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ON SUP-MEASURABILITY OF MULTIFUNCTIONS

WITH SOME DENSITY PROPERTIES

Abstract. The paper is concerned with sup-measurability of a multifunction F de-
fined on the product X×Y of metric spaces with some differentiation bases. We introduce
the lower Dα property and the upper Dα property of multifunction, where α ∈ (0, 1) ⊂ R,
and we prove sup-measurabilty of F when it has the upper Dα property at (x, y), and
F (x, ·) has the lower Dα property at y for every (x, y) ∈ X × Y . Some application of this
theorem to the existence of solutions of differential inclusions f ′(x) ∈ F (x, f(x)) is given.

1. Introduction

Sup-measurability, roughly speaking, means measurability of the Cara-
théodory superposition H(x) = F (x,G(x)) =

⋃

y∈G(x) F (x, y), where F is
a multifunction form X × Y to Z and G is a measurable multifunction
from X to Y . In the single valued version, the problem of sup-measurabi-
lity have been studied extensively (an overview of some papers in this field
can be found in [10]). Far less is known, however, in the multivalued case,
although in various fields of mathematics and its applications, the superposi-
tion F (x,G(x)) occurs frequently (see for instance [1], [2], [12], [13] and [16]).

The problem of sup-measurability was for the first time considered by
Carathéodory in his book [6]. He formulated a sufficient condition for sup-
measurability of a function f : R2 → R, namely, measurability of f(·, y)
and continuity of f(x, ·). It is known that the continuity of f(x, ·) in the
Carathéodory theorem cannot be replaced by the approximate continuity.
But if we suppose approximate continuity of f(x, ·) and measurability of
f instead of the measurability of f(·, y), then f is sup-measurable [10,
Théorème 25].

The purpose of this paper is to prove a new sup-measurability result
concerning multifunctuions. We begin with notations, terminology and
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facts known in the literature (Section 2). Here, we also consider multi-
functions defined on a measurable metric space with some differentiation
basis. Given α ∈ (0, 1) ⊂ R, we define some density properties of a mul-
tifunction, called the lower Dα property and the upper Dα property with
respect to the differentiotion basis, more general than the approximate semi-
continuity.

In Section 3, we consider multifunctions defined on the product X × Y of
measurable metric spaces with differentiation bases. We show sup-measura-
bility of a multifunction F when it has the upper Dα property at (x, y) and
F (x, ·) has the lower Dα property at y for every (x, y) ∈ X × Y .

Many problems of applied mathematics lead us to the study of dynam-
ical systems having velocities not uniquely determined by the state of the
systems, but depending only loosely upon it. In these cases, the classical
equation of the form f ′(x) = g(x, f(x)), describing the dynamics of the sys-
tem, is replaced by a relation of the form f ′(x) ∈ F (x, f(x)), where F is
a multifunction. Such a “set valued differential equation" is called a differ-
ential inclusion.

In Section 4, we give some application of our theorem on sup-measurabi-
lity to the existence of solutions of differential inclusions. We consider the
initial value problem

(1) f ′(x) ∈ F (x, f(x)) and f(x0) = y0.

Here we deal with multifunctions in more specjal spaces; F stands for a mul-
tifunction from I × Y to Y , where I ⊂ R is an interval and Y is the k-
dimensional Euclidean space. If the initial state (x0, y0) ∈ I × Y , then by
a solution of (1) we mean any absolutely continuous function f : [x0, b] → Y ,
b ∈ I, such that f(x0) = y0 and f ′(x) ∈ F (x, f(x)) for almost all x ∈ [x0, b].

The existence of solutions of (1) may be shown in many ways. The con-
ditions to be imposed on the multifunction F in order that to have solutions
of (1) are mainly of two kinds: continuity or semicontinuity of F and some
conditions type of Lipschitz or integrable boundness of F . This was extended
to the Carathéodory case, i.e. F (x, ·) is continuous and F (·, y) is measurable
(see [2], [8], [9], [14], [15]). We obtain a solution of (1) when F has the upper
Dα property and F (x, ·) is continuous.

2. Preliminaries

As a rule we will denote by N and R
k, k ∈ N, the set of positive integers

and the k-dimensional Euclidean space, respectively.

Let S and Z be nonempty sets and let Φ be a mapping which associates
to each point s ∈ S a nonempty set Φ(s) ⊂ Z. Such a mapping is called
a multifunction from S to Z and we write Φ : S  Z.
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Any function φ : S → Z such that φ(s) ∈ Φ(s) for every s ∈ S is called
a selection of the multifunction Φ : S  Z.

If Φ : S  Z is a multifunction and G ⊂ Z, then two inverse images of
G under Φ are defined as follows:

Φ+(G) = {s ∈ S : Φ(s) ⊂ G} and Φ−(G) = {s ∈ S : Φ(s) ∩G 6= ∅}.

A function f : S → Z may be considered as a multifunction assigning to
s ∈ S the singleton {f(s)}. In this case we have f+(G) = f−(G) = f−1(G)
for G ⊂ Z.

Let (S, T (S)) be a topological space and s ∈ S. We will use B(s) to
denote the filterbase of open neighbourhoods of s. Moreover, B(S) will
denote the σ-field of Borel subsets of S. The closure of A ⊂ S will be
denoted by Cl(A) and the interior of A by Int(A).

Let (Z, d) be a metric space and let P0(Z) be the family of all nonempty
subsets of Z. If z ∈ Z and r > 0, then, as usual, B(z, r) will denote the
open ball centred at z and radius r.

A multifunction Φ : S  Z is called h-lower (resp. h-upper) semicontin-

uous at a point s0 ∈ S if, for each ε > 0 there exists U(s0) ∈ B(s0) such
that hl(Φ(s),Φ(s0)) < ε) (resp. hu(Φ(s),Φ(s0)) < ε) for each s ∈ U(s0),
where hl and hu are, respectively, the lower and the upper hemimetrics in
the space P0(Z) defined by

hl(A,B) = sup{d(x,B) : x ∈ A} and hu(A,B) = sup{d(x,A) : x ∈ B}.

We say that Φ is h-lower (resp. h-upper) semicontinuous if it is h-lower
(resp. h-upper) semicontinuous at each point s0 ∈ S; Φ is called h-continuous

if it is both h-lower and h-upper semicontinuous.

Let Cb(Z) be the family of all nonempty closed and bounded subsets of Z.
The pseudometric h in P0(Z) defined by

h(A,B) = max(hl(A,B), hu(A,B))

is a metric in Cb(Z). This metric is called the Hausdorff metric generated by
the metric d. We will denote it by dH .

Let us note that

(2) If a multifunction Φ : S  Z is h-lower semicontinuous, then for each
open set G ⊂ Y , the set Φ−(G) is open.

Indeed, if s0 ∈ Φ−(G), then Φ(s0)∩G 6= ∅. Let z0 ∈ Φ(s0)∩G and let ε > 0
be such that B(z0, ε) ⊂ G. By h-lower semicontinuity of Φ at s0, there is
U(s0) such that hl(Φ(s),Φ(s0)) < ε for s ∈ U(s0). Then Φ(s) ∩B(z, ε) 6= ∅
for any z ∈ Φ(s0). Thus Φ(s) ∩G 6= ∅ for s ∈ U(s0) and Φ−(G) is open.
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Let Φ : S  Z be a multifunction. For a fixed point z ∈ Z we define the
function gz : S → R by

gz(s) = d(z,Φ(s)).

It is known that

(3) If Φ is h-upper semicontinuous, then for every z ∈ Z the function gz is
lower semicontinuous [13, Ch. 1, Prop. 2.64].

(4) If Φ is h-lower semicontinuous, then for every z ∈ Z the function gz is
upper semicontinuous [13, Ch. 1, Prop. 2.66 and 2.26].

Let (S,M(S)) be a measurable space and (Z, T (Z)) a topological space.
A multifunction Φ : S  Z is called M(S)-measurable if Φ−(G) ∈ M(S) for
each G ∈ T (Z).

If S = R
k, then by M(S) we will understood the σ-field of Lebesgue

measurable sets and we will say, simply, Φ is measurable.
Let Φ : S  Z be a multifunction. Consider the following properties:

(a) The function gz is M(S)-measurable for each z ∈ Z;
(b) Φ admits a sequence of M(S)-measurable selections (φn)n∈N such that

Φ(s) = Cl({φn(s) : n ∈ N}) for each s ∈ S.

If (Z, d) is separable, then

(5) (i) M(S)-measurability of Φ is equivalent to (a) [7, Th. III.2].
(ii) If in addition Φ is complete valued, then M(S)-measurability of Φ
is equivalent to (b) [7, Th. III.9].

Let (S, ̺,M(S), µ) be a separable metric space with metric ̺, where
M(S) is a σ-field of subsets of S containing B(S) and µ is a σ-finite regular
and complete measure on M(S); µ∗ will denote the outer measure generated
by µ.

(6) Let F(S) ⊂ M(S) be a countable family of µ-measurable sets with
nonempty interiors of a positive and finite measure µ, the boundaries of
which are of µ-measure zero.
Let {In}n∈N ⊂ F(S) and s ∈ S. We write In → s if s ∈ Int(In) for each
n ∈ N and the diameter of In converges to zero as n → ∞. We assume
that for every s ∈ S, there exists a sequence (In)n∈N of sets from F(S)
such that In → s. The pair (F(S),→) then forms a differentiation basis
for the space (S, ̺,M(S), µ) in Bruckner’s terminology [5, p. 30].

Now we assume that (F(S),→) is a differentiation basis for the space
(S, ̺,M(S), µ). If A ⊂ S and s ∈ S, then the lower outer density of A at s
with respect to F(S) is defined by

liminfIn→s
µ∗(A ∩ In)

µ(In)
.
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Replacing liminf by limsup we obtain the upper outer density of A at s
with respect to F(S). These densities will be denoted by D∗

l(A, s) and
D∗

u(A, s), respectively. If they are equal, their common value will be called
the outer density of A at s with respect to F(S) and denoted by D∗(A, s).
If A ∈ M(S), then the outer densities of A at s ∈ S with respect to F(S)
will be called the densities of A at s with respect to F(S) and denoted with
no asterisk.

A point s ∈ S will be called a density point of a set A ⊂ S with respect
to F(S) if there exists a B ∈ M(S) such that B ⊂ A and the density of B
at s with respect to F(S) is equal to 1. We will write D(A, s) = 1.

We assume that

(7) F(S) has the density property, i.e., µ({s ∈ A : D∗
l(A, s) < 1}) = 0 for

every set A ⊂ S.

Definition 1. A multifunction Φ : S  Z is called approximately h-lower
(resp. h-upper) semicontinuous with respect to F(S) at a point s ∈ S, if
there exists a set Es ∈ M(S) with s ∈ E such that D(E, s) = 1 and the
restriction Φ|Es is h-lower (resp. h-upper) semicontinuous at s.

If Φ is approximately h-lower (resp. h-upper) semicontinuous with re-
spect to F(S) at any point s ∈ S, then it is called approximately h-lower
(resp. h-upper) semicontinuous with respect to F(S).

Definition 2. Let Φ : S  Z be a multifunction, s ∈ S and α ∈
(0, 1) ⊂ R. We say that Φ has the lower (resp. upper) Dα property with
respect to F(S) at s, if there is a set As ∈ M(S) with s ∈ As such that
Dl(As, s) > 1 − α (resp. Dl(As, s) > α) and the restriction Φ|As is h-lower
(resp. h-upper) semicontinuous at s; Φ has the lower (resp. upper) Dα

property with respect to F(S), if it has this property at each point s ∈ S.

It is clear that

(8) If a multifunction Φ : S  Z is approximalely h-lower (resp. h-upper)
semicontinuous with respect to F(S) at a point s ∈ S and α ∈ (0, 1),
then Φ has the lower (resp. upper) Dα property with respect to F(S)
at the point s.

In the case S = R
k, µ will denote the Lebesgue measure and by F(S)

we will understood the family of balls with rational radius and centred at
a point with rational coordinates. In this case we will say simply that Φ is
approximately semicontinuous or Φ has the lower (resp. upper) Dα property.

3. Main results

LetX and Y be nonempty sets and let F : X×Y  Z be a multifunction.
If x ∈ X is fixed, then the multifunction Fx : Y  Z given by Fx(y) =
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F (x, y) is called the x-cection of F . Analogously, for fixed y ∈ Y , the
y-section F y of F is defined.

Now let (X,M(X)) be a measurable space and let (Y, T (Y )) and
(Z, T (Z)) be topological spaces. A multifunction F : X × Y  Z is called
M(X)-sup-measurable if for each M(X)-measurable closed valued multi-
function G : X  Y the Carathéodory superposition H : X  Z, given
by

H(x) = F (x,G(x)) =
⋃

y∈G(x)

F (x, y),

is an M(X)-measurable multifunction.

From now on we assume (X, ̺, (X), µ) and (Y, ρ,M(Y ), ν) to be separa-
ble metric spaces with the differentiation bases (F(X),→) and (F(Y ),→),
respectively, defined as in (6). We suppose that F(X) and F(Y ) have the
density property (see (7)).

Let M(X) ⊗M(Y ) be the σ-field in X × Y generated by the family of
sets A×B, where A ∈ M(X) and B ∈ M(Y ), and let µ× ν be the product
measure on M(X)⊗M(Y ). Then the family

F(X)×F(Y ) = {I × J : I ∈ F(X) ∧ J ∈ F(Y )}

has the density property, because F(X) and F(Y ) it have [5, pp. 5 and 34].

We begin with some result on sup-measurability of real functions.

Theorem 1. Let α ∈ (0, 1) and let f : X × Y → R be a function. If

for every (x, y) ∈ X × Y there are the sets A(x, y) ⊂ Y and B(x, y) ∈
M(X)⊗M(Y ) such that

(i) y ∈ A(x, y) and D∗
l (A(x, y), y) > 1− α,

(ii) the restriction (fx)|A(x,y) is upper semicontinuous at y,

(iii) (x, y) ∈ B(x, y) and Dl(B(x, y), (x, y)) > α,

(iv) the restriction f |B(x,y) is lower semicontinuous at (x, y),

then f is M(X)-sup-measurable.

Proof. Suppose that, on the contrary, f is not M(X)-sup-measurable.
Then there is an M(X)-measurable function g : X → Y such that the
Carathéodory’s superposition h : X → R, given by h(x) = f(x, g(x)), is not
M(X)-measurable. Then there is a ∈ R such that h−1((−∞, a)) 6∈ M(X).
Let M+(X) = {A ∈ M(X) : µ(A) > 0} and let X be the family of all sets
W ∈ M+(X) such that

µ(h−1((−∞, a)) ∩W ) = 0 or µ(h−1([a,∞)) ∩W ) = 0.

Let Y = M+(X) \X . Then Y 6= ∅. Indeed, if it were not true, we could find
a countable family {Ink

}k∈N ⊂ F(X) such that µ(Ink
∩ h−1((−∞, a))) = 0
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for each k ∈ N. Then we would have µ(h−1((−∞, a))) = 0, in contradiction
with h−1((−∞, a)) 6∈ M(X).

Of course

µ∗(h−1((−∞, a)) ∩ P ) > 0 and µ∗(h−1([a,∞)) ∩ P ) > 0

for each set P ∈ Y . Let T =
⋃

A∈Y A. Note that there is n ∈ N such that

µ∗
(

h−1

((

−∞, a−
1

n

))

∩ T

)

> 0.

Let M ∈ M+(X) be a set such that

(9) P ∩ h−1

((

−∞, a−
1

n

))

6= ∅ and P ∩ h−1([a,∞)) 6= ∅

for each set P ∈ M+(X) with P ⊂M .
Let A = M ∩ h−1((−∞, a − 1

n
)) and x ∈ A. Then f(x, g(x)) < a − 1

n
.

By (i) and (ii), for the point (x, g(x)) there is a set A(x, g(x)) ⊂ Y including
g(x) such that

(10) D∗
l (A(x, g(x)), g(x)) > 1− α, and

(11) the restriction fx|A(x,g(x)) is upper semicontinuous at g(x), i.e. there is
O(g(x)) ∈ B(g(x)) such that

f(x, y) < a−
1

n
for y ∈ O(g(x)) ∩A(x, g(x)).

By (10), there is U(x, g(x)) ∈ F(Y ) with g(x) ∈ Int(U(x, g(x))) such that

(12) ν∗(A(x, g(x)) ∩ K) > (1 − α + β(x))ν(K) for each K ∈ F(Y ) with
g(x) ∈ Int(K) ⊂ K ⊂ U(x, g(x)), where β(x) > 0.

Since the family F(Y ) is countable, it follows that there is U ∈ F(Y ) such
that the set

B = {x ∈ A : U(x, g(x)) = U}

is of positive outer measure µ∗.
Let C = M ∩ g−1(Int(U)). By M(X)-measurability of g, C ∈ M(X).

Furthermore C ⊂M and µ(C) > 0. Thus, by (9) we have

C ∩ h−1([a,∞)) 6= ∅.

Let D = C ∩ h−1([a,∞)) and x′ ∈ D. Then f(x′, g(x′)) ≥ a. Similarly to
that above, there is U ′ ∈ F(Y ) such that U ′ ⊂ U and the set

E = {x ∈ D : U(x, g(x)) = U ′}

is of positive outer measure µ∗.
Let x0 ∈ E and D(M,x0) = 1. Then f(x0, g(x0)) ≥ a > a − 1

2n .
For the point (x0, g(x0)), by (iii) and (iv), there is a set B(x0, g(x0)) ∈
M(X)⊗M(Y ) including (x0, g(x0)) such that
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(13) Dl(B(x0, g(x0)), (x0, g(x0))) > α, and
(14) f |B(x0,g(x0)) is lower semicontinuous at (x0, g(x0)), i.e. there is a set

O(x0, g(x0)) ∈ B(x0, g(x0)) such that

f(x, y) > a−
1

2n
for (x, y) ∈ B(x0, g(x0)) ∩O(x0, g(x0)).

By (13), there are the sets I ∈ F(X) and J ∈ F(Y ) such that x0 ∈ Int(I),
g(x0) ∈ Int(J) ⊂ J ⊂ U ′ and

(15) µ× ν(B(x0, g(x0))∩ (I × J)) > (α+ γ(x0))µ(I)ν(J), whereγ(x0)>0.

Moreover, x0 is a density point of M . Hence, we can select the set I in such
a way that µ(M ∩ I) > (1 − η)µ(I), η > 0, and x0 ∈ Int(I). Then, by (9),
M ∩ I ∩ h−1((−∞, a− 1

n
)) 6= ∅. Let x1 ∈ A ∩ I. By (12) and (15), there is

y1 ∈ Y such that (x1, y1) ∈ [A× (A(x1, g(x1)) ∩O(g(x1)))] ∩B(x0, g(x0)) ∩
O(x0, g(x0)) ∩ (I × J). Then, by (11), f(x1, y1) < a− 1

n
, which contradicts

(14) and the proof of Theorem 1 is finished.

Now we can prove the main result of this section. We suppose that (Y, ρ)
is a Polish space and (Z, d) is a separable metric space.

Theorem 2. Let α ∈ (0, 1). If F : X × Y  Z is a closed valued

multifunction such that for each (x, y) ∈ X×Y , F has the upper Dα property

with respect to F(X)×F(Y ) at (x, y) and Fx has the lower Dα property with

respect to F(Y ) at y, then F is M(X)-sup-measurable.

Proof. Let (x, y) ∈ X × Y , z ∈ Z and let gz(x, y) = d(z, F (x, y)). By the
upper Dα property of F at (x, y), there is a set B(x, y) ∈ M(X) ⊗ M(Y )
including (x, y) such that Dl(B(x, y), (x, y)) > α and the restriction F |B(x,y)

is h-upper semicontinuous at (x, y). Then, by (3),

(16) Dl(B(x, y), (x, y)) > α and the function gz|B(x,y) is lower semicontinuos
at (x, y).

By the lower Dα property of Fx with respect to F(Y ) at y, there is an
A(x, y) ∈ M(Y ) including y such that Dl(A(x, y), y) > 1 − α and Fx|A(x,y)

is h-lower semicontinuous at y. So that, by (4),

(17) Dl(A(x, y), y) > 1 − α and the function (gz)x|A(x,y) is upper semicon-
tinuous at y.

Thus, by (16), (17) and Theorem 1, the function gz is M(X)-sup-measu-
rable. Therefore the function h : X → R, given by h(x) = gz(x, g(x)), is
M(X)-measurable for every M(X)-measurable function g : X → Y . Thus,
by (5)(i),

(18) a multifunction Φ : X  Z given by Φ(x) = F (x, g(x)) is M(X)-
measurable for every M(X)-measurable function g : X → Y .
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Let G : X  Y be an M(X)-measurable multifunction with closed values.
The task is now to show that the multifunction H : X  Z given by
H(x) = F (x,G(x)) is M(X)-measurable.

By (5)(ii), for the multifunction G we can select a sequence (gn)n∈N of
M(X)-measurable functions gn : X → Y such that G(x) = Cl({gn(x)}n∈N)
for any x ∈ X.

Let U ⊂ Z be an open set and n ∈ N. Let us define

Bn = {x ∈ X : F (x, gn(x)) ∩ U 6= ∅}.

Since all functions gn are M(X)-measurable, by (18) we have

(19) Bn ∈ M(X) for any n ∈ N.

Furthermore Fx|A(x,y) is lower semicontinuous at y and D(A(x, y), y) > 1−α.
Therefore, we have

{x ∈ X : Cl({gn(x)}n∈N) ∩ F
−
x (U) 6= ∅}

= {x ∈ X : {gn(x)}n∈N ∩ F−
x (U) 6= ∅},

(see (2)). Observe that

H−(U) = {x ∈ X : F (x,G(x)) ∩ U 6= ∅}

= {x ∈ X :
⋃

y∈G(x)

F (x, y) ∩ U 6= ∅}

=
{

x ∈ X : ∃y ∈ G(x) ∧ F (x, y) ∩ U 6= ∅
}

= {x ∈ X : G(x) ∩ F−
x (U) 6= ∅}

= {x ∈ X : Cl({gn(x)}n∈N) ∩ F
−
x (U) 6= ∅}

= {x ∈ X : {gn(x)}n∈N ∩ F−
x (U) 6= ∅}.

Therefore,

H−(U) =
⋃

n∈N

{x ∈ X : F (x, gn(x)) ∩ U 6= ∅} =
⋃

n∈N

Bn,

and, by (19), H−(U) ∈ M(X), which finishes the proof of Theorem 2.

4. An existence theorem

From now on we suppose that I = [a, b] ⊂ R and Y = R
k. Let L1(I, µ, Y )

be the space of all µ integrable functions φ : I → Y . Let Φ : I  Y be a
multifunction and let

FI(Φ) = {φ ∈ L1(I, µ, Y ) : φ(x) ∈ Φ(x) a.e. in I}.

The set �

I

Φ(x) dx =
{�

I

φ(x) dx : φ ∈ FI(Φ)
}



830 G. Kwiecińska

is called the Aumann integral of Φ (briefly, the integral of Φ). Φ is called
integrable if

	
I Φ(x) dx 6= ∅ [3].

A multifunction Φ : I  Y is called integrably bounded if there exists
a Lebesgue integrable function g : I → R such that ||y|| ≤ g(x) for all x ∈ I

and y such that y ∈ Φ(x).
If Φ is measurable and closed valued, then, by (5)(ii), we can select

a measurable selection of Φ. Thus

(20) If a closed valued multifunction Φ : I  Y is measurable and integrably
bounded, then Φ is integrable.

Let SI(Φ) = {ψφ : φ ∈ FI(Φ)}, where ψφ(x) =
	x
a φ(t) dt for x ∈ I. The set

SI(Φ) may be considered as a subset of the metric space of all absolutely
continuous functions f : I → Y vanishing at the left point of I with the
norm < f >=

	
I ||f

′(t)|| dt. Note that SI(Φ) is an equicontinuous set. If Φ
is integrably bounded, then SI(Φ) is uniformly bounded.

Let I be a set of indices. A family {Φi}i∈I of multifunctions from I

to Y is called uniformly integrably bounded if there is a Lebesgue integrable
function g : I → R such that ||y|| ≤ g(x) for all x ∈ I, i ∈ I and y such that
y ∈ Φi(x).

Let ̺H be the Hausdorff metric in the space of nonempty compact subsets
of the space C(I, Y ) of continuous functions f : I → Y , generated by the
supremum norm in C(I, Y ). Then the following is true (see [4, Th. 3.2]):

(21) Let Φ,Φn : I  Y , n ∈ N, be compact and convex valued multifunc-
tions with limn→∞ dH(Φn(x),Φ(x)) = 0 for x ∈ I. If {Φn}n∈N is uni-
formly integrably bounded and all multifunctions Φn are measurable,
then the sets SI(Φn) and SI(Φ) are compact and convex in C(I, Y ),
and limn→∞ ̺H(SI(Φn),SI(Φ)) = 0.

Theorem 3. Let (x0, y0) ∈ I × Y and α ∈ (0, 1). Let F : I × Y  Y be

a compact and convex valued multifunction which has the upper Dα property

at (x, y) and Fx is h-continuous at y for each (x, y) ∈ I × Y . If the family

{Gf}f∈C(I,Y ) is uniformly integrably bounded, where Gf is the Carathéodory

superposition of F and f , then there exists an absolutely continuous function

f : [x0, b] → Y such that

f(x) = y0 +
x�

x0

φ(t) dt,

where φ is an integrable selection of Gf .

Proof. Let η > 0 be such that [x0, x0 + η] ⊂ I and let g be a uniform
integrable bound of {Gf}f∈C(I,Y ). Idea of the proof is based on that of
Hartman [11, Th. 2.1]. First let us take a multifunction Gy0(x) = F (x, y0)
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for x ∈ [x0, x0 + η]. Then Gy0 is measurable, by Theorem 2. It is also
integrably bounded. Thus, by (20), Gy0 is integrable. Let φ1 be an itegrable
selection of Gy0 in [x0, x0+η], and let ψ1(x) =

	x
x0
φ1(t) dt for x ∈ [x0, x0+η].

Then ψ1 ∈ S[x0,x0+η](Gy0). Let us put fη(x) = y0 + ψ1(x), i.e.

fη(x) = y0 +
x�

x0

φ1(t) dt for x ∈ [x0, x0 + η].

Then fη ∈ {y0}+S[x0,x0+η](Gy0). Moreover, by integrable boundness of Gy0 ,

||fη(x)|| ≤ ||y0||+
x�

x0

g(t) dt for x ∈ [x0, x0 + η] and(22)

||fη(x1)− fη(x2)|| ≤
∣

∣

∣

x2�

x1

g(t) dt
∣

∣

∣
for x1, x2 ∈ [x0, x0 + η].

If x0 + 2η < b, then we put

Gfη(x) =

{

F (x, y0), if x ∈ [x0, x0 + η],

F (x, fη(x− η)), if x ∈ (x0 + η, x0 + 2η].

By the continuity of fη and Theorem 2, Gfη is measurable. It is also inte-
grably bounded. Hence, by (20), Gfη is integrable. Let φ2 be an integrable
selection of Gfη , and let ψ2(x) =

	x
x0+η φ2(t) dt for x ∈ [x0 + η, x0 + 2η].

Then ψ2 ∈ S[x0+η,x0+2η]F (·, fη(· − η)). We can extend fη to the interval
[x0 + η, x0 +2η] putting fη(x) = fη(x0 + η) +ψ2(x) for x ∈ [x0 + η, x0 +2η]
and we have

fη(x) =

{

y0 +
	x
x0
φ1(t) dt, if x ∈ [x0, x0 + η],

fη(x0 + η) +
	x
x0+η φ2(t) dt, if x ∈ (x0 + η, x0 + 2η],

and fη ∈ {y0}+ S[x0,x0+2η](Gfη).
Note that the extended function fη fulfil (22) for x ∈ [x0, x0 + 2η].
If x0 + 3η < b, the process can be continued. Finally at most in a finite

meny steps fη can be extended to [x0, b] such that fη ∈ {y0}+ S[x0,b](Gfη),
where Gfη : [x0, b] Y is given by

Gfη(x) =

{

F (x, y0), if x ∈ [x0, x0 + η],

F (x, fη(x− η)), if x ∈ (x0 + η, b],

and (22) holds true for x ∈ [x0, b].
Now let (ηn)n∈N be a decreasing sequence of numbers from [x0, b] con-

verging to 0. Then

(23) the family {Gfηn
}n∈N is uniformly integrably bounded on [x0, b] and

Gfηn
is measurable for each n ∈ N.
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Moreover,

{fηn}n∈N ⊂ {y0}+ S[x0,b](Gfηn
) and {fηn}n∈N

is uniformly bounded and equicontinuous. By the Arzelà-Ascoli theorem,
(fηn)n∈N contains a subsequence (let us assume that it is the original) con-
verging uniformly on [x0, b] to a continuous limit function f .

Note that

||f(x1)− f(x2)|| ≤ ||f(x1)− fηn(x1)||+ ||f(x2)− fηn(x2)||

+ ||fηn(x1)− fηn(x2)||

< ε+
∣

∣

∣

x2�

x1

g(x) dx
∣

∣

∣

for ε > 0, x1, x2 ∈ [x0, b] and n sufficiently large. Hence, f is absolutely
continuous on [x0, b].

By equicontinuity of {fηn}n∈N, limn→∞ fηn(x−ηn) = f(x) for x ∈ [x0, b].
Thereby, h-continuity of F (x, ·) implies

(24) lim
n→∞

dH(Gfηn
(x), Gf (x)) = 0 for x ∈ [x0, b],

where Gf (x) = F (x, f(x)) for x ∈ [x0, b]. Then by (23), (24) and (21),
S[x0,b](Gf ) is a compact subset of C([x0, b], Y ) and

lim
n→∞

̺H(S[x0,b](Gfηn
),S[x0,b](Gf )) = 0.

Therefore, f ∈ {y0} + S[x0,b](Gf ). Moreover, f is absolutely continuous.
Thus, the proof of Theorem 3 is finished.

Corollary 1. Let (x0, y0) ∈ I × Y and α ∈ (0, 1). Let F : I × Y  Y be

a compact and convex valued multifunction with the upper Dα property and

such that Fx is h-continuous for each x ∈ I. If the family {Gf}f∈C(I,Y ) is

uniformly integrably bounded, where Gf is the Carathéodory superposition of

F and f , then there is a solution of (1).
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