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DENSITY TOPOLOGY GENERATED

BY THE CONVERGENCE EVERYWHERE EXCEPT

FOR A FINITE SET

Abstract. In this paper we shall study a density-type topology generated by the
convergence everywhere except for a finite set similarly as the classical density topology is
generated by the convergence in measure. Among others it is shown that the set of finite
density points of a measurable set need not be measurable.

1. Introduction

Throughout the paper L will denote the σ-algebra of Lebesgue measur-
able subsets of R and λ - the Lebesgue measure on the real line. Let B (R)
be the σ-algebra of Borel sets on the real line. We shall use also the following
notation: nA = {nx : x ∈ A}, A − a = {x − a : x ∈ A} for A ⊂ R, n ∈ N,
a ∈ R and A′ = R\A. By χA we denote the characteristic function of a set A.
Recall that

Definition 1. The point x ∈ R is a density point of a set A ∈ L if and
only if

(1) lim
h→0+

λ(A ∩ [x− h, x+ h])

2h
= 1.

Observe that the condition (1) is equivalent to the following statement
{

χn(A−x)∩[−1,1]

}

n∈N
converges in measure to χ[−1,1] (see [PWW]).

Put

Φ(A) = {x ∈ R : x is a point of density of A}

for all A ∈ L. It is well known that the family

Td = {A ∈ L : A ⊂ Φ(A)}
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is a topology on the real line (called the density topology) stronger than
natural topology Tnat on the real line (see [O], Chapter 22 or [GNN]).
Since the point of density is characterized by the convergence in measure,
we shall say that a density topology is generated by the convergence in
measure. Using various kinds of convergence of a sequence of measurable
functions one can obtain different density-type topologies on the real line
(see [W]). Thus, for example, the density-type topology generated by the
convergence almost everywhere is called the simple density topology and
denoted by Ts (see [WA]), the density-type topology generated by the com-
plete convergence is called the complete density topology and denoted by Tc
(see [WW]). Observe also that the natural topology Tnat can be considered
as a density-type topology generated by the uniform convergence. However,
in all above mentioned cases the analogue of the Lebesgue Density Theorem
does not hold. Observe also that if a set A ⊂ R is measurable, then the
set Φs(A), Φc(A) and Φu(A) = IntA (the sets of all points of simple, com-
plete and uniform, respectively, density points of A) are measurable and that
Tnat $ Tc $ Ts $ Td. In this paper we introduce the finite density topology
Tf which is generated by the convergence everywhere except for a finite set.
This topology is significantly different from the mentioned above, because
one can construct a measurable set A for which the set of all finite density
points is a non-measurable set (Theorem 10). We also show that Tnat $ Tf
(Theorem 19).

2. Finite density point

Firstly we introduce the concept of fin-density point in the family of
Lebesgue measurable sets on the real line. We study the properties of the
operator assigning to a set A ∈ L the set of its fin-density points and
introduce a finite density topology.

Definition 2. Let A ∈ L. We shall say that:

a) 0 is a fin-density point of the set A if and only if

{χnA∩[−1,1]}n∈N converges to χ[−1,1] everywhere except for a finite set.

b) x ∈ R is a fin-density point of the set A if and only if 0 is a fin-density
point of the set A− x.

c) x ∈ R is a fin-dispersion point of the set A if and only if x is a fin-density
point of the set A′.

d) 0 is a right-hand side fin-density point of the set A if and only if
{χnA∩[0,1]}n∈N converges to χ[0,1] except for a finite set.

Directly from the above definition we have the following characterization
of fin-density point
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Proposition 3. Let A ∈ L. Then

a) 0 is a fin-density point of a set A if and only if there exists a finite set

F ⊂ [−1, 1] such that [−1, 1]\F ⊂ lim infn→∞ nA.

b) 0 is a fin-dispersion point of a set A if and only if there exists a finite set

F ⊂ [−1, 1] such that [−1, 1]\F ⊂ lim infn→∞ nA′.

c) 0 is a right-hand side fin-density point of a set A if and only if there

exists a finite set F ⊂ [0, 1] such that [0, 1]\F ⊂ lim infn→∞ nA.

Put Φfin(A) = {x ∈ R : x is a fin-density point of the set A} for A ∈ L.
Obviously we have

Proposition 4. Let A ∈ L. Then Φfin(A) ⊂ Φs(A) ⊂ Φ(A).

Proposition 5. For each set A ∈ L, λ(Φfin(A)\A) = 0.

Now we shall show that the Lebesgue Density Theorem does not hold for
fin-density points in the place of density points.

Proposition 6. There exists a measurable set C ⊂ [0, 1] of positive mea-

sure such that Φfin(C) = ∅.

Proof. In [WA] it was shown that there exists a set C ⊂ [0, 1] such that
λ(C) > 0 and Φs(C) = ∅. Therefore Φfin(C) = ∅ by Proposition 4.

Corollary 7. There exists a set C ∈ L such that λ(Φfin(C)△C) > 0.

The operator Φfin(A) has the following properties

Theorem 8. For each sets A,B ∈ L:

1. if A ⊂ B, then Φfin(A) ⊂ Φfin(B),
2. Φfin(∅) = ∅ and Φfin(R) = R,

3. Φfin(A ∩B) = Φfin(A) ∩ Φfin(B).

Proof. 1. Let A,B ∈ L and A ⊂ B . Observe that for all x ∈ R and for all
n ∈ N we have n(A − x) ⊂ n(B − x). If x ∈ Φfin(A), then there exists a
finite set F ⊂ [−1, 1] such that

[−1, 1]\F ⊂ lim inf
n→∞

n(A− x).

Thus

[−1, 1]\F ⊂ lim inf
n→∞

n(A− x) ⊂ lim inf
n→∞

n(B − x),

which means that x ∈ Φfin(B).

2. The proof is straightforward.

3. The proof of the inclusion Φfin(A ∩ B) ⊂ Φfin(A) ∩ Φfin(B) follows
from monotonicity of the operator Φfin. Now we prove the converse inclu-
sion. If x ∈ Φfin(A) ∩ Φfin(B), then there exists a finite set F1 ⊂ [−1, 1]
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such that

[−1, 1]\F1 ⊂ lim inf
n→∞

n(A− x)

and there exists a finite set F2 ⊂ [−1, 1] such that

[−1, 1]\F2 ⊂ lim inf
n→∞

n(B − x).

Let F = F1 ∪ F2. Then

[−1, 1]\F ⊂ lim inf
n→∞

n(A− x) ∩ lim inf
n→∞

n(B − x) = lim inf
n→∞

n((A ∩B)− x).

Consequently we have that x ∈ Φfin(A ∩B).

Remark 9. For each set A ∈ L and y ∈ R we have Φfin(A) + y =
Φfin(A+ y).

3. The construction of measurable set for which the set of its

fin-density point is non-measurable

Theorem 10. Assume Martin’s axiom. There exists a measurable set

A ⊂ R such that Φfin(R\A) is non-measurable.

Before we prove Theorem 10 we recall the following definitions and the-
orems which shall be useful in the proof.

Definition 11. (see [K], p. 60) A set H ⊂ R has the property (∗) if the
following condition is satisfied: if B ⊂ H or B ⊂ R\H, and B has the Baire
property, then B is of the first category.

Definition 12. (see [K], p. 58) A set A ⊂ R is called saturated non-
measurable if λ∗(A) = λ∗(R\A) = 0, where λ∗ is the Lebesgue inner measure.

Definition 13. (see [K], p. 258) A Hamel basis H ⊂ R is called a Burstin
basis in R if for each set B ∈ B(R) such that card(B) > κ0 we have that
H ∩B 6= ∅.

Theorem 14. (see [K], p. 258) Every Burstin basis in R is saturated

non-measurable.

Theorem 15. (see [K], p. 258) Every Burstin basis in R fulfills condi-

tion (∗).

Theorem 16. (see [K], pp. 259, 260) There exists a Burstin basis in R.

Proof of Theorem 10. Let H ⊂ R be a Burstin basis. From Theorem 15
it follows that H and R\H have the property (∗). Applying Theorem 14 we
conclude that the set H is saturated non-measurable. We now use the fact
that we can decompose the real line into two disjoint sets E1, E2 such that
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E1 is a null set and E2 is a set of the first category (see for instance [O],
p. 4). Then

H = (H ∩E1) ∪ (H ∩ E2).

Obviously H ∩ E1 is a null set and H ∩ E2 is of the first category. Observe
that if A ⊂ R is saturated non-measurable and λ(A△B) = 0, then B is
also saturated non-measurable. Similarly, if A ⊂ R fulfills property (∗)
and A△B is of the first category, then B also fulfills property (∗). Hence
H∩E2 = H\(H∩E1) is saturated non-measurable and H∩E1 = H\(H∩E2)
fulfills property (∗).

The construction of the set A. The identity card(H ∩ E1) = card(H ∩
E2) = c, follows from Martin’s axiom. Let {z0, z1, . . . , zα, . . . }α<ωc be a
well-ordering of H ∩E2 and let F2, F3, F4, . . . be arbitrary residual and null
sets. Take z0 ∈ H ∩ E2.

Now we show that for all i ∈ N there exists a straight line lz0,i such that
lz0,i contains (z0, 0), (h0,i, 1) for some h0,i ∈ H ∩ E1, in addition h0,i 6= h0,j
for i 6= j and lz0,i also has non-empty intersection with every set Fn × { 1

n
},

n ≥ 2.

Consider the set L of all straight lines lz0 such that lz0 contains point
(z0, 0) and lz0 is neither vertical nor horizontal. The set of all direction
coefficients of the lines from the set L is equal to R\{0} and is obviously
residual and of full measure. Now we define a sequence of homeomorphisms
between the set R\{z0} and the set of all direction coefficients of the lines
from L in the following way

(2) fn,z0(x) =
1

n(x− z0)
for x ∈ R\{z0} and n ∈ N.

Homeomorphism fn,z0 maps a first coordinate of the point (x, 1
n
) ∈ (R\{z0})

× { 1
n
} into the direction coefficient a ∈ R\{0} of the line lz0 : y = a(x− z0)

which goes through
(

x, 1
n

)

.

Notice that Wn,z0 = fn,z0(R\({z0} ∪Fn)) is of the first category for each
n ≥ 2 and D0 = R\({0} ∪

⋃

∞

n=2Wn,z0) is the set of direction coefficients of
those lines lz0 which have non-empty intersection with every set Fn ×

{

1
n

}

,
n ≥ 2. It is easily seen that the set D0 is residual.

Now we prove that for all i ∈ N there exists direction coefficients a0,i ∈ D0

such that the line lz0,i: y = a0,i(x − z0) contains a point (h0,i, 1), where
h0,i ∈ H∩E1 and h0,i 6= h0,j for i 6= j (i.e. f−1

1,z0
(a0,i) ∈ H∩E1 for all i ∈ N).

The proof of this fact is by mathematical induction.

Let i = 1 and put D0,1 = D0. On the contrary, suppose that f−1
1,z0

(a0,1) /∈
H ∩E1 for all a0,1 ∈ D0. It means that

f−1
1,z0

(D0) ⊂ R\(H ∩ E1).



202 M. Górajska, W. Wilczyński

Since the set R\(H ∩ E1) has the property (∗), then it does not contain
a residual set f−1

1,z0
(D0,1). Thus we get the contradiction. Let us denote by

(h0,1, 1) the point of intersection of straight line lz0,1 : y = a0,1(x − z0)
with the set (H ∩ E1) × {1}. Let us assume that for some k ≥ 1 we
have chosen pairwise different direction coefficients a0,1, a0,2, . . . , a0,k, pair-
wise different elements of (H ∩ E1): h0,1, h0,2, . . . , h0,k and put D0,k =
D0 \ {a0,1, a0,2, . . . , a0,k}. Obviously the set D0,k is residual. The proof
of existence of direction coefficient a0,k+1 is analogus to proof of the exis-
tence a0,1. In this way for z0 ∈ H∩E2 we have found sequences {a0,i}i∈N and
{h0,i}i∈N consisting of different terms with values in R \ {0} and (H ∩ E1),
respectively, such that

(3) f−1
1,z0

(a0,i)∈H ∩ E1 and f−1
n,z0

(a0,i)∈Fn for all n ≥ 2 and for all i∈N.

Applying the definitions of homeomorphisms f1,z0 , f2,z0 , f3,z0 , . . . we can ex-
press (3) in the following way

(4)
1

n
(h0,i − z0) + z0 ∈ Fn for all n ≥ 2 and for all i ∈ N.

Let α < ωc. Suppose that for every zβ ∈ H ∩E2, β < α and for every i ∈ N
we have found aβ,i ∈ R\{0} and hβ,i ∈ (H ∩ E1)\

⋃

i∈N {hγ,i : γ < β} such
that

f−1
1,zβ

(aβ,i) ∈ H ∩E1 and f−1
n,zβ

(aβ,i) ∈ Fn for all n ≥ 2 and for all i ∈ N.

Applying the definitions of homeomorphisms f1,zβ , f2,zβ , f3,zβ , . . . defined by

(5) fn,zβ (x) =
1

n(x− zβ)
for x ∈ R\{zβ}

we can rewrite (5) in the following way:

(6)
1

n
(hβ,i − zβ) + zβ ∈ Fn for all n ≥ 2 and for all i ∈ N.

Now, for zα ∈ H ∩E2 we shall find hα,i ∈ (H ∩E1)\
⋃

i∈N{hβ,i : β < α} and

direction coefficients aα,i ∈ R\{0} such that 1
n
(hα,i−zα)+zα ∈ Fn for every

n, i ∈ N. The set
⋃

i∈N{hβ,i : β < α} is of the first category by Martin’s
axiom. We will denote by lzα arbitrary straight line containing point (zα, 0).
We can now proceed analogously to the proof of existence h0,i and a0,i for
z0 to obtain the set

Dα = R\
(

{0} ∪
∞
⋃

n=2

Wn,zα

)

.

It is the set of direction ratios of those lines lzα which have non-empty
intersection with every set Fn ×

{

1
n

}

, n ≥ 2. Obviously the set Dα is
residual.
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Now we prove that for all i ∈ N there exists direction ratio aα,i ∈ Dα

such that the line lzα,i: y = aα,i(x− zα) intersects the set
(

(H ∩ E1)\
⋃

i∈N

{hβ,i : β < α}
)

× {1}

(i.e. f−1
1,zα

(aα,i) ∈ (H ∩ E1)\
⋃

i∈N
{hβ,i : β < α} for all i ∈ N).

The proof of this fact is by mathematical induction.
Let i = 1 and Dα,1 = Dα. On the contrary, suppose that

f−1
1,zα

(aα,1) /∈ (H ∩ E1)\
⋃

i∈N

{hβ,i : β < α} for all aα,1 ∈ Dα,1.

It means that

f−1
1,zα

(Dα,1) ⊂ R\
(

(H ∩ E1)\
⋃

i∈N

{hβ,i : β < α}
)

= [R\(H ∩ E1)] ∪
⋃

i∈N

{hβ,i : β < α}.

Hence

f−1
1,zα

(Dα,1)\
⋃

i∈N

{hβ,i : β < α} ⊂ R\(H ∩ E1).

Since the set R\ (H ∩ E1) has the property (∗), then it cannot contain a resid-
ual set f−1

1,zα
(Dα,1)\

⋃

i∈N{hβ,i : β < α}. Finally, we got the contradiction.
Let us denote by (hα,1, 1) the point of intersection of straight line

lzα,1 : y = aα,1(x − zα) with the set ((H ∩ E1)\
⋃

i∈N{hβ,i : β < α}) × {1}.
Let us assume that for some k ≥ 1 we have chosen pairwise different direc-
tion coefficients aα,1, aα,2, . . . , aα,k, pairwise different elements of (H ∩ E1):
hα,1, hα,2, . . . , hα,k and put Dα,k = Dα \{aα,1, aα,2, . . . , aα,k}. Obviously the
set Dα,k is residual. The proof of the existence of the direction coefficient
aα,k+1 is analogous to the proof of the existence of aα,1.

In this way for zα ∈ H ∩ E2 we have found sequences {aα,i}i∈N and
{hα,i}i∈N consisting of different terms with values at R \ {0} and (H ∩ E1)
\
⋃

i∈N{hβ,i : β < α}, respectively, such that

(7) f−1
1,zα

(aα,i)∈H ∩E1 and f−1
n,zα

(aα,i)∈Fn for all n ≥ 2 and for all i∈N.

We can rewrite (7) in following way

(8)
1

n
(hα,i − zα) + zα ∈ Fn for all n ≥ 2 and for all i ∈ N.

We have constructed the set

A =
∞
⋃

n=2

∞
⋃

i=1

{

zα +
1

n
(hα,i − zα) : α < ωc

}

∪
∞
⋃

i=1

{hα,i : α < ωc} .
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Observe that for all n ≥ 2 and i ∈ N the set {zα+
1
n
(hα,i−zα) : α < ωc} ⊂ Fn

and
⋃

i∈N {hα,i : α < ωc} ⊂ H ∩ E1. So all these sets are null sets. Hence
λ (A) = 0.

We shall show below that Φfin(R\A) = R\(H ∩ E2).

1. First we shall show that Φfin(R\A) ⊂ R\(H ∩ E2).

Notice that from the definition of A we get that

zα + hα,i − zα ∈ A,

zα +
1

2
(hα,i − zα) ∈ A,

zα +
1

3
(hα,i − zα) ∈ A,

. . .

zα +
1

n
(hα,i − zα) ∈ A,

. . .

for each α < ωc, i.e. for each z ∈ H ∩ E2 and for each n, i ∈ N. Hence
(hα,i− zα) /∈ R\(n(A− zα)) = n((R\A)− zα) for every n, i ∈ N, and α < ωc.
From the above we conclude that zα /∈ Φfin(R\A) for every α < ωc. Hence
(H ∩ E2) ⊂ R\Φfin(R\A).

2. To prove the converse inclusion it is sufficient to show that if x ∈
R \ (H ∩E2), then for each a ∈ [−1, 1]\ {0} there exists m ∈ N such that for
each k > m we have a

k
+ x /∈ A. To prove the last statement we show that

at most two of the numbers a
k
+ x, k = 1, 2, . . . belong to A. To obtain a

contradiction, suppose that there exist three different numbers t1, t2, t3 ∈ A
such that

t1 =
a

k1
+ x,

t2 =
a

k2
+ x,

t3 =
a

k3
+ x

for different k1, k2, k3, ki ∈ N, i = 1, 2, 3. From the above it follows that

a = k1(t1 − x) = k2(t2 − x) = k3(t3 − x).

Hence we have x = k2t2−k1t1
k2−k1

and x = k3t3−k1t1
k3−k1

. Consequently

(k2t2 − k1t1)(k3 − k1) = (k3t3 − k1t1)(k2 − k1).

Since ti = zαi
+ 1

ni
(hαi,i − zαi

) for i = 1, 2, 3, where zαi
and hαi,i are different
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for i = 1, 2, 3, we obtain

zα2

(

k2k3 −
1

n2
k2k3 − k1k2 +

1

n2
k1k2

)

+

zα1

(

−k1k3 +
1

n1
k1k3 + k1k2 −

1

n1
k1k2

)

+

zα3

(

−k2k3 +
1

n3
k2k3 + k1k3 −

1

n3
k1k3

)

+

hα1,1

(

−
1

n1
k1k3 +

1

n1
k1k2

)

+ hα2,2

(

1

n2
k2k3 −

1

n2
k1k2

)

+

hα1,3

(

−
1

n3
k2k3 +

1

n3
k1k3

)

= 0.

Since zαi
∈ H ∩ E2, hαi,i ∈ H ∩ E1 are linearly independent we get the

system of equalities










































k2k3 −
1
n2
k2k3 − k1k2 +

1
n2
k1k2 = 0

−k1k3 +
1
n1
k1k3 + k1k2 −

1
n1
k1k2 = 0

−k2k3 +
1
n3
k2k3 + k1k3 −

1
n3
k1k3 = 0

− 1
n1
k1k3 +

1
n1
k1k2 = 0

1
n2
k2k3 −

1
n2
k1k2 = 0

− 1
n3
k2k3 +

1
n3
k1k3 = 0.

From the last three equation we obtain immediately k1 = k2 = k3, contrary
to the fact that ki are different for i = 1, 2, 3.

Hence

Φfin(R\A) = R\(H ∩ E2).

The set H ∩ E2 is saturated non-measurable, so Φfin(R\A) is non-
measurable. Consequently, we have that R\A is measurable, but Φfin(R\A)
is nonmeasurable.

Similarly, we can prove

Theorem 17. Assume Martin’s axiom. There exists a set A ⊂ R having

the Baire property such that the set Φfin(R\A) has not the Baire property.

4. Finite density topology

We define

(9) Tf = {A ∈ L : A ⊂ Φfin(A)}.

Theorem 18. The family Tf is a topology on the real line.
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Proof. 1. From the properties of Φfin it follows immediately that ∅ =
Φfin(∅) and R = Φfin(R). Hence ∅,R ∈ Tf .

2. Let A, B ∈ Tf then A ⊂ Φfin(A), B ⊂ Φfin(B) and A,B ∈ L. Hence
A∩B ∈ L and A∩B ⊂ Φfin(A)∩Φfin(B) = Φfin(A∩B). We thus obtain
that A ∩B ∈ Tf .

3. To prove that Tf is closed under arbitrary unions observe that from
Proposition 4 it follows that Tf ⊂ Td. Let At ∈ Tf for all t ∈ T . Obviously
At ∈ Td for all t ∈ T . It is well known that Td ⊂ L and Td is a topology.
From this we have

⋃

t∈T

At ∈ L. From monotonicity of the operator Φfin we
have that

At ⊂ Φfin(At) ⊂ Φfin

(

⋃

t∈T

At

)

for each t ∈ T.

Finally, we obtain
⋃

t∈T

At ⊂ Φfin(
⋃

t∈T At).

We call the topology Tf the finite density topology.

Theorem 19. Topology Tf is stronger than the natural topology.

Proof. We first prove that any open set in natural topology is open in
fin-density topology. Consider any nonempty set I ∈ Tnat. Obviously
I ∈ L. Let x ∈ I. There exists δ > 0 such that (−δ, δ) ⊂ I − x . We have

R = lim inf
n→∞

n (−δ, δ) ⊂ lim inf
n→∞

n(I − x).

We obtain that [−1, 1] ⊂ lim inf
n→∞

n (I − x). Hence I ∈ Tf .

We now give an example of a set A ∈ L such that A ∈ Tf\Tnat. Choose
x1 ∈ (0, 1], x2 ∈

(

0, 12
]

, x1 > x2 such that x2

x1
/∈ Q, next we choose x3 ∈

(

0, 13
]

,
x3 < x2 such that x3

x1
, x3

x2
/∈ Q and so on. In this way we obtain the sequence

(xn)n∈N which includes at most one rational number and is convergent to
0. Put A = R\{x1, x2, . . . }. Obviously A /∈ Tnat , A\{0} ∈ Tnat and by
the first part of the proof we conclude that A\ {0} ⊂ Φfin(A \ {0}). To
prove that 0 ∈ Φfin(A) we show that [−1, 1] ⊂ lim inf

n→∞
nA. The last fact

is equivalent to the statement: for each x ∈ [−1, 1] there exists a natural
number n0 such that for n ≥ n0,

x
n
∈ A. Let x ∈ [−1, 0]. Then x ∈ nA

for every n ∈ N. Let us take x ∈ (0, 1] and the sequence
(

x
k

)

k∈N. On the
contrary, suppose that there exist two different numbers x

k1
, x
k2

/∈ A, where
k1, k2 ∈ N . Then x

k1
= xn1

and x
k2

= xn2
and n1 6= n2, where xn1

, xn2
/∈ A.

We obtain that
xn2

xn1

=
k1
k2

.

The number k1
k2

is rational, which is in contradiction with the definition
of the sequence (xn)n∈N. We have proved that at most one of the number
(

x
k

)

k∈N is not a member of a set A. Consequently A ∈ Tf\Tnat.
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Proposition 20. The set of irrational numbers is open in Tf .

Proof. Let y ∈ R\Q. We shall now prove more that

[−1, 1] ⊂ lim inf
n→∞

n((R\Q)− y).

This condition is equivalent to the following one: for each x ∈ [−1, 1] there
exists k ∈ N such that for n > k we have x

n
+ y ∈ R\Q.

To prove the last statement we show that there exists at most one positive
integer n such that x /∈ n ((R\Q)− y). Converslely, suppose that there are
n1, n2 ∈ N, n1 6= n2, and x /∈ n1((R\Q)− y) and x /∈ n2((R\Q)− y).

Hence
x

n1
+ y /∈ R\Q and

x

n2
+ y /∈ R\Q ,

x

n1
+ y =

p1
q1

and
x

n2
+ y =

p2
q2

, where p1, p2 ∈ Z q1, q2 ∈ N.

From the above equalities we obtain that

y =
n2

p2
q2

− n1
p1
q1

n2 − n1
∈ Q,

contrary to y ∈ R\Q. Therefore R\Q ∈ Tf .

Corollary 21. The set of rational numbers is closed in Tf .

The idea of the next proposition and its proof came from Lemma 5.1
in [H].

Proposition 22. There exists a nonempty perfect set F ⊂ R such that

(R\F ) ∪ {x} ∈ Tf for each x ∈ F .

Proof. Let H be any Hamel basis of the space of reals over the field of
rational numbers, containing a nonempty perfect set F (see [K], p. 270).
Since R\F ∈ Tnat, Theorem 19 gives that R\F ∈ Tf , which means that
R\F ⊂ Φfin (R\F ). We have to prove that each point x ∈ F is a fin-density
point of (R\F ) ∪ {x}. We shall show that

[−1, 1] ⊂ lim inf
n→∞

n [((R\F ) ∪ {x})− x] .

Let a ∈ [−1, 1]. Clearly, we may assume that a 6= 0. There exists at most one
positive integer n, such that a /∈ n((R\F ) − x). To obtain a contradiction,
suppose that we have n1, n2 ∈ N, n1 6= n2 such that a /∈ n1((R\F ) − x)
and a /∈ n2((R\F )− x). Consequently, a

n1
+ x = z2 and a

n1
+ x = z1, where

z1, z2 ∈ F and z1, z2, x are different. Hence we have:

x(n1 − n2)− z2n2 + z1n1 = 0.

Since z1, z2, x are different and z1, z2 and x are elements of a Hamel basis,
therefore they are linearly independent. We obtain n1 = n2 = 0, contrary
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to the fact that n1 6= n2. Finally,

(R\F ) ∪ {x} ⊂ Φfin((R\F ) ∪ {x}) for each x ∈ F .

It means that (R\F ) ∪ {x} ∈ Tf .

From the previous theorem it follows that (R\F ) ∪ {x} /∈ Tnat for each
x ∈ F .

Proposition 23. The family TfB = {A ∈ B (R) : A ⊂ Φfin(A)} is not a

topology on the real line.

Proof. By Proposition 22 there exists a nonempty perfect set F ⊂ R such
that (R\F ) ∪ {x} ⊂ Φfin((R\F ) ∩ {x}) for every x ∈ F. Let C ⊂ F , where
C is not a Borel set. Consider {(R\F ) ∪ {x} : x ∈ C} . The set (R\F )∪{x}
is a Borel set for each x ∈ C and (R\F ) ∪ {x} ∈ TfB. Simultaneously

⋃

x∈C

((R\F ) ∪ {x}) = (R\F ) ∪ C.

Obviously the set
⋃

x∈C

((R\F ) ∪ {x}) is not a Borel set, therefore TfB is not

closed under arbitrary unions. Thus finally, TfB is not a topology.
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