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SUBALGEBRA LATTICES
OF A PARTIAL UNARY ALGEBRA

Abstract. Necessary and sufficient conditions will be found for quadruples of lattices
to be isomorphic to lattices of weak, relative, strong subalgebras and initial segments,
respectively, of one partial unary algebra. To this purpose we will start with a characteri-
zation of pairs of lattices that are weak and strong subalgebra lattices of one partial unary
algebra, respectively. Next, we will describe the initial segment lattice of a partial unary
algebra. Applying this result, pairs of lattices of strong subalgebras and initial segments
will be characterized. Further, we will characterize pairs of lattices of relative and strong
subalgebras and also other pairs of subalgebra lattices of one partial unary algebra.

The subalgebra lattice and its relations with the algebra itself are quite
important both in universal algebra and in classical algebra. For instance,
many results describe algebras or varieties of algebras with special subalgebra
lattices, e.g., distributive, modular, etc. (see e.g., [7], [20], [21]). Some papers
investigate subalgebra lattices for algebras which belong to a given variety
or a given type (see e.g., [10]). Note also important results on connections
between groups and their subgroup lattices (see [19]).

Theory of partial algebras provides additional tools for such investiga-
tions, because at least four different structures may be considered in this
case (see e.g., [4] or [5] or [11]). In this paper we consider the following
four kinds of subalgebras: weak, relative, strong subalgebras and initial seg-
ments. The ordinary subalgebras will be called strong here to distinguish
them from other kinds of partial subalgebras. Consequently, we have four
kinds of subalgebra lattices for a given partial algebra. It seems that these
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four structures yield a lot of interesting information on an algebra, also total.
For instance, it is proved in [13] that for a locally finite total unary alge-
bra of finite type, its weak subalgebra lattice uniquely determines its strong
subalgebra lattice. This result has been generalized in [15] for some kind of
non-unary algebras.

In [11] we have formulated some useful connections between partial unary
algebras and graphs. For example, using this graph-algebraic language we
have found in [12] necessary and sufficient conditions for an unary algebra
A and a lattice L such that the strong subalgebra lattice of A is isomorphic
to L. In the same paper, necessary and sufficient conditions are also found
for unary algebras to have isomorphic strong subalgebra lattices. Analogous
two results for weak subalgebra lattices are solved in [11].

In the present paper we use results from [11] and [12] to describe connec-
tions between four kinds of subalgebra lattices of one partial unary algebra.
More precisely, we first characterize pairs of lattices that are weak and strong
subalgebra lattices of one partial unary algebra, respectively. To this pur-
pose we generalize notions from [16]|, where such problem is investigated,
but only for some special classes of lattices and unary algebras. Secondly,
we show that for a given partial unary algebra, its initial segment lattice is
the dual of its strong subalgebra lattice. Applying this result we characterize
the initial segment lattice and also we are able to describe pairs of lattices of
strong subalgebras and initial segments of one partial unary algebra. Thirdly,
we characterize pairs of lattices to be isomorphic to lattices of relative and
strong subalgebras of one partial unary algebra, respectively. We solve also
analogous problems for other pairs of subalgebra lattices. Fourthly, having
all these results, necessary and sufficient conditions are found for quadruples
of lattices to be isomorphic to weak, relative, strong subalgebra and initial
segment lattices, respectively, of one partial unary algebra.

At the end of this paper we will show that results from [12] may be
translated into the initial segment lattice of a partial unary algebra. In
particular, we first obtain necessary and sufficient conditions for a partial
unary algebra A and a lattice L such that the initial segment lattice of
A is isomorphic to L. Secondly, we describe pairs of unary algebras with
isomorphic initial segment lattices.

2.

A partial unary algebra is a pair A = (A, (k®)rek), where A is the
carrier of A, K is the set of unary operation symbols of A and for each
k € K, k™ is a partial unary operation in A, i.e., k* is defined on a subset
of A. The set K will be called a type of A here. For details about the theory
of partial algebras see e.g., [4], [5].
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In the present paper we consider the following four kinds of partial sub-
algebras

DEFINITION 2.1. Let A = (A, (k®)ek) and B = (B, (kB)rcx) be partial
unary algebras of type K. Then

(a) B is a weak subalgebra of A (B <,, A) if B C A and kB C k# for all
keK.

(b) B is arelative subalgebra of A (B <, A)if B C A and kB = kAN(BxB)
for all k € K.

(c) B is astrong subalgebra of A (B <, A)if B C A and kB = kAN (B x A)
for all k € K.

(d) B is an initial segment of A (B <; A) if B C A and kB = kAN (A x B)
for all k € K.

The notion of strong subalgebra is a direct translation of the classical
definition of subalgebra into the partial case. But other three kinds of sub-
algebras are strictly connected with partiality.

Similarly as in the total case, it is easy to show (see e.g., [4] for details)
that families S, (A), Sy (A), Ss(A) and S;(A) of all the weak, relative, strong
subalgebras and initial segments of A with subalgebra inclusions <,,, <,, <
and <;, respectively, form complete lattices S, (A) = (S (A), <w), S, (A) =
(S1(A), <), S4(A) = (S4(A), <) and S;(A) = (S,(A), <)

Let us now recall also some notions from lattice theory. First (see [6]
or [10]), a non-zero element [ of a complete lattice L = (L, <y,) is completely
join-irreducible if for each subset K C L, =\/ K implies [ € K (where \/ X
denotes the supremum of a set X in L). It is join-irreducible if the condition
is satisfied for all two-element subsets. The set of all the completely join-
irreducible elements of L will be denoted here by CZ(L).

Secondly, if L = (L, <r,) has the least element 0, then its element a is
called an atom if for all [ € L, 0 <g, I <, @ implies that [ = 0 or [ = a. The
set of all the atoms of L will be denoted here by A(L).

Thirdly, a complete lattice £ is algebraic if each of its elements is a join
of compact elements. An element ¢ € L is compact if for each set S C L,
¢ <V S implies ¢ <'\/ Sy for some finite subset Sy C S.

The following well-known result (see [10] or [9]) describe the strong sub-
algebra lattice

THEOREM 2.2. A lattice Li is isomorphic to the strong subalgebra lattice of
some (partial or total) unary algebra if and only if L is algebraic, distributive
and

(S) every element of L is a join of completely join-irreducible elements.
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Note that this result is proved for total unary algebras, but it is also true
in the partial case. Formally, a partial unary algebra A = (A, (k*)rex)
of type K can be completed to a total algebra B of the same type K by
setting kA (a) = a if k4 is not defined on a, for each k € K and a € A. This
construction preserves relative, strong subalgebras and initial segments. In
particular, A and B have the same lattices of relative, strong subalgebras
and initial segments, respectively.

Further, [1] gives the following complete characterization of the weak
subalgebra lattice

THEOREM 2.3. A lattice L = (L, <y,) is isomorphic to the weak subalgebra
lattice of a partial unary algebra if and only if L is algebraic, distributive and

(W.1) each element of L is a join of join-irreducible elements,

(W.2) each non-zero and non-atomic join-irreducible element contains ex-
actly one or exactly two atoms,

(W.3) the set of all non-zero and non-atomic join-irreducible elements is
an antichain with respect to the lattice order <g,.

It is well-known (see [6]) that a lattice L is isomorphic to the lattice of
all the subsets of a set if and only if L is a complete and atomic Boolean
lattice. Moreover, a complete and atomic Boolean lattice L is isomorphic to
the lattice of all the subsets of the set A(L) of all the atoms of L.

It is also well-known (see e.g., [4]) that the relative subalgebra lattice of
any partial algebra A = (A, (k*),e) of an arbitrary (not only unary) type
is isomorphic to the lattice of all the subsets of the set A. It follows from
the obvious fact that each relative subalgebra of A is uniquely determined
by its carrier, an arbitrary subset of A. Thus

THEOREM 2.4. A lattice L is isomorphic to the relative subalgebra lattice
of a partial algebra if and only if L is a complete and atomic Boolean lattice.

Lattice isomorphisms preserve atoms, so we obtain also (where | X| de-
notes the cardinality of a set X)

THEOREM 2.5. Let A be a partial algebra and let L be a complete and
atomic Boolean lattice. Then

Sr(A)~L 4ff [Al=]A(L).

Because bijective sets have isomorphic powerset lattices.

We will also use definitions and facts from [11] and [12]. To simplify
reading the paper we now shortly recall needed results.

Since we use digraphs and graphs to represent partial unary algebras,
vertex and edge sets may have arbitrary cardinalities, and also multiple
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edges and isolated vertices are admitted. Therefore a digraph D is repre-
sented here by a triple (VP, EP, IP), where VP, EP are sets of vertices and
edges, respectively, and IP = (I P, I%D ) is the incidence mapping from EP to
VD x VP, Analogously, a graph G is a triple (VG EG, IG), where V&, EG
are sets of vertices and edges, respectively, and I¢ is the incidence mapping
from EC to the family of all the one- and two-element subsets of V&,

For a digraph D let D* be a graph obtained from D by omitting the
orientation of all the edges, i.e.,

VD" = yP EDP" — EP and 1P (e) = {IP(e), IP(e)} for each e € EP".

Next, unary algebras are represented by digraphs in the following natural
way (see [11])

DEFINITION 2.6. Let A = (A, (k®)rek) be a partial unary algebra. Then
D(A) is the digraph such that

VPW@) — 4 EPW) = ((a, k,b): (a,b) € k™)
and for each (a,k,b) € EPW) [PA)((q kb)) = (a,b).

Further, four kinds of subdigraphs are defined in [11], which correspond
to weak, relative, strong subalgebras and initial segments. The ordinary
subdigraphs will be called weak here as opposed to the other kinds of sub-
digraphs. More formally,

DEFINITION 2.7. Let D = (VP EP [P) and H = (VH EH H) be di-
graphs. Then

(a) H is a weak subdigraph of D (which will be denoted by H <,, D) if
VH CyD EH C ED and 1H(e) = IP(e) for all e € EH.

(b) A weak subdigraph H of D is said to be relative (H <, D) if for each
edge e, if all endpoints of e belong to H, then H contains e (in other
words, IP (e), IP(e) € VH implies that e € VH).

(c) H is a strong subdigraph of D (H <; D) if H is a relative subdigraph
of D and for each edge e, I (e) € VH implies that IP(e) € VH (s0 also
e € EH).

(d) H is a dually-strong subdigraph of D (H <; D) if H is a relative subdi-
graph of D and for each edge e, IP(e) € VH implies that IP(e) € VH
(so also e € EH).

For graphs, we have two kinds of subgraphs, weak and relative, which are
defined analogously.

For each subset W of vertices of a digraph (graph) D, the exactly one
relative subdigraph (subgraph) induced by W is denoted by [W]p, i.e., [W]p
consists of all the vertices from W and of all the edges with endpoints in W
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It is proved in [11] that sets of all the weak, relative, strong and dually-
strong subdigraphs of a digraph D form complete lattices

Su(D) = (Sw(D), <uw),
Sr(D) = (S;(D), <),
Ss(D) = (S5(D), <),
S4(D) = (Sa(D), <a),

respectively, with (weak, relative, strong and dually-strong) inclusions <,,,
<r, <s and <g.

Analogously, sets of all the weak and relative subgraphs of a graph G
form complete lattices S, (G) = (Suw(G), <) and S, (G) = (S, (G), <;).

In the same paper, the following two simple results are given

PROPOSITION 2.8. For each digraph D there is a partial unary algebra A
such that D(A) ~ D.

THEOREM 2.9. For every partial unary algebra A = (A, (k®)rek),
Sw(A) ~ S, (D(A)),

Sr(A) ~ S,(D(A)),

Ss(A) ~ 8,(D(A)),

Si(A) = S4(D(A)).

Theorem 2.9 is obtained in [11] by standard verification that functions
which assign its digraph to each weak, relative, strong subalgebra or initial
segment, respectively, are suitable isomorphisms.

Having the above two results we can translate Theorems 2.2, 2.3, 2.4
and 2.5 to obtain analogous characterizations of lattices of weak, relative,
strong and dually-strong subdigraphs.

Recall (see [11]) that with an algebraic and distributive lattice satisfy-
ing (W.1)-(W.3) of Theorem 2.3 we can associate an (undirected) graph.
Formally,

DEFINITION 2.10. Let an algebraic and distributive lattice L satisfy
(W.1)-(W.3) of Theorem 2.3. Then G(L) is the graph such that

(i) the vertex set VG consists of all the atoms of L, i.e., VEI) = A(L),
(ii) the edge set EGT) consists of all non-zero and non-atomic join-irredu-
cible elements of L,
(iii) for each edge e € EGM) [GM)(e) = {a € VEM): ¢ <y, ¢} (i.e., atoms
contained in e are terminal vertices of e).
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Then (see also [11])

THEOREM 2.11. Let D be a digraph, and L be an algebraic and distributive
lattice satisfying (W.1)—(W.3) of Theorem 2.3. Then

Su(D)~L iff D*~G(L).

Hence, a partial unary algebra A has a weak subalgebra lattice isomor-
phic to L iff D(A)* ~ G(L). But we do not need this fact in the sequel.

We will use slightly other notions of paths and cycles than usual (see
e.g., [3]), because such definitions will be more useful to formulate and prove
some results in the sequel.

A finite and non-empty sequence of pairwise distinct vertices (vi,wvg,
...,vp) of a digraph D is said to be a directed path, if for each i = 1,2,
...,m — 1 there is an edge e; such that IP (e;) = v; and IP(e;) = vi11.

A directed path (vy,vs,...,v,) of D is called a directed cycle, if there is
an edge e, such that I (e,) = v, and IP(e,) = v1.

Undirected paths and undirected cycles in graphs are defined similarly
(see also [3]). More precisely, a non-empty sequence of pairwise distinct

vertices (v1,ve, ..., v,) of a graph G is an undirected path, if there are edges
e1,€a,...,en_1 such that G (e;) = {v;,vi41} for each i = 1,2,...,n — 1.

A non-empty sequence of pairwise distinct vertices (vi,ve,...,v,) of G is
an undirected cycle, if there are edges ey, eo, . . ., e, (for n = 2 we additionally
assume that these edges are pairwise distinct) such that 1G(e;) = {v;,vi11}
for each 1 = 1,2,...,n, where v,11 = v1.

Note that a vertex v forms a cycle if there is a loop in v. Recall that
an edge e of a digraph (graph) G is a loop if IG(e) = IS (e) (IG(e) is
a one-element set). A path (cycle) is non-trivial if contains at least two
distinct vertices.

We say that an edge e of a digraph (graph) G lies on a directed (undi-
rected) cycle (vi,vz,...,v,) if I&(e) = v; and IS (e) = viy1 (IG(e) =
{vi,vi+1}) for some i = 1,2,... n, where v,11 = v1.

A digraph is strongly connected (see [3]) if for each two distinct vertices
v and w, there is a directed path going from v to w (equivalently, there is
a directed cycle containing v and w). Recall also that a graph is connected
if each two distinct vertices are connected by an undirected path.

THEOREM 2.12. (Robbins, H. E.) All the edges of a graph G can be directed
to form a strongly connected digraph if and only if G is connected and each
of its edges lies on an undirected cycle.

H. E. Robbins proved this theorem for finite case only (see [18] or [3],
Chapter 9, Theorem 10). The proof of general case when vertex and edge sets
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are of arbitrary cardinalities (which is needed in this paper) is technically
more complicated and is given in [16].

We will need also the notion of quotient digraph and graph introduced
in [12]).

DEFINITION 2.13. Let D be a digraph (graph) and let 6 be an equivalence
relation on the vertex set V. Then the quotient digraph (graph) D/ is
defined in the following way:

VDO =P g,
i.e., its vertex set is the family of all the equivalence classes of 6,
ED/0 _ ED

and for each edge e € EP/?,
Pe)=1P(e)/0 for i=1,2, (1) = IP(e)/9),

2

ie., IZ-D/O(e) is the equivalence class of IP(e) (i.e., IP/%(e) is the family of
equivalence classes of elements from ID(e)).

Let D be a digraph. Then we have (see [17]) the following reflexive and
transitive relation <p on the vertex set VP:

v <p w if and only if v = w or there is a directed path going from w to v.

Clearly this relation is antisymmetric if and only if D has no non-trivial
directed cycles.

Having <p we define the following special equivalence relation ©(D) on
VP: For all v,w € VP vO(D)w if and only if v = w or there is a directed
path going from v to w and there is a directed path going from w to v
(equivalently, there is a directed cycle containing v, w).

It is easy to show (see [12]) that the quotient digraph D/©(D) has no
non-trivial directed cycles, so <p,gp) is a partial order on yb/? = yD /0.

Further, the following result is proved in [12] (Theorem 3.9)

THEOREM 2.14. Let D be a digraph and let L = (L, <r) be an algebraic
and distributive lattice satisfying (S) of Theorem 2.2. Then

S{(D)~L iff (CZI(L),<y) =~ (VP/®®) <p em)),
recall that CZ(L) is the family of all the completely join-irreducible elements
of L.

The analogous result can be formulated for partial unary algebras A,
too. It is sufficient to replace D by D(A). But we will not need this fact in
the sequel.
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3.

In this section we characterize pairs of weak and strong subalgebra lat-
tices of one partial unary algebra. To this purpose we first prove the following
result (which solve our problem for digraphs).

THEOREM 3.1. Let G be a graph and let L = (L, <y,) be an algebraic and
distributive lattice satisfying (S) of Theorem 2.2. Then all the edges of G
can be directed to form a digraph D such that S3(D) ~ L if and only if

(SW) There is an equivalence relation @ on VG and a bijection ¢: VG/0 —;
CI(L) such that

(1) for each equivalence class W € VG/?  the relative subgraph [Wq
(induced by W) is connected and each of its edges lies on an
undirected cycle,

(2) for each edge e, o(IG/%(e)) is a chain in (CZ(L), <y),

(3) for each two distinct elements k,l € CZ(L), if k <y, 1, then there
is an undirected path (uy,...,u,) in G/0 such that

kE=p(u,) <r ¢(un—1) <p, ... <p, @(u1) = L.
Proof. =: Direct all the edges of G to obtain a digraph D such that
Ss(D) ~ L.
Next, take the equivalence relation ® = ©(D) on VP = V&, Then for each
equivalence class W € V& /0O we easily obtain
(Wlp)* = Wlp- = [Wle.

Next, [W]p is a strongly connected digraph by the definition of ©®. Thus by
Theorem 2.12, O satisfies (SW.1).
To prove (SW.2) and (SW.3) observe first that

(D/O)* = D"/ = G/O,

which easily follows from the definition of quotient digraph and of *.
Secondly, by Theorem 2.14, there is an order isomorphism ¢ between
(VP/® <p o) and (CZ(L),<r).
Hence and by the definition of <p /g we obtain that ¢ is a bijection from
VG/® onto CZ(L) satisfying (SW.2) and (SW.3), since every directed path
in D/© is an undirected path in G/©.

<=: Take an equivalence relation 6 and a bijection ¢ from (SW). By
(SW.2), for each e € EG/? = EG | the set (I (e)) has the greatest element,
say pi(e), and the least element, say pa(e). In this way we have two functions
p1 and po from EG/% into CZ(L).
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Let C be the following digraph
Ve = VG/Q, EC=ECG/Y and I€= o lop; for i=1,2.

(2

For each e € EC we have

p(19/%(e)) = {p1(e), p2(e)},

SO

19/%(e) = {o ™ (p1(e)), ¢ (pa(e))} = {IT(e), IF (e)} = 1 ().
Thus
(1) C*=G/6.
Take v,w € VC such that v <¢ w and assume v # w. Then there is
a directed path (uy,...,u,) in C going from w to v, i.e., u; = w and u,, = v.

By definitions of p1, ps and C we have that ¢(IS(e)) < ¢(IF(e)) for
cach e € E€ = EG/?. Thus

o) = p(un) <L @(un-1) <r - .- <1 p(u2) < @(u1) = p(w).

Now, let v,w € VG/? be vertices such that ¢(v) <p, p(w) and assume v # w.
Then by (SW.3), there is an undirected path (u,...,u,) in G/6 such that

p(v) = p(un) <L ... <1 p(u1) = p(w).
Let fi, fo,..., fu—1 be edges of G/ such that IG/H(fi) = {uj,uiq1} for
i=1,2,...,n—1. Then we have I°(f;) = (u;, uj1+1). Moreover, u; = w and
Un4+1 = v, because ¢ is bijective. Thus (uq,...,uy) is a directed path in C
going from w to v. Hence,

v <c w.

Since ¢ is bijective, the above two facts provide that ¢ is an isomorphism
between relational systems (VC, <¢) and (CZ(L), <y.). In particular, <c is
a partial order, so C does not contain non-trivial directed cycles. Hence, the
equivalence relation ©(C) is the identity relation (Proposition 3.3 in [12]),
SO

C/9(C) =C.
By all these facts and Theorem 2.14 we deduce
(2) S:(C) ~ L.

Take an equivalence class W € V& /6. Then by (SW.1) and Theorem 2.12,
all the edges of the relative subgraph [W]g of G can be directed to form
a strongly connected digraph Hyy .
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Take an arbitrary edge e of G. Then exactly one from the following two
conditions holds:

IG(e) CW for some W € VG /0

or

IG(e) ¢ W for each W € VG/0.

In the first case, e belongs to [W]g, so also to Hyy, because [W]q is a relative
subgraph of G. Then we can direct e in the same way as in Hyy.

In the second case, there are Uy, Us € VG/0 such that one terminal
vertex of e belongs to Uy and the other belongs to Us. Then [I%(e)/0| = 2
and by (1), IG(e)/0 = IG/%(e) = IC" (e) = {IC(e), IS (e)}, so we can import
the orientation of e from the digraph C. More precisely, we take the initial
vertex v of e to be such that v € IG(e) and v/0 = I (e), and the final vertex
w of e is assumed to satisfy w € IG(e) and w/0 = I (e).

In this way, since e was arbitrarily chosen, we construct a digraph D such
that

3) D" =G,

(4) D/6=C.

Now take an equivalence class W € V¢ /0 = VP /6. Then first, Hj, = [W]g
is a relative subgraph of D* = G. Secondly, Hyy is a weak subdigraph of D,
by the construction of D. By these two facts we obtain that Hyy is a relative
subdigraph of D.

Since Hyy and [W]p are relative subdigraphs of D and they have the
same vertex set, we infer that

Hy = [W]p.

Hence, for each W € VP /0, [W]p is strongly connected. In particular, D
and @ satisfies the following condition: for each v,w € VP with v # w,
if vOw, then there is a directed path from v to w. We have shown in [12]
(Theorem 2.6) that this condition implies

S,(D) ~ S,(D/0).

Thus (2) and (4) entail

(5) Ss(D) ~ L.

This completes the proof of the implication <. =
Theorem 3.1 and its proof imply the following

COROLLARY 3.2. Let G be a graph and let L = (L, <y,) be an algebraic and
distributive lattice satisfying (S) of Theorem 2.2. Then all the edges of G
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can be directed to form a digraph D without non-trivial directed cycles such

that Ss(D) ~ L if and only if

(PSW) there is a bijection ¢: VG — CI(L) satisfying (SW.2) and
(SW.3) of Theorem 3.1,

where G /0 is replaced by G.

Proof. The implication = follows from the fact (see [12|, Proposition 3.3)
that, if D does not contain non-trivial cycles, then ©(D) is the identity
relation.

Observe that if an equivalence relation 6 from the proof of the implication
<= of Theorem 3.1 is the identity relation, then G/§ = G, so C* = G.
Thus, by this proof, we obtain the implication <—=. u

By Theorem 3.1 we obtain our first algebraic result.

THEOREM 3.3. Let K = (K,<k) and L = (L, <y,) be algebraic and dis-
tributive lattices such that

(x) K satisfies (W.1)-(W.3) of Theorem 2.3,
(xx) L satisfies (S) of Theorem 2.2.

Then the following two conditions are equivalent:

(a) There is a partial unary algebra A such that Sy (A) ~ K and Ss(A) ~ L
(i.e., K and L are isomorphic to lattices of weak and strong subalgebras
of A, respectively).

(b) G(K) and L satisfy (SW) of Theorem 3.1.

Proof. First, we know (see Theorem 2.9 and Proposition 2.8) that (a) holds
if and only if K and L are isomorphic to lattices S, (D) and Ss(D) of
weak and strong subdigraphs, respectively, of one digraph D. Secondly,
by Theorem 2.11, lattices S,,(D) and K are isomorphic if and only if graphs
D* and G(K) are isomorphic, in other words, all the edges of G(K) can
be directed to form a digraph isomorphic to D. Now, it remains to use
Theorem 3.1. =

It is shown in [12] (the proof of Corollary 3.13) that for every partial
unary algebra A, the digraph D(A) does not contain non-trivial directed
cycles if and only if each two distinct elements of A generate two distinct
strong subalgebras. Hence and by Corollary 3.2 we obtain, in a similar way
as above, the following result.

COROLLARY 3.4. Let K = (K, <) and L = (L, <y,) be algebraic and dis-
tributive lattices satisfying (x) and (xx) of Theorem 3.3. Then the following
conditions are equivalent:
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(a) There is a partial unary algebra A such that
(1) each two distinct elements of A generate two distinct strong subal-
gebras,
(2) Sy(A) ~K and Ss(A) ~ L.
(b) G(K) and L satisfy (PSW) of Corollary 3.2.

Finally note that the following fact is an immediate consequence of The-
orems 3.1 and 3.3

COROLLARY 3.5. Let lattices K and L be isomorphic to lattices of weak and
strong subalgebras, respectively, of one partial unary algebra. Then |A(K)| >

ICZ(L)|.

4.

We start this section with a simple fact that for a given digraph, its
dually-strong subdigraph lattice is the dual of its strong subdigraph lattice.
By this result we obtain a characterization of the initial segment lattice of
a partial unary algebra. Moreover, having this fact we are able to describe
pairs of lattices of strong subalgebras and initial segments of one partial
unary algebra.

Next, necessary and sufficient conditions are found for pairs of lattices
to be isomorphic to lattices of strong and relative subalgebras of one partial
unary algebra. We describe also other pairs of subalgebra lattices.

Having these results we can characterize quadruples of lattices to be iso-
morphic to lattices of weak, relative, strong subalgebras and initial segments
of one partial unary algebra.

We will frequently use the following simple fact (see [11])

LEMMA 4.1. Let D be a digraph and let Hi,Hy <; D (H;,Hy <; D) be
dually-strong (strong) subdigraphs of D. Then
H; <;Hy (Hi<,Hp) iff VT cCviy
H =H, if vHh=yH

Let P = (P,<p) be a partially ordered set. Then P = (P, <p) denotes
the dual of (P, <p), i.e., P = (P, <p'), where <! is the inverse relation to
<p. It is well-know that the dual of each lattice is also a lattice.

Now we show our first result

PROPOSITION 4.2.

(a) For each digraph D, S;(D) ~ Ss(D).
(b) For each partial unary algebra A, S;(A) ~ S.(A).

Proof. Note first that (b) follows from (a) and Theorem 2.9.
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(a): Take a weak subdigraph H <,, D and observe that the following
facts are easily shown:
(1) if H is a strong subdigraph of D, then [VH]p = H,
(2) if H is a strong subdigraph of D, then [VP \ VH]p is a dually-strong

subdigraph of D,
(3) if H is a dually-strong subdigraph of D, then [VP \ VH]p is a strong

subdigraph of D.
Having (3) we can take the following function ¢: S3(D) — S5(D),

o(H) = [VP\VH]p foreach H <;D.
Take an arbitrary strong subdigraph K of D and let H = [VP \ V¥|p. By
(2), H is a dually-strong subdigraph of D. Further,
p(H) = [VPAVH]p = [VP\ (VPAVE)]p = [V¥]p,
SO
p(H) = K

by (1). Thus ¢ is a surjection.

Take two dually-strong subdigraphs H;, Hy <; D such that ¢(H;) =
¢(Hsz). Then

[VEAVHD = [VPA\ VEp.
Hence,
which implies
H, = H,.

Thus ¢ is also an injection.

Now it is sufficient to show that ¢ and its inverse p~! preserve lattice

orders of S4(D) and Ss(D). To see it take Hy,Hy <4 D. Then by (3) we
conclude

H, <;H, iff v c v if yP\yvH: c yP\VHL iff o(Hy) <, o(Hy).

Thus ¢ is indeed the desired lattice isomorphism from S;(D) onto Sg(D). =

The following two facts are simple consequences of Proposition 4.2 and
Theorem 2.2 (see also notes following Theorem 2.2)

THEOREM 4.3. A lattice L is isomorphic to the initial segment lattice of

a (partial or total) unary algebra if and only if L is algebraic, distributive
and satisfies (S) of Theorem 2.2.

Proof. First, it is well-known (see [6], p. 83) that if a lattice L is algebraic,
distributive and satisfies (S), then its dual L is also algebraic, distributive
and satisfies (S).
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Assume that L ~ Sy(A) for some unary algebra A. Then L ~ S;(A)
~ S,(A), by Proposition 4.2. Hence, L is algebraic, distributive and satis-
fies (S). But L = L, so L also has these properties.

Let L be an algebraic and distributive lattice satisfying (S). Then L has

the same properties, so L ~ S;(A) for some unary algebra A. Hence it fol-
lows that L ~ S;(A). Thus L is isomorphic to Sy(A), by Proposition 4.2. =

THEOREM 4.4. Let K and L be algebraic and distributive lattices satisfying
(S) of Theorem 2.2. Then the following two conditions are equivalent:

(a) There is a (total) unary algebra A such that Ss(A) ~ K and S;(A) ~ L
(i.e., K and L are isomorphic to lattices of strong subalgebras and initial

segments of A, respectively).
(b) L ~ K.

Proof. It follows directly from Theorem 4.3 and Proposition 4.2. »

Now we describe pairs of lattices of strong and relative subalgebras of
one (total) unary algebra (see Theorems 2.4 and 2.5).

THEOREM 4.5. Let K be an algebraic and distributive lattice satisfying (S)
of Theorem 2.2 and let L be a complete and atomic Boolean lattice. Then
the following two conditions are equivalent:

(a) There is a (total) unary algebra A such that Ss(A) ~ K and S, (A) ~ L
(i.e., K and L are isomorphic to lattices of strong and relative subalgebras
of A, respectively).

(b) [CZ(K)| < [A(L)].

Proof. (a)==(b): Take an unary algebra A = (A, (k*)rcx) such that

Ss(A)~K and S,(A)~L.

Then first, we know (see [10])

CZ(Ss(A)) ={(a)a: a€ A},

where (a)a is the strong subalgebra generated by a.
Secondly, by Theorem 2.5,

JA(L)| = [A].
These two facts imply
ICZ(K)| = |CZ(Ss(A))| < [A] = [A(L)].

(b)=(a): Having Theorem 2.5 and Proposition 2.8 (see also notes fol-
lowing Theorem 2.9) it remains to show that there is a digraph D such that

S;(D)~L and |[VP|=]AL)|
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For this purpose we first take a digraph H such that
VH =CZ(K) and E¥ = {(i,j) € CI(K) x CZ(K): j Sk i},

(obviously for an edge (i, j), i is its initial vertex and j is its final vertex).
By this definition we infer

(1) (VH, <m) ~ (CI(K), <x).
Since |CZ(K)| < |A(L)|, a set W may be taken such that
WNCI(K)=0 and |WUCZ(K)| = |A(L)|.

Take also an arbitrary element jo € CZ(K) and let D be the digraph obtained
from H by adding elements from W as new vertices and all the pairs (v, w)
of distinct elements from W U {jo} as new directed edges.

Now we show that for each vertices v,w € VP,
(2) OD)w iff v=w or v,we W UJ{jo}.

The implication <= is trivial.

—. Take two vertices v, w € VP such that vO(D)w and v # w. Then
there are paths p; and ps in D going from v to w and from w to v, respec-
tively. Assume additionally that one of these vertices does not belong to
W U {jo}, for instance, v ¢ W U {jo}.

The construction of D implies that if an edge e of D starts from (ends
in) some vertex in WU {jo} and its final (initial) vertex is outside W U {jo},
then e must start from (end in) jo and e belongs to H. This fact entails
that if there is a directed path in D connecting a vertex u outside W U {jo}
with some vertex in this set, then there is a path in H connecting u with jo.
Further, if p is a directed path with endpoints outside W U {jo}, then jo is
the unique vertex from W U {jo} which may belong to p, because a path
does not encounter the same vertex twice.

Now, if w & W U {jo}, then the above facts provide that p; and py are
also directed paths in H. Hence, w <g v and v <g w. By (1) we have that
<y is a partial order. Thus v = w, which contradicts our assumptions.

If we WU/{jo}, then p; and ps contain jy. Hence and by the above
facts, there are directed paths p) and p/, in H going from v to jy and from jg
to v, respectively. Thus jo <g v and v <g jo, so v = jo € W U {jo}, which
contradicts our assumptions, again.

Having (2) we deduce that the digraph D/O(D) is isomorphic (up to
some loops in the vertex jg) to H, because all the edges of D that are not
in H form loops in D/©(D).
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Hence and by (1)
(VP/OMD) < o)) = (CI(K), <k),
so by Theorem 2.14,
S,(D) ~ K,
which completes our proof, since
VP| = |W UCZ(K)| = |A(L)|. =

THEOREM 4.6. Let K be an algebraic and distributive lattice satisfying
(W.1)-(W.3) of Theorem 2.3 and let L be a complete and atomic Boolean
lattice. Then the following two conditions are equivalent:

(a) There is a partial unary algebra A such that Sy, (A) ~ K and S,(A) ~ L
(i.e., K and L are isomorphic to lattices of weak and relative subalgebras
of A, respectively).

(b) [AK)[ = [AL)].

Proof. (a)=(b): Take a digraph D such that S,,(D) ~ K and S, (D) ~ L.
Then by Theorems 2.5 and 2.11 (see also notes following Theorem 2.9) we
obtain
D*~G(K) and |VP|=|A(L).
Hence,
JAK)| = [VEE) = VP = [VP| = |AL)],
since A(K) is the set of all the vertices of G(K).

(b)=-(a): We direct (using the axiom of choice if necessary) all the edges
of the graph G(K) to form a digraph D. Then first,

Suw(D) ~ K,
by Theorem 2.11. Secondly,
VP = [VER] = JAK)| = |AL)],
so also
S;(D)~L. u

THEOREM 4.7. Let L1 be an algebraic and distributive lattice satisfying
(W.1)-(W.3) of Theorem 2.3, let Ly be a complete and atomic Boolean
lattice and let Ly and Ly be algebraic and distributive lattices satisfying (S)
of Theorem 2.2. Then the following two conditions are equivalent:

(a) There is a partial unary algebra A such that
Sw(A) ~ L1, ST(A) ~ LQ, SS(A) ~ L3, SZ(A) ~ L4,

(i.e., L1, Lo, Lsg and Ly are isomorphic to lattices of weak, relative,
strong subalgebras and initial segments of A, respectively).
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(b) Ly, Lo, L3 and Ly satisfy the following three conditions

(1) |AL)| = |A(Ly)],

(2) L4 >~ Lg,

(3) the graph G(Ly) and the lattice Lg satisfy (SW) of Theorem 3.1.
Proof. The implication (a)==(b) follows from Theorems 3.3, 4.4 and 4.6.

(b)==(a): By Theorem 3.3 and the condition (3), there is a partial unary
algebra A such that

Sw(A)~L; and Sg(A)~Ls.
Then

Sy(A) ~ Ss(A) ~ L3 ~ Ly,
by (2) and Proposition 4.2.
By Theorem 2.11 we have also D(A)* ~ G(L;). In particular, |[A| =
|[VPA)| = | A(Ly)|. Thus by (1) and Theorem 2.5 we obtain
ST(A) >~ LQ. ]

Note that Theorems 4.3, 4.4, 4.5, 4.6 and 4.7 can be easily translated
into digraphs and their weak, relative, strong and dually-strong subdigraph
lattices.

5.

We start this section with the following simple construction which is use-
ful in investigations of the initial segment lattice of a partial unary algebra.

DEFINITION 5.1. Let D be a digraph. Then D (called the dual of D) is
the digraph obtained from D by inverting the orientation of all the edges.

Clearly, the following facts hold:

LEMMA 5.2. Let D be a digraph and 6 be an equivalence relation on V'P.
Then

(1) D=D,

(2) D" =D,

(3) D/§ =D/0,

(4) (D) = 6(D),

(5) (VP <p) ~ (VP, <p).

Now we describe subdigraph lattices of the dual of a given digraph.
PRrRoPOSITION 5.3. Let D be a digraph. Then

(1) Su(D) =~ S,(D),

(2) Sr(D) ~ ST(E):

(3) Ss(D) =~ Sq(D),
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(4) Sq(D) ~ S4(D),

(5) 85(D) = Sy(D).
Proof. First, (5) follows from (4) and Proposition 4.2. Secondly, (2) follows

from the fact that S, (D) and S,(D) are isomorphic to the powerset lattice
of VP = yD (see Theorem 2.5). Note also that this point may be proved in
a similar way as (1) (see below).

(1): Take a weak subdigraph H of D and observe that H is a weak
subdigraph of D. Hence, ¢: S,,(D) — S,,(D) such that

o(H)=H for each H <, D,

is a well-defined function.
For each weak subdigraph K of D, we have that K is a weak subdigraph
of D, and also

=l
I
=

p(K) =
Hence, ¢ is surjective.

Next, assume that p(H;) = ¢(Hg) for some weak subdigraphs Hy, Ha
<w D. Then H; and Hs have the same vertex and edge sets, so they are
equal. Thus ¢ is also injective.

Having these two facts it remains to show that ¢ and its inverse ¢~
preserve lattices orders. But this follows from the following obvious fact

H; <, Hy, iff H; <, Hy,

for all weak subdigraphs Hy, Hs of D.

(3): Tt is easily seen that if H <, D is a strong subdigraph of D, then H
is a dually-strong subdigraph of D. And conversely, if K is a dually-strong
subdigraph of D, then K is a strong subdigraph of D. By these facts we
obtain that the restriction of ¢ to the set of all the strong subdigraphs of D
is a bijection from Ss(D) onto Sy(D).

Moreover, by Lemma 4.1 we obtain that for each strong subdigraphs
Hl, H2 of D,

H <,H, if vEcyvE g yvEcyR § H <,H.

1

The proof of (4) is analogous. m

REMARK 1. Let L be an algebraic and distributive lattice satisfying (S)
of Theorem 2.2. Then there is a digraph D such that Ss(D) ~ L. Hence
and by Proposition 5.3(5), S¢(D) ~ L. Thus we obtain another proof of the
following lattice fact (see [6], p. 83), used in the proof of Theorem 4.3:

If a lattice L is algebraic, distributive and satisfies (S), then its dual L

is also algebraic, distributive and satisfies (S).
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REMARK 2. By Proposition 5.3 we also obtain another proof of Theo-
rem 4.3. Observe first (see Proposition 2.8 and Theorem 2.9) that this result
can be formulated in the following way: a lattice L is isomorphic to the
dually-strong subdigraph lattice Sz(D) of some digraph D if and only if
L ~ S;(H) for some digraph H.

By Proposition 5.3, it is sufficient to take H = D to see the implication
— and D = H in the proof of <.

Having Lemma 5.2 and Proposition 5.3 we obtain by Theorems 3.3
and 4.5, the following characterizations of pairs of lattices of weak subal-
gebras and initial segments and of pairs of lattices of relative subalgebras
and initial segments (analogous two results hold also for digraphs and their
subdigraph lattices)

COROLLARY 5.4. Let K be an algebraic and distributive lattice satisfying
(W.1)-(W.3) of Theorem 2.3 and let L be an algebraic and distributive
lattice satisfying (S) of Theorem 2.2. Then the following two conditions are
equivalent:

(a) There is a partial unary algebra A such that Sy, (A) ~ K and S;(A) ~ L
(i.e., K and L are isomorphic to lattices of weak subalgebras and initial

segments of A, respectively).
(b) The graph G(K) and L satisfy (SW) of Theorem 3.1.

COROLLARY 5.5. Let K be a complete and atomic Boolean lattice and let L
be an algebraic and distributive lattice satisfying (S) of Theorem 2.2. Then
the following two conditions are equivalent:

(a) There is a (total) unary algebra A such that S;(A) ~ K and S;(A) ~ L
(i.e., K and L are isomorphic to lattices of relative subalgebras and initial
segments of A, respectively).

(b) [CZ(L)| < [A(K)].

Having Proposition 5.3(4) we can translate results from [12]| (about strong
subdigraph lattices and strong subalgebra lattices) for dually-strong subdi-
graph lattices and next, for the case of partial unary algebras and their
initial segment lattices. For example, we obtain the following analogue of
Theorem 2.6 from [12]

COROLLARY 5.6. Let D be a digraph and 0 be an equivalence relation on
VP such that

(%) for allv,w € VP, if vOw and v # w, then there is a (directed) path going
from v to w.

Then Sy(D/0) ~ Su(D).
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Because, if (u1, ..., up) is a path going from v to w in D, then (u,, ..., u1)
is a path in D going from w to v.

Further, by Theorems 3.9 and 3.11 from [12] (see also Theorem 2.14) we
obtain

COROLLARY 5.7. Let L be an algebraic and distributive lattice satisfying
(S) of Theorem 2.2 and let D be a digraph. Then the following three condi-
tions are equivalent:
(a) S¢(D) ~ L,
(b) (VP/OM) <y o) ~ (CZ(L), <r),
(c) (VP/OMD) <p 6p)) ~ (CMI(L), <L),
where CMZ(L) is the family of all the completely meet-irreducible elements
of L.

Recall that an element [ of a complete lattice L = (L, <p,) is completely

meet-irreducible if for each subset K C L, | = A\ K implies | € K (where
A\ X denotes the infimum of a set X in L).

Proof. (a)<=(b) By Theorem 2.14, Proposition 5.3(4) and Lemma 5.2(3),
(4), (5) we obtain that
Sy(D) ~L iff Sy(D)~L i
(VP/OD), <5 0o

=

) = (CZ( )
(VP/OD), <psmy) = (CZ(L), <v) iff
) = (CZ( )

(VP/OM) <y opy) = (CZ(L), <L).
(a)<=(c) By Theorem 2.14 and Proposition 4.2 we obtain that
Sy(D) ~ L iff Sy(D)~L iff
Ss(D) ~ L iff (VP/OMD) <p o))~ (CZ(L), <g).
Next, it is easy to see that CZ(L) = CMZ(L) and

(CZ(L), <g) = (CMI(L), <) =

By Theorem 2.2 and the equivalence (b)<=>(c) of Corollary 5.7 we have
that

REMARK 3. Let L be an algebraic and distributive lattice satisfying (S)
of Theorem 2.2. Then

(CMI(L),<p) ~ (CZ(L),<y).

Clearly, the sets CMZ(L) and CZ(L) are distinct in general (and even dis-
joint).
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COROLLARY 5.8. Let D, H be arbitrary digraphs. Then
Sa(D) ~S4(H) iff (VP/OP) <p ) ~ (VOM <y om)).
Proof. First, by Proposition 5.3(4),
S4(D) ~ Sy(H) iff S,(D) ~ S, (H).
Secondly, by Theorem 3.11 from [12],
S.(D) = S,(H) iff (VP/OP) < oy~ (VH/OE) <o o).
Thirdly, by Lemma 5.2(3),(4),(5),

(VPIO®), <5 0m)) = (VP/OP), <pamy) = (VP/OD), <p o))

and

(VH/OH) Sﬁ/@(ﬁ)) ~

H/6(H) -~
VIO, <gremm) = (VIVOM, <wjoum).
These facts complete the proof, because partially ordered sets are isomorphic
if and only if their dual are isomorphic. =

By Corollaries 5.7 and 5.8 we obtain

COROLLARY 5.9. Let L be an algebraic and distributive lattice satisfying
(S) of Theorem 2.2 and let A be a partial unary algebra. Then the following
three conditions are equivalent:

(a) Sq(A) ~ L,
(b) (VP@/OMDA) <py 41 emay) = (CZ(L), <L),
(c) (VP@A/OMMA) <py 4y /6m(a)) = (CMI(L),<L).

COROLLARY 5.10. Let A, B be arbitrary partial unary algebras (possible
of different types). Then the following two conditions are equivalent:

(a) Sa(A) ~ S4(B),

(b) <VD(A)/®(D(A)), <p ) ~ <VD(B)/®(D(B))

(A)/6(D(A)) » <D(B)/6(D(B)))-
Note that other results from [12] can be similarly translated for digraphs
and their dually-strong subdigraph lattices and next, for partial unary alge-

bras and their initial segment lattices.
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