈ [1, 4x + 1] = Ffx. So it is
compatible of type (N).
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3. Main results

Our main results run as follows:

Theorem 1. Let (X, d) be symmetric (semi-metric) space. That enjoys
[W3] [the Hausdorffness of τ(d)]. Let f be self mapping of X and F : X →
CB(X) such that

(i) f and F satisfy the property (E-A),
(ii) for all x 6= y ∈ X,

(3.1) H(Fx, Fy) < max

{

d(fx, fy),
1

2
[d(fx, Fx) + d(fy, Fy)],

1

2
[d(fy, Fx) + d(fx, Fy)]

}

.

If f(X) be d-closed ( τ(d)-closed) subset of X, then f and F have a point of
coincidence.

Proof. Firstly, one needs to note that a sequence {xn} in a semi-metric
space (X, d) converges to a point x in τ(d) iff d(xn, x) → 0. To substantiate
this suppose xn → x and ε > 0. Since S(x, ε) is a neighborhood of x, there
exists U ∈ τ(d) such that x ∈ U ⊂ S(x, ε). Since xn → x there is a m ∈ N

(the natural number) such that xn ∈ U ⊂ S(x, ε) for n ≥ m. So d(xn, x) < ε

for n ≥ m that is d(xn, x) → 0.

The converse part is obvious in view of the definition of τ(d).

Now in view of (i), there must exists a sequence {xn} in X with t ∈ X

and A ∈ CB(X) such that

(3.2) lim
n→∞

f(xn) = t ∈ A = lim
n→∞

Fxn.

Since f(X) is d-closed, so every convergent sequence of points of f(X)
has a limit in f(X), therefore

lim
n→∞

f(xn) = f(a) for some a ∈ X.

Thus from (3.2)

t = fa ∈ A = lim
n→∞

Fxn.

We claim fa ∈ Fa.

If it is not so, i.e. if fa 6= Fa, then in view of (3.1) we get

H(Fxn, Fa) < max

{

d(fxn, fa),
1

2
[d(fxn, Fxn) + d(fa, Fa)],

1

2
[d(fa, Fxn) + d(fxn, Fa)]

}

.

Taking the limit as n → ∞, we obtain
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H(A,Fa) ≤ max

{

d(fa, fa),
1

2
[d(fa,A) + d(fa, Fa)],

1

2
[d(fa,A) + d(fa, Fa)]

}

.

Since fa ∈ A so d(fa, Fa) < max{1

2
d(fa, Fa), 1

2
d(fa, Fa)} < d(fa, Fa)

which is a contradiction. Hence fa ∈ Fa. This shows that fa is a point of
coincidence for f and F.

Example 4. Let X = [1,∞) with d(x, y) = (x−y)2, and maps f : X → X,

F : X → CB(X) such that f(x) = x2 and Fx = [1, x+ 1] ∀x ∈ X. Then f

and F satisfy the property (E-A) for the sequence {1 + 1

n
} and

H(Fx, Fy) < d(fx, fy)

≤ max

{

d(fx, fy),
1

2
[d(fx, Fx) + d(fy, Fy),

1

2
[d(fy, Fx) + d(fx, Fy)]

}

.

Thus, all conditions of Theorem 1 are satisfied and 1 = f1 ∈ F1.

Since non compatible hybrid pair (f, F ) satisfy property (E-A), we have
the following:

Corollary 1. Let (X, d) be symmetric (semi-metric) space that enjoys
[W3] (the Hausdorffness of τ(d)). Let f be a self mapping and F : X →
CB(X) such that

(i) f and F are non compatible,
(ii) for all x 6= y ∈ X,

H(Fx, Fy) < max

{

d(fx, fy),
1

2
[d(fx, Fx) + d(fy, Fy)],

1

2
[d(fy, Fx) + d(fx, Fy)]}.

If f(X) be a closed subset of X, then f and F have a coincidence point.

Theorem 2. Let (X, d) be a symmetric (semi-metric) space enjoys [W3].
Let f be a self mapping of X and F : X → CB(X) such that

(i) f and F satisfy the property (E-A),
(ii) for all x 6= y ∈ X,

H(Fx, Fy) < max

{

d(fx, fy),
1

2
[d(fx, Fx) + d(fy, Fy)],

1

2
[d(fy, Fx) + d(fx, Fy)]

}

,

(iii) ff(v) = fv for v ∈ C(f, F ), set of coincidence points of f and F ,
(iv) (f, F ) is pair of compatible of Type (N).
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If f(X) be d-closed (τ(d)-closed) subset of X. Then f and F have a
common fixed point.

Proof. In view of Theorem 1 and (iii) ffv = fv for v ∈ C(f, F ).

Let fa does not belong to Ff(a). Since fa ∈ Fa and Fa 6= Ff(a)

H(Fa, Ffa) < max

{

d(fa, ffa),
1

2
[d(fa, Fa) + d(ffa, Ffa)],

1

2
[d(ffa, Fa) + d(fa, Ffa)]

}

.

Since (f, F ) is pair of compatible type (N), so t = fa ∈ Fa ⇒ ffa ∈ Ffa,
so d(fa, Ffa) < 1

2
d(fa, Ffa), which is a contradiction.

So fa ∈ Ffa ⇒ ffa ∈ Ffa [from (iii) ffv = fv] ⇒ fa = ffa ∈ Ffa,
hence t = ft ∈ Ft. Thus t is common fixed point of f and F.

Example 5. Consider X = [0, 1] equipped with the symmetric d(x, y) =
(x− y)2. Define f : X → X and F : X → CB(X) as follows.

(3.3) fx =

{

1− x, if 0 ≤ x ≤ 1

2
,

0, if 1

2
< x ≤ 1,

(3.4) Fx =

{

[0, 1
2
], if 0 ≤ x ≤ 1

2
,

[1
4
, 3
4
], if 1

2
< x ≤ 1.

Clearly f(X) = {0} ∪ [1
2
, 1] is d closed in X. The pair (f, F ) enjoys the

property (E-A) as for the sequence {1

2
− 1

n
} ⊂ [0, 1], we have

lim
n→∞

f

(

1

2
−

1

n

)

=
1

2
∈ lim

n→∞

F

(

1

2
−

1

n

)

=

[

0,
1

2

]

∈ [0, 1].

By routine calculation one can show that the contractive condition (3.1)
holds for every x 6= y ∈ X. Also notice that the

f

(

1

2

)

=
1

2
∈ F

(

1

2

)

=

[

0,
1

2

]

⇒ ff

(

1

2

)

=
1

2
∈

[

0,
1

2

]

= Ff

(

1

2

)

i.e. (f, F ) is pair of compatible type (N).

Since the topology induced by d is usual on [0, 1], it will be Hausdorff
and therefore condition [W3] is naturally satisfied. Thus all the conditions of
Theorem 2 are satisfied and 1

2
is the unique common fixed point of f and F.

Here one needs to note that d is not a metric as

d(0, 1) > d

(

0,
1

2

)

+ d

(

1

2
, 1

)

.
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Thus, all the available metrical common fixed point theorems can not be
used in the content of this example, notice that both the maps f and F are
discontinuous at the unique common fixed point “ 1

2
”.

Corollary 2. Let (X, d) be symmetric (semi-metric) space that enjoys
[W3] (the Hausdorffness of τ(d)). Let f be a self mapping on X and
F : X → CB(X) such that

(i) f and F satisfy the property (E-A),
(ii) for all x 6= y ∈ X,

(3.5) H(Fx, Fy) < max

{

d(fx, fy),
1

2
[d(fx, Fx) + d(fy, Fy)],

1

2
[d(fy, Fx) + d(fx, Fy)]

}

,

(iii) ff(v) = fv for v ∈ C(f, F ), set of coincidence points of f and F,

(iv) f is injective (one-one) mapping.

If f(X) be d-closed (τ(d) closed) subset of X, then f and F have a com-
mon fixed point.

Proof. From (iv) f is an injective (one-one) mapping. Therefore fv = fu ⇒
v = u. From condition (iii) ff(v) = fv for v ∈ C(f, F ). So ff(v) = fv ⇒
fv = v and for fv ∈ Fv ⇒ ff(v) ∈ Ffv, i.e. (f, F ) is pair of compatible of
type (N).

Definition 10. [10] Let X be a symmetric (semi-metric) space. Let
f, g : X → X and F,G : X → CB(X). The pair maps of (f, F ) and (g,G)
are said to satisfy the common property (E-A) if there exist two sequences
{xn}, {yn} in X, some t in X and A,B in CB(X) such that

(3.6) lim
n→∞

Fxn = A, lim
n→∞

Gyn = B, lim
n→∞

fxn = lim
n→∞

gyn = t ∈ A ∩B.

Example 6. Let X = [1,∞) with the symmetric d(x, y) = (x − y)2. Let
f, g : X → X and F,G : X → CB(X) defined by f(x) = 2+ x

3
, g(x) = 2+ x

2
,

and F (x) = [1, 2+x], G(x) = [3, 3+ x

2
] for all x ∈ X. Consider the sequence

{xn} = {3 + 1

n
}, {yn} = {2 + 1

n
}. Clearly,

lim
n→∞

Fxn = [1, 5] = A, lim
n→∞

Gyn = [3, 4] = B,

lim
n→∞

fxn = lim
n→∞

gyn = 3 ∈ A ∩B.

Therefore, (f, F ) and (g,G) are said to satisfy the common property (E-A).

Theorem 3. Let f, g be two self-maps of the symmetric (semi-metric)
space (X, d) and let F,G be two maps from X to CB(X) such that
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1. (f, F ) and (g,G) satisfy the common property (E-A),

2. for all x 6= y ∈ X,

(3.7) H(Fx,Gy) < max

{

d(fx, gy),
1

2
[d(fx, Fx) + d(gy,Gy)],

1

2
[d(fx,Gy) + d(gy, Fx)]

}

.

If fX and gX are closed subsets of X, then

(a) f and F have a coincidence point;
(b) g and G have a coincidence point;
(c) f and F have a common fixed point provided that pair (f, F ) is compatible

of type (N) and ffv = fv for v ∈ C(f, F );
(d) g and G have a common fixed point provided that pair (g,G) is compatible

of type (N) and ggv = gv for v ∈ C(g,G);
(e) f, g, F and G have a common fixed point provided that both (c) and (d)

are true.

Proof. Since (f, F ) and (g,G) satisfy the common property (E-A), there
exist two sequences {xn}, {yn} in X and u ∈ X, A,B ∈ CB(X) such that

(3.8) lim
n→∞

Fxn = A, lim
n→∞

Gyn = B, lim
n→∞

fxn = lim
n→∞

gyn = u ∈ AB.

By virtue of fX and gX being closed, we have u = fv and u = gw for
some v, w ∈ X. We claim that fv ∈ Fv and gw ∈ Gw. Indeed, condition
(3.1) implies that

H(Fxn, Gw) < max

{

d(fxn, gw),
1

2
[d(fxn, Fxn) + d(gw,Gw)],

1

2
[d(fxn, Gw) + d(gw, Fxn)]

}

.

Taking the limit as n → ∞, we obtain

H(A,Gw)

< max

{

d(fv, gw),
1

2
[d(fv,A) + d(gw,Gw)],

1

2
[d(fv,Gw) + d(gw,A)]

}

=
1

2
d(gw,Gw) < d(gw,Gw).

Since gw = fv ∈ A, it follows from the definition Hausdorff semi-metric that
d(gw,Gw) = H(A,Gw) < d(gw,Gw) which implies that gw ∈ Gw.
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On the other hand, by condition (3.1) again, we have

(3.9) H(Fv,Gyn) < max

{

d(fv, gyn),
1

2
[d(fv, Fv) + d(gyn, Gyn)],

1

2
[d(fv,Gyn) + d(gyn, Fv)]

}

.

Similarly, we obtain

d(fv, Fv) = H(fv,B) < d(fv, Fv).

Hence fv ∈ Fv. Thus, f and F have a coincidence point v, g and G have
coincidence point w. This ends the proofs of part (a) and part (b).

Furthermore, by virtue of condition (c), we obtain ffv = fv and ffv ∈
Ffv. Thus u = fu ∈ Fu. This proves (c). A similar argument proves (d).
Then (e) holds immediately.
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