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DIFFERENTIAL COMPLETIONS

AND COMPACTIFICATIONS OF A DIFFERENTIAL SPACE

Abstract. Differential completions and compactifications of differential spaces are
introduced and investigated. The existence of the maximal differential completion and the
maximal differential compactification is proved. A sufficient condition for the existence of
a complete uniform differential structure on a given differential space is given.

1. Introduction

This article is the forth of the series of papers concerning integration of
differential forms and densities on differential spaces (the first three are [4],
[5] and [6]). We describe differential completions and differential compacti-
fications of differential spaces which are used in our theory of integration.

Section 2 of the paper contains basic definitions and the description of
preliminary facts concerning theory of differential spaces. In Section 3 we
give basic definitions and describe the standard facts concerning theory of
uniform spaces. Results contained in Propositions 3.1–3.4 and in Corollary
3.1 are well known but we give descriptions and proofs of this results in
the form which is convenient to our purpose. We introduce the notion of
a differential completion of a differential space. We construct differential
completions of a differential space using families of generators of its differ-
ential structure (Proposition 3.5, Definition 3.8). Section 4 is devoted to
the investigation of properties of differential completions. We define some
natural order in the set of all differential completions of a given differen-
tial space. We prove that for any differential space (M, C) there exists the
maximal differential completion with respect to this order (Theorem 4.1). If
for the uniform structure defined by some family of generators the space M
is complete then the appropriate differential completion of (M, C) is max-
imal and coincides with (M, C) (Theorem 4.2). At the end we prove that

2000 Mathematics Subject Classification: 58A40.
Key words and phrases: differential space, differential structure.



976 D. Dziewa-Dawidczyk, Z. Pasternak-Winiarski

if a differential structure C posses a countable family of generators, then
it coincides with its maximal differential completion (Theorem 4.3). As a
corollary we obtain general topological result about the existence on a given
topological space a complete uniform structure defining the initial topology
(Corollary 4.1). In Section 5 we introduce and investigate the notion of a
differential compactification of a differential space. Similarly as in Section
4 we prove the existence of the maximal differential compactification of a
given differential space with respect to the suitable order.

Without any other explanation we use the following symbols: N-the set
of natural numbers; R-the set of reals.

2. Differential spaces

Let M be a nonempty set and let C be a family of real valued functions
on M . Denote by τC the weakest topology on M with respect to which
all functions of C are continuous. A function f : M → R is called a local
C-function on M if for every m ∈ M there is a neighborhood V of m and
α ∈ C such that f|V = α|V . The set of all local C-functions on M is denoted
by CM . It is easy to see that τCM = τC (see [4], [5]).

A function f : M → R is called C-smooth function on M if there exist
n ∈ N, ω ∈ C∞(Rn) and α1, . . . , αn ∈ C such that f = ω ◦ (α1, . . . , αn). The
set of all C-smooth functions on M is denoted by scC. Since C ⊂ scC and
any superposition ω ◦ (α1, . . . , αn) is continuous with respect to τC we obtain
τscC = τC (see [4], [5]).

A set C of real functions on M is said to be a (Sikorski’s) differential
structure if: (i) C is closed with respect to localization i.e. C = CM ; (ii) C is
closed with respect to superposition with smooth functions i.e. C = scC. In
this case a pair (M, C) is said to be a (Sikorski’s) differential space (see [9]).
Any element of C is called a smooth function on M (with respect to C).

One can easily prove that the intersection of any family of differential
structures defined on a set M 6= ∅ is a differential structure on M (see [4],
[5], Proposition 2.1). Then the intersection C of all differential structures on
M containing a given set F of real functions on M is a differential structure
on M . It is the smallest differential structure on M containing F . It can be
proved that C = (scF)M (see [10]). This structure is called the differential
structure generated by F and is denoted by gen(F). Functions of F are
called generators of the differential structure C. We have also τ(scF)M =
τscF = τF .

Let (M, C) and (N,D) be differential spaces. A map F : M → N is said
to be smooth if for any β ∈ D the superposition β◦F ∈ C. We will denote the
fact that F is smooth writing F : (M, C) → (N,D). If F : (M, C) → (N,D)
is a bijection and F−1 : (N,D) → (M, C) then F is called a diffeomorphism.
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If A is a nonempty subset of M and C is a differential structure on
M then CA denotes the differential structure on A generated by the family
of restrictions {α|A : α ∈ C}. The differential space (A, CA) is called a
differential subspace of (M, C). One can easy prove that F : (M, C) → (N,D)
iff F : (M, C) → (F (M), F (M)D).

If the map F : (M, C) → (F (M), F (M)D) is a diffeomorphism then we
say that F : M → N is a diffeomorphism onto its range (in (N,D)). In par-
ticular the natural embedding A ∋ m 7→ i(m) := m ∈ M is a diffeomorphism
of (A, CA) onto its range in (M, C).

If {(Mi, Ci)}i∈I is an arbitrary family of differential spaces then we con-
sider the Cartesian product

∏
i∈I

Mi as a differential space with the differen-

tial structure
⊗̂
i∈I

Ci generated by the family of functions F := {αi ◦ pri :

i ∈ I, αi ∈ Ci}, where
∏
i∈I

Mi ∋ (mi) 7→ prj((mi)) =: mj ∈ Mj for any

j ∈ I. The topology τ⊗̂
i∈I

Ci
coincides with the standard product topol-

ogy on
∏
i∈I

Mi. We will denote the differential structure
⊗̂
i∈I

C∞(R) on RI

by C∞(RI). In the case when I is an n-element finite set, the differ-
ential structure C∞(RI) coincides with the ordinary differential structure
C∞(Rn) of all real-valued functions on Rn which posses partial derivatives
of any order (see [9]). In any case a function α : RI → R is an ele-
ment of C∞(RI) iff for any a = (ai) ∈ RI there are n ∈ N, elements
i1, i2, . . . , in ∈ I, a set U open in Rn and a function ω ∈ C∞(Rn) such
that a ∈ U [i1, i2, . . . , in] := {(xi) ∈ RI : (xi1 , xi2 , . . . , xin) ∈ U} and for any
x = (xi) ∈ U [i1, i2, . . . , in] we have

α(x) = ω(xi1 , xi2 , . . . , xin).

Let F be a family of generators of a differential structure C on a set M .
The generator embedding of the differential space (M, C) into the Cartesian
space defined by F is a mapping φF : (M, C) → (RF , C∞(RF )) given by the
formula

φF (m) = (α(m))α∈F , m ∈ M

(for example if F = {α1, α2, α3} then φF (m) = (α1(m), α2(m), α3(m)) ∈
R3 ∼= RF ). If F separates points of M the generator embedding is a diffeo-
morphism onto its image. On that image we consider a differential structure
of a subspace of (RF , C∞(RF )) (see [5], Proposition 2.3).

Let K be a field. A differential structure CK is called a field differential
structure if the field operations are smooth with respect to CK and CK⊗̂CK.
Then the pair (K, CK) is called a differential field. If V is a vector space over
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the field K then a differential structure C on V is said to be a vector space
differential structure if the suitable vector space operations are smooth with
respect to C, C⊗̂C and CK, where CK is a field differential structure on K.
In this case the pair (V, C) is called a differential vector space. If K = R or
K = C we take CK = C∞(K) as a standard field differential structure. If
F is a family of constant functions and (some) linear functionals defined on
V then the differential structure C generated by F on V is a vector space
differential structure (see [4], Proposition 2.3).

By a tangent vector to a differential space (M, C) at a point m ∈ M
we call an R-linear mapping v : C → R satisfying the Leibniz condition:
v(α · β) = α(m)v(β) + β(m)v(α) for any α, β ∈ C. We denote by TmM
the set of all vectors tangent to (M, C) at the point m ∈ M and call it the
tangent space to (M, C) at the point m. The union TM :=

⋃
m∈M

TmM is

called the tangent space to (M, C).
The set TM can be endowed with a differential structure in the following

standard way. We define the projection π : TM → M such that for any
m ∈ M and any v ∈ TmM

π(v) = m.

For any α ∈ C we define the differential (or the exterior derivative) of α as
a map dα : TM → R given by the following formula

dα(v) := v(α), v ∈ TM.

Then we define T C as the differential structure on TM generated by the
family of functions T C0 := {α ◦ π : α ∈ C} ∪ {dα : α ∈ C}. From now on we
will consider TM as a differential space with the differential structure T C.
We have π : (TM, T C) → (M, C).

For any m ∈ M we will denote by dαm the restriction dα|TmM . It is clear
that dαm is a linear functional on TmM . Hence the pair (TmM, T CTmM ) is
a differential vector space. It is easy to show that TmM is a Hausdorff space
(with respect to the topology induced by T CTmM – see [4], Theorem 3.1).

Let (M, C) and (N,D) be differential spaces and let F : (M, C) → (N,D).
Then for any v ∈ TM the linear functional TF (v) : D → R given by the
formula

(1) [TF (v)](β) := v(β ◦ F ), β ∈ D,

is an element of TF (πM (v)), where πM : TM → M is the natural projection
(see [6], Proposition 2.4). The map TF : TM → TN given by the formula
(1) is called the map tangent to F . It is well known that TF : (TM, T C) →
(TN, T D) and πN ◦TF = F ◦πM , where πM : TM → M and πN : TN → N
are natural projections (see [9] or [6], Proposition 2.5).
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Let us consider the differential space (RI , C∞(RI)). The differential
structure C∞(RI) is generated by the family of projections F := {pri}i∈I ,
where

prj((xi)) := xj, (xi) ∈ RI , j ∈ I.

For any x = (xi), v = (vi) ∈ RI the functional ~v : C∞(RI) → R given by
the formula

~v(α) :=
∑

i∈I

vi
∂α

∂xi
(x)

is well defined (in some neighbourhood of x the function α depends on finite
number of variables xi) and is a vector tangent to RI at x. On the other
hand, if u ∈ TxR

I and for any i ∈ I we denote vi := u(pri) then for any
α ∈ C∞(RI) we have ~v(α) = u(α). Then we identify the set TxR

I with
{x} × RI . Consequently we identify the set TRI with RI × RI . In this case
the differential structure T C∞(RI) is generated by the family of functions
T F := {pri ◦ π}i∈I ∪ {dpri}i∈I , where

π(x, v) = x, (x, v) ∈ RI × RI .

Hence for any j ∈ I

prj ◦ π((xi), (vi)) = xj and dprj((xi), (vi)) = vj .

It means that T C∞(RI) = C∞(RI×RI) and consequently for any x ∈ RI the
differential structure T C∞(RI)TxRI is generated by the family of projections
{pr′i : {x} × RI → R}I , where

pr′j(x, (vi)) = vj .

Then we can identify T C∞(RI)TxRI with C∞(RI).
Let φF : (M, C) → (RF , C∞(RF )) be the generator embedding of the

differential Hausdorff space (M, C) defined by some family of generators F .
Then we can identify differential spaces (M, C) and (φF (M), C∞(RF )φF (M))
(φF is a diffeomorphism). We also identify tangent spaces TmM and
TφF (m)φF (M) using the tangent map TφF .

Theorem 2.1. Let I be an arbitrary nonempty set and let X be a nonempty
subset of the Cartesian space RI . Then for any x = (xi) ∈ X the space TxX
tangent to the differential space (X,C∞(RI)X) at the point x is a closed
subspace of the space TxR

I tangent to the differential space (RI , C∞(RI))
at x.

For the proof see [4], Theorem 3.2.

A map X : M → TM such that for any m ∈ M the value X(m) ∈
TmM is called a vector field on M . A vector field X on M is smooth if
X : (M, C) → (TM, T C).
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3. Uniform structures and completions of a differential space de-

fined by families of generators

For the general theory of uniform structures and completions see [7],
Chapter 8 or [1]. It is also described in [8], [5] and [6]. Here we introduce
notions and collect results which are necessary to develop our theory of
differential completions of differential spaces. We start with the definition of
the uniform structure given on a differential space by a family F of generators
of its differential structure.

Let F be a family of real-valued functions on a set M and let (M, C)
be a differential space such that C = (scF)M and (M, τC) is a Hausdorff
space (the last is true iff the family C separates points in X iff the family
F separates points in X). On the set M the family F defines the uniform
structure UF such that the base B of UF is given as follows:

(2) B = {V (f1, . . . , fk, ε) ⊂ M ×M ; k ∈ N; f1, . . . , fk ∈ F , ε > 0},
where

V (f1, . . . , fk, ε) = {(x, y) ∈ M ×M : ∀1 ≤ i ≤ k |fi(x)− fi(y)| < ε}
(see [5], Proposition 3.1).

Definition 3.1. The uniform structure U on a set M is said to be a
differential uniform structure on the differential space (M, C) if there exists
a family F of generators of C such that U = UF , where UF is defined by the
base (2). The uniform space (M,UF ) is said to be the uniform space given
by the family of generators F .

If we have two different families F1 and F2 of generators of a differential
space (M, C), then the uniform structures UF1

and UF1
can be different too.

Example 3.1. Let M = R, C = C∞(R), F1 = {idR} and F2 = {idR, f},
where

idR(x) = x, and f(x) = x2, x ∈ R.

Then does not exist ε > 0 such that V (idR, ε) ⊂ V (f, 1). Hence V (f, 1) /∈
UF1

and UF1
6= UF2

.

If F is a family of generators of a differential structure C on a set M ,
then we define a uniform structure UT F on the space TM tangent to the
differential space (M, C) using the family of real-valued functions

T F = {f ◦ π : f ∈ F} ∪ {df : f ∈ F},
where π : TM → M is the natural projection and df : TM → R, df(v) =
v(f). As we know from the previous section, the family T F generates the
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natural differential structure T C on TM . The base D of UT F is given by:

D = {V (π ◦ f1, . . . , π ◦ fk, dfk+1, . . . , dfm, ε) ⊂ TM × TM : k,m ∈ N,

f1, . . . , fm ∈ F , ε > 0}.
Let (X,U), and (Y,V) be uniform spaces.

Definition 3.2. A mapping f : X → Y is said to be uniform with respect
to uniform structures U and V if

∀V ∈ V ∃U ∈ U ∀x, x′ ∈ X [(x, x′) ∈ U ⇒ (f(x), f(x′)) ∈ V ].

In other words, for every V ∈ V there is U ∈ U such that U ⊂ (f × f)−1(V ).
We denote it by

f : (X,U) → (Y,V).
It is clear that if F is a family of generators of the differential structure C
on the set M then any element of F is a uniform mapping with respect to
the uniform structure UF on M and the standard uniform structure on R.

It is easy to prove that: (i) any uniform mapping f : (X,U) → (Y,V)
is continuous with respect to topologies τU and τV ; (ii) a superposition of
uniform mappings is a uniform mapping; (iii) f : (X,U) → (Y,V) iff for any
bases B and D of U and V respectively and for each V ∈ D there exists
U ∈ B such that U ⊂ (f × f)−1(V ) (see [7]).

A mapping f , which is uniform with respect to uniform structures U and
V, could not be uniform with respect to another uniform structures U and
V defined on X and Y respectively, even if the topologies τU , τU , τV and τV
fulfil equalities: τU = τU and τV = τV (see [6], Example 3.2).

A bijective mapping f : (X,U) → (Y,V) is a uniform homeomorphism
if f−1 is a uniform mapping. Then we say that (X,U) and (Y,V) are uni-
formly homeomorphic. By (i) it is obvious that if f : (X,U) → (Y,V) is
a uniform homeomorphism then f is a homeomorphism of the topological
spaces (X, τU) and (Y, τV).

Let (X,U) be a uniform space and let A ⊂ X. Then the family UA :=
{(A × A) ∩ U : U ∈ U} is a uniform structure on A. The uniform space
(A,UA) is called the uniform subspace of the uniform space (X,U). Note
that if F is a family of generators of a differential structure C on a set M ,
A ⊂ M and F|A = {f|A : f ∈ F}, then the uniform space (A,UF|A

) is a
uniform subspace of the uniform space (M,UF ).

Let (X,D) be a uniform space and V ∈ D. A set U ⊂ X is said to be
small of rank V if ∃x ∈ U ∀y ∈ U [(x, y) ∈ V ] (see [5], Definition 2.2). If we
define the ball K(x, V ) as a set:

K(x, V ) = {y ∈ X : (x, y) ∈ V },
then a set U ⊂ X is small of rank V iff ∃x ∈ U [U ∈ K(x, V )].
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If F ⊂ X and V ∈ D we define the V-neighbourhood of F as a set

K(F, V ) :=
⋃

x∈F

K(x, V ) = {y ∈ X : ∃x ∈ F [(x, y) ∈ V ]}.

Now we recall basic notions and facts concerning the theory of filters,
Cauchy filters and completions of uniform spaces.

A nonempty family F of subsets of a set X is said to be a filter on X if:
(F1) (F ∈ F ∧ F ⊂ U ⊂ X) ⇒ (U ∈ F); (F2) (F1, F2 ∈ F) ⇒ (F1 ∩ F2 ∈
F); (F3) ∅ /∈ F . A filtering base on X is a nonempty family B of subsets of
X such that: (FB1) ∀A1, A2 ∈ B ∃A3 ∈ B [A3 ⊂ A1 ∩ A2]; (FB2) ∅ /∈ B. If
B is a filtering base on X then

F = {F ⊂ X : ∃A ∈ B [A ⊂ F ]}
is a filter on X. It is called the filter defined by B and B is called the base
of F .

It is easy to show that if {Fi}i∈I is the family of filters on the set X then
the intersection

⋂
i∈I

Fi is a filter on X (see [6], Proposition 3.1).

Let X be a topological space. We say that a filter F on X is convergent
to x ∈ X (F → x) if for any neighbourhood U of x there exists F ∈ F such
that F ⊂ U (i.e. U ∈ F). If for any i ∈ I the filter Fi → x then

⋂
i∈I

Fi → x

(see [6], Proposition 3.2).

Definition 3.3. Let (X,U) be a uniform space. A filter F on X is a
Cauchy filter if

∀V ∈ U ∃F ∈ F [F × F ⊂ V ].

We say that two Cauchy filters F1 and F2 are in the relation R if

∀V ∈ U ∃F1 ∈ F1, F2 ∈ F2 [F1 × F2 ⊂ V ].

Proposition 3.1. Two filters F1 and F2 on the uniform space (X,U) are
in the relation R iff F1, F2 and F1 ∩ F2 are Cauchy filters on X.

Proof. (⇒) Suppose F1 and F2 to be in the relation R and fix V ∈ U . Let
W ∈ U be such that 4W ⊂ V . There exist F1 ∈ F1 and F2 ∈ F2 such that
F1 × F2 ⊂ W . Then F2 ⊂ K(F1,W ) which implies that K(F1,W ) ∈ F2.
Since F1 ⊂ K(F1,W ) we have K(F1,W ) ∈ F1. Hence K(F1,W ) ∈ F1 ∩
F2. On the other hand, for any y1, y2 ∈ K(F1,W ) there are x1, x2 ∈ F1

such that (y1, x1), (y2, x2) ∈ W . For an arbitrarily chosen z ∈ F2 we have
(z, x1), (z, x2) ∈ W . Hence (y1, y2) ∈ 4W ⊂ V . It means that K(F1,W ) ×
K(F1,W ) ⊂ V . Since K(F1,W ) is an element of F1,F2 and F1 ∩ F2, all
these filters are Cauchy filters.
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(⇐) Suppose F1 ∩ F2 to be Cauchy filter on X. Fix V ∈ U , choose
F ∈ F1 ∩ F2 such that F × F ⊂ V and put F1 := F2 := F . Then F1 ∈
F1, F2 ∈ F2 and F1 × F2 ⊂ V . Hence F1RF2.

Proposition 3.2. The relation R described in Definition 3.8 is an equiv-
alence relation on the set CF (X) of all Cauchy filters on the uniform space
(X,U).
Proof. It is obvious that for any Cauchy filters F1 and F2 on X we have
F1RF1, and if F1RF2 then F2RF1. Suppose now F3 to be such a Cauchy
filter on X that F1RF2 and F2RF3. Fix V ∈ U and choose W ∈ U such
that 2W ⊂ V . There exist F1 ∈ F1, F

′
2, F

′′
2 ∈ F2 and F3 ∈ F3 such that

F1 × F ′
2 ⊂ W and F ′′

2 × F3 ⊂ W . Let F2 := F ′
2 ∩ F ′′

2 . Then F2 ∈ F2,
F1 × F2 ⊂ W and F2 × F3 ⊂ W . Since 2W ⊂ V we obtain F1 × F3 ⊂ V .
Hence F1RF3.

For any Cauchy filter F on X we denote by [F ] the equivalence class of
F with respect to the equivalence relation R given in Definition 3.8.

Proposition 3.3. If {Fi}i∈I is a family of Cauchy filters on an uniform
space X contained in an equivalence class [F ] then

⋂
i∈I

Fi ∈ [F ] i.e.
⋂
i∈I

Fi is

a Cauchy filter and it is equivalent to F .

Proof. Let V be an arbitrary element of the uniform structure U on X.
Let W ∈ U be such that 4W ⊂ V . Choose F ∈ F such that F × F ⊂
W . Similarly as in the proof of Proposition 3.3 we obtain that K(F,W ) ×
K(F,W ) ⊂ 3W ⊂ V . For any i ∈ I there are Fi ∈ Fi and Gi ∈ F such
that Fi ×Gi ∈ W . Hence Fi × (Gi ∩ F ) ∈ W and therefore Fi ⊂ K(F,W ).
Consequently K(F,W ) ∈ Fi for any i ∈ I. Then K(F,W ) ∈ ⋂

i∈I

Fi and

moreover K(F,W ) ×K(F,W ) ⊂ V . It means that
⋂
i∈I

Fi is a Cauchy filter

on X. Since K(F,W ) ∈ F (F ⊂ K(F,W )) we obtain that
⋂
i∈I

Fi is equivalent

to F .

Corollary 3.1. If F is a Cauchy filter on X then
⋂

G∈[F ]

G is a Cauchy

filter on X equivalent to F . Since for any F1 ∈ [F ] we have
⋂

G∈[F ]

G ⊂ F1,

we obtain
⋂

G∈[F ]

G is the minimal element of [F ] with respect to the ordering

relation ⊂ on the family of all filters on a set X.

Definition 3.4. For any Cauchy filter F on X, the Cauchy filter
⋂

G∈[F ]

G

is called the minimal Cauchy filter on X defined by (smaller then) F .
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Definition 3.5. A uniform space (X,U) is said to be complete if each
Cauchy filter on X is convergent in τU .

Theorem 3.1. If (X,U) is a complete uniform space and M is a closed
subset of the topological space (X, τU ) then a uniform space (M,UM ) is com-
plete. Conversely, if (M,UM ) is a complete uniform subspace of some (not
necessarily complete) uniform space (X,U), then M is closed in X with re-
spect to τU .

For the proof see [1], [7] or [8].

It is well known that the uniform space of reals (R,U) with the standard
uniform structure U = U{idR} defined by the one element family of functions
{idR} (or by the standard metric) is complete. We have also more general

Proposition 3.4. For any set I the uniform space (RI ,UG), where G =
{pri}i∈I is the set of all natural projections pri : R

I → R,

pri(x) = pri((xj)j∈I) = xi, f ∈ RI ,

for any i ∈ I, is complete.

Proof. Let F be a Cauchy filter on RI . Since for any i ∈ I the map pri is
uniform we obtain that the family pri(F) = {pri(F ) : F ∈ F} is a filtering
base of some Cauchy filter on R. Then the Cauchy filter corresponding to
pri(F) converges to some yi ∈ R. Putting y(i) := yi, i ∈ I we obtain
function y ∈ RI such that F → f .

Any uniform space can be treated as a uniform subspace of some complete
uniform space. We have the following

Theorem 3.2. For each uniform space (X,U):

(i) there exists a complete uniform space (X̃, Ũ) and a set A ⊂ X̃ dense in

X̃ (with respect to the topology τ
Ũ
) such that (X,U) is uniformly home-

omorphic to (A, ŨA);

(ii) if the complete uniform spaces (X̃1, Ũ1) and (X̃2, Ũ2) satisfies condition
of the point (i) then they are uniformly homeomorphic.

For the details of the proof see [1] or [8]. Here we only want to describe

the construction of (X̃, Ũ).
Let X̃ be the set of all minimal Cauchy filters in X. For every V ∈ U we

denote by Ṽ the set of all pairs (F1,F2) of minimal Cauchy’s filters, which

have a common element being a small set of rank V. We define a family Ũ
of subsets of set X̃ × X̃ as the smallest uniform structure on X containing
all sets from the family {Ṽ : V ∈ U}.
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Example 3.2. Let us consider two uniform structures U{f} and U{g} on
the differential space (R, C∞), where

f(x) = x, g(x) = arctgx, x ∈ R.

Then (R,U{f}) is the complete space i.e. Ũ{f} = U{f} while (R,U{g}) is not

complete and we have R̃ ≃ [−π
2 ;

π
2 ]. Consequently U{f} 6= U{g}.

Let N be a set, M ⊆ N , M 6= ∅, C be a differential structure on M .

Definition 3.6. The differential structure D on N is an extension of the
differential structure C from the set M to the set N if C = DM (if we get
the structure C by localization of the structure D to M).

For the sets N,M and the differential structure C on M we can construct
many different extensions of the structure M to N .

Example 3.3. If for each function f ∈ C we assign f0 ∈ RN such that
f0|M = f and f0|N\M ≡ 0, then the differential structure generated on N by
the family of functions {f0}f∈C is an extension of C from M to N . Similarly,
if for each function f ∈ C we assign the family Ff := {g ∈ RN : g|M =
f}, then the differential structure on N generated the family of functions
F :=

⋃
f∈C Ff is an extension of C from M to N . If the set N\M contain at

least two elements, then the differential structures generated by the families
{f0}f∈C and F are different.

Definition 3.7. If τ is a topology on the set N , then the extension D of
the differential structure C from M to N is continuous with respect to τ if
each function f ∈ D is continuous with respect to τ (τD ⊂ τ).

If on the set N there exists a continuous with respect to some topology
τ extension of the differential structure C from the set M ⊂ N , then the
structure C is said to be extendable from the set M to the topological space
(N, τ).

Example 3.4. The differential structure C∞(R)Q is extendable from the
set of rationales to the set of reals. The continuous extensions are e.g.
C∞(R) and the structure D generated on R by the family of the functions
C∞(R) ∪ {f}, where f : R → R, f(x) := |x−

√
2|, x ∈ R.

Proposition 3.5. Let M 6= ∅, (M, C) be a differential space and G be a

family of generators of C, i.e. C = gen(G). Let (M̃, ŨG) be the completion of
the uniform space (M,UG). Then any function g ∈ G poses the continuous

extension g̃ : M̃ → R. If G̃ is the family of all continuous extensions of
elements of G to M̃ then the differential structure D = gen(G̃) is an contin-

uous extension of the differential structure C from the set M to the set M̃ .
Moreover τD = τŨG

.



986 D. Dziewa-Dawidczyk, Z. Pasternak-Winiarski

Proof. Let φG be the generator embedding of the differential space
(M, C) into the Cartesian space (RG , C∞(RG)) defined by G. Then the
closure φG(M) is a complete subspace of the complete uniform space RG

(see Theorem 3.1 and Proposition 3.4). We know that φG : (M, C) →
(φG(M), C∞(RG)φG(M)) is a diffeomorphism and prg ◦φG = g for any g ∈ G.

Moreover φG(M) is dense in φG(M). Then identifying any g ∈ G with

prg |φG(M), C with C∞(RG)φG(M) and putting M̃ := φG(M) we obtain that

g̃ should be identify with prg |φG(M)
and D = C∞(RG)

φG(M)
. We have also

τD = τ
M̃

= τ
ŨG

, where τ
M̃

is the topology of M̃ as a topological subspace

of RG .

Definition 3.8. The differential space (M̃,D) constructed in Proposi-
tion 3.7 will be called the differential completion of the differential space
(M, C) defined by the family of generators G. The set M̃ will be denoted by
complGM and the differential structure D will be denoted by complGC.

4. The maximal differential completion

Let us consider two families G and H of generators of a differential
structure C on a set M 6= ∅. If G ⊂ H then for uniform structures UG

and UH we have: UG ⊂ UH. Consequently, any Cauchy filter with re-
spect to UH is a Cauchy filter with respect to UG . In particular, any
minimal Cauchy filter with respect to UH is a Cauchy (but not necessar-
ily minimal Cauchy) filter with respect to UG . This defines the natural map
ιGH : complHM → complGM as follows: for any F ∈ complHM the value
ιGH(F) ∈ complGM is the minimal Cauchy filter equivalent to F with re-
spect to the uniform structure UG .

Proposition 4.1. For any two families G and H of generators of a
differential structure C on a set M 6= ∅ such that G ⊂ H, the map ιGH :
complHM → complGM defined above is smooth with respect to differential
structures complHC and complGC.

Proof. For the smoothness of ιGH it is enough to prove that for any g ∈ G
the function g̃G ◦ ιGH ∈ complHC, where g̃G denotes the continuous extension
of g onto complGM . Since any g ∈ G is an element of H we have for each
Cauchy filter F ∈ complHM

g̃G ◦ ιGH(F) = lim g(ιGH(F)) = lim g(F) = g̃H(F),

where g̃H denotes the continuous extension of g onto complHM . Hence
g̃G ◦ ιGH = g̃H ∈ complHC.
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In general the image ιGH(complHM) 6= complGM and it is not complete
in complGM .

Example 4.1. Let M = Q, C = C∞(R)Q, G = {id} and H = {id, h},
where

h(x) :=

{
x for x <

√
2,

−x for x >
√
2.

Then {Q∩(
√
2− 1

n
;
√
2)}n∈N and {Q∩(

√
2;
√
2+ 1

n
)}n∈N are filtering bases of

different Cauchy filters F1 and F2 respectively in the uniform space (Q,UH).
Since ιGH(F1) = ιGH(F2) we obtain that ιGH is not an injective map.

Example 4.2. Let M = (0; π2 ), C = C∞(M) and G = {α1, α2}, H =
{α1, α2, β}, where

α1(x) = x cos(tanx), α2(x) = x sin(tanx), β(x) = tanx, x ∈ M.

Since idM =
√

α2
1 + α2

2 we have C∞(M) = gen(G) = gen(H). More-
over, G ⊂ H. Let K((a, b), r) denotes the disc in R2 with the center at

(a, b) and the radius r > 0. If a2 + b2 = π2

4 then the family of sets

{(α1, α2)
−1(K((a, b), 1

n
))}n∈N is the filtering basis of the minimal Cauchy

filter F in M with respect to the uniform structure UG . But in the uniform
space (M,UH) there is no Cauchy filter F0 such that F = ιGH(F0). Hence
the map ιGH is not onto complGM .

From the above consideration we obtain the following theorem.

Theorem 4.1. For any differential space (M, C) the differential completion
(complCM, complCC) has the following properties:

(i) for any differential completion (N,D) of (M, C) (where M ⊂ N) there
exists a map

ιD : (complCM, complCC) → (N,D)

such that ιD|M = idM ;

(ii) for any function g∈C there exists uniquely defined extension g̃∈complCC.

In the set of all differential completions of the space (M, C) we can define
an ordering relation � such that:

complGM � complHM ⇔ G ⊂ H,

where G and H are families of generators of the structure C.

The above theorem says that complCM is the maximal with the respect
to the order � completion of M which can be constructed using a set of
generators of the differential structure C while complCC is the maximal con-
tinuous extension of C from M to complCM .
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Definition 4.1. We will call the differential space (complCM, complCC)
the maximal differential completion of the differential space (M, C).

Let us consider the situation when for some family of generators G, the
uniform space (M,UG) is complete.

Theorem 4.2. Let (M, C) be a differential space and G be a family of
generators of C. If the uniform space (M,UG) is complete then for any family
H of generators of C such that G ⊂ H we have

(3) complHM = M

and

(4) complHC = C.
In particular complCM = M and complCC = C.

Proof. Any element of complHM is represented by some filter F in M
which is a Cauchy filter with respect to UH. Then F is a Cauchy filter with
respect to UG and therefore F can be identify with its limit in M. Then
complHM ⊂ M . On the other hand for any element p ∈ M the filter Fp of
all neighbourhoods of p is a Cauchy filter with respect to UH. Hence we can
write M ⊂ complHM .

The equality (4) is an immediate consequence of the definition of complHC
and the equality (3).

Let us consider the case when G = C.

Theorem 4.3. Let (M, C) be a differential space. If there exists a finite
or countable family of generators of C then the uniform space (M,UC) is
complete.

Proof. Suppose that (M,UC) is not complete. Then there exists x ∈
complCM \M . Let χ : C → R be a functional given by the formula

(5) χ(g) := g̃(x), g ∈ C,
where g̃ is the continuous extension of g from M to complCM . This func-
tional is an element of the spectrum of the algebra C, but it is not an eval-
uation functional on M (the algebra complCC separates points of the space
complCM). Then C does not posses the spectral property. It is contradictory
with Theorem 1 and Corollary 6 from the work [3] (see also Theorem 2.3
(Twierdzenie 2.3) and Corollary 2.6 (Wniosek 2.6) from [2]).

Corollary 4.1. Let X be a topological Hausdorff space. If the topology
of X is given by a countable family G of real-valued functions as the weakest



Differential completions and compactifications of a differential space 989

topology on X with respect to which all elements of G are continuous, then
there exists a uniform structure U on X such that the uniform space (X,U)
is complete and the topology τU coincides with the initial topology on X.

Example 4.3. Let M = Q be the set of rationales. Since the differential
structure C∞(RQ) is generated by the one element set {idQ}, we obtain
that the uniform space (Q,UC∞(RQ)) is complete. We will define the family
G = {fr}r∈I0 of generators of C∞(RQ) such that I0 ⊂ R and the uniform
structure UG is complete.

Let I := R \Q, I0 := {0} ∪ I, f0 := idQ and for any r ∈ I

fr(x) :=
1

x− r
, x ∈ Q.

For any s ∈ I0 we have fs ∈ C∞(RQ) and C∞(RQ) = gen(G). Let φG : Q →
RI0 be the generator embedding. We will see that M = φG (Q is a closed
subset of RI0). Let p = (ps)s∈I0 ∈ M (M is the closure of M in RI0). Let Fp

be a filter of all (not necessarily open) neighbourhoods of p in RI0 . Hence
Fp is a Cauchy filter with respect to the uniform structure U{prs}s∈I0

, where

{prs}s∈I0 is the family of all coordinate projections on RI0 . It implies that
the family of sets Fp|M = {U ∩M : U ∈ Fp} is a Cauchy filter on M . Since
for any s ∈ I0 the function

prs((xt)t∈I0) = xs, (xt)t∈I0 ∈ RI0 ,

is uniform then prs(Fp|M ) is a base of some Cauchy filter in R, which con-
verges tops. By the definition of M it follows that for any s ∈ I we have

prs(Fp|M ) = fs(pr0(Fp|M )).

It means that fs(pr0(Fp|M )) is a base of a filter which is convergent in R.

Suppose now that p0 ∈ I. Since pr0(Fp|M ) → p0, we obtain (see the
definition of fp0) that fp0(pr0(Fp|M )) is not convergent in R. This leads to a
contradiction. Hence p0 ∈ Q and for any s ∈ I0 we have: ps = fs(p0), which
means that p ∈ M .

Since M is closed in RI0 , it is complete and by Theorem 4.2 we have

complUG
Q = Q, complUG

C∞(RQ) = C∞(RQ).

5. Compactification of a differential space

Let (M, C) be a differential space such that C = gen(G). Let f ∈ C,
m ∈ M . Then there exist: neighbourhood U of m, number n ∈ N, functions
α1, . . . , αn ∈ G and ω ∈ C∞(Rn) such that f |U = ω ◦ (α1, . . . , αn)|U . We
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denote y0 := (α1(m), . . . , αn(m)). Let us take cubes:

P :=

(α1(m)−1, α1(m)+1)×(α2(m)−1, α2(m)+1)×. . .×(αn(m)−1, αn(m)+1),

P ′ :=

(α1(m)−2, α1(m)+2)×(α2(m)−2, α2(m)+2)×. . .×(αn(m)−2, αn(m)+2).

Let η ∈ C∞(Rn), such that: η|P ≡ 1, η|Rn\P ′ ≡ 0 and |η| ≤ 1. We
mark: α := (α1, . . . , αn), βi := αi · η(α1, . . . , αn), β := (β1, . . . , βn). Let
V := α−1(P ), V ′ := α−1(P ′). Then V ⊂ V ′ ⊂ M and m ∈ U ∩ V . For any
x ∈ U ∩ V we have: f(x) = ω(α1(x), . . . , αn(x)) = ω(β1(x), . . . , βn(x)). We
observe that ∀i ∈ {1, . . . , n} |βi(x)| ≤ max{|α1(m) + 2|, |α1(m)− 2|} =: µi.

Then f(x) = ω(µ1
β1(x)
µ1

, µ2
β2(x)
µ2

, . . . , µn
βn(x)
µn

) = ω(µ1γ1(x), . . . , µnγn(x)) =

ω1(γ1, . . . , γn)(x), where: ∀1 ≤ i ≤ n, ∀x ∈ M γi(x) =
βi(x)
µi

and |γi(x)| < 1|.
Hence we get the following theorem:

Theorem 5.1. For any differential space (M, C) there exists the family
of bounded generators, in particular C = gen(G1), where G1 = {γi}|i∈I such
that |γi| ≤ 1 ∀i ∈ I.

For any Hausdorff differential space we consider the generators embed-
ding of that space using the family of generators described in Theorem 5.1
(it takes values in the cube [−1, 1]I). So we have the embedding of the dif-
ferential space into the compact space and we close the image. Hence we get
the compact set MG .

If we mark J := [−1, 1], then MG ⊂ JI . On JI there exists the nat-
ural differential structure C∞(JI) = C∞(RI)|JI generated by the family
of projections {pri|J}i∈I , where pri : RI → R is the projection onto i-th

coordinate. By localization of that structure to the set MG we get the differ-
ential space (MG , C

∞(JI)MG
) which is a differential subspace of the space

(JI , C∞(JI)). We call that differential space the (differential) compactifi-
cation of the differential space (M, C) by the family of generators G and we
denote it by (comptGM, comptGC). We see that comptGM = complGM and
comptGC = complGC. So for the compactification of the differential space we
have analogous theorems like for the completion.

Remark 5.1. Let G and H be the families of bounded generators of the
differential structure C on the set M 6= ∅. If G ⊂ H, that there exists
smooth function ιGH : (comptHM, comptHC) → (comptGM, comptGC) such
that ιGH|M = idM .

Let consider the differential space (M, C) and the family C0 of all smooth
functions on that space which takes values in [−1, 1]. Using the proce-
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dure of the compactification, described earlier, we get the differential space
that we mark by (comptCM, comptCC) it means comptCM := comptC0M ,
comptCC := comptC0C.

Definition 5.1. The differential space (comptCM, comptCC) is called the
maximal differential compactification of the space (M, C).

Let us assume that the topological space (M, τC) is compact. Then all
the functions from C are limited and by the normalization of each function
α ∈ C \ {0} according the formula:

Nα(p) =
1

supq∈M |α(q)|α(p), p ∈ M

we get the family NC = {Nα : α ∈ C} of the generators of the structure
C. Then the generator embedding given by NC converts diffeomorphically
(M, C) onto the compact subspace of (JNC , C∞(JNC)). Similarly, if G is any
family of generators of the structure C, then NG = {Nα : α ∈ G} is the
family of generators of C too, and an appropriate generator embedding is a
diffeomorphism of (M, C) onto a compact subspace of (JNG , C∞(JNG)). We
have

comptCM = M, comptGC = C,
where the equality is the identification of the diffeomorphic spaces and struc-
tures.
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