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DENSITY TOPOLOGY GENERATED
BY THE CONVERGENCE EVERYWHERE EXCEPT
FOR A FINITE SET

Abstract. In this paper we shall study a density-type topology generated by the
convergence everywhere except for a finite set similarly as the classical density topology is
generated by the convergence in measure. Among others it is shown that the set of finite
density points of a measurable set need not be measurable.

1. Introduction

Throughout the paper £ will denote the o-algebra of Lebesgue measur-
able subsets of R and A - the Lebesgue measure on the real line. Let B (R)
be the o-algebra of Borel sets on the real line. We shall use also the following
notation: nA ={nz:x € A}, A—a={r—a:zv€ A} for ACR, neN,
a € Rand A’ = R\ A. By x4 we denote the characteristic function of a set A.
Recall that

DEFINITION 1. The point x € R is a density point of a set A € L if and
only if

A —h h
(1) lim MAN =Rzt h)
h—0+ 2h
Observe that the condition (1) is equivalent to the following statement
{Xn(A_x)m[_lvl]}neN converges in measure to x(_1 1] (see [PWW]).

Put
®(A) = {z € R: z is a point of density of A}

for all A € L. It is well known that the family
Ta={AcL:ACPA)}
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is a topology on the real line (called the density topology) stronger than
natural topology Tnet on the real line (see [O], Chapter 22 or [GNN]).
Since the point of density is characterized by the convergence in measure,
we shall say that a density topology is generated by the convergence in
measure. Using various kinds of convergence of a sequence of measurable
functions one can obtain different density-type topologies on the real line
(see |W]). Thus, for example, the density-type topology generated by the
convergence almost everywhere is called the simple density topology and
denoted by 75 (see [WA]), the density-type topology generated by the com-
plete convergence is called the complete density topology and denoted by 7.
(see [WW]). Observe also that the natural topology T,e+ can be considered
as a density-type topology generated by the uniform convergence. However,
in all above mentioned cases the analogue of the Lebesgue Density Theorem
does not hold. Observe also that if a set A C R is measurable, then the
set ®5(A), ®.(A) and D,(A) = IntA (the sets of all points of simple, com-
plete and uniform, respectively, density points of A) are measurable and that
Toat & Te & Ts G Ta. In this paper we introduce the finite density topology
Tr which is generated by the convergence everywhere except for a finite set.
This topology is significantly different from the mentioned above, because
one can construct a measurable set A for which the set of all finite density
points is a non-measurable set (Theorem 10). We also show that 74 ; Tr
(Theorem 19).

2. Finite density point

Firstly we introduce the concept of fin-density point in the family of
Lebesgue measurable sets on the real line. We study the properties of the
operator assigning to a set A € L the set of its fin-density points and
introduce a finite density topology.

DEFINITION 2. Let A € L. We shall say that:
a) 0is a fin-density point of the set A if and only if
{XnAm[—l,l]}neN converges to X[_1,1] everywhere except for a finite set.
b) = € Ris a fin-density point of the set A if and only if 0 is a fin-density
point of the set A — x.
c) x € Risa fin-dispersion point of the set A if and only if = is a fin-density
point of the set A’.

d) 0 is a right-hand side fin-density point of the set A if and only if
{Xnanjo,1] }nen converges to x[g 1) except for a finite set.

Directly from the above definition we have the following characterization
of fin-density point
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PROPOSITION 3. Let A€ L. Then

a) 0 is a fin-density point of a set A if and only if there exists a finite set
F C [-1,1] such that [-1,1]\F C liminf, . nA.

b) 0 is a fin-dispersion point of a set A if and only if there exists a finite set
F C [-1,1] such that [-1,1]\F C liminf, ., nA’.

c) 0 is a right-hand side fin-density point of a set A if and only if there
exists a finite set F' C [0, 1] such that [0,1]\F C liminf, . nA.
Put ®4;,(A) = {x € R: xis a fin-density point of the set A} for A € L.

Obviously we have

PROPOSITION 4. Let A€ L. Then ®y;,(A) C ®5(A) C ©(A).
PROPOSITION 5. For each set A € L, \(®;,(A)\A) = 0.

Now we shall show that the Lebesgue Density Theorem does not hold for
fin-density points in the place of density points.

PROPOSITION 6. There ezists a measurable set C' C [0,1] of positive mea-
sure such that ®;,(C) = 0.

Proof. In [WA] it was shown that there exists a set C' C [0, 1] such that
A(C) > 0 and ®4(C) = (. Therefore ®;,(C') = ) by Proposition 4. =

COROLLARY 7. There exists a set C € L such that \(® ¢, (C)AC) > 0.
The operator ®;,(A) has the following properties

THEOREM 8. For each sets A,B € L:

1. if A C B, then ‘I)fm(A) - ‘I)fm(B),

2. (I)fin(@) = @ and (I)fm(R) = R,

3. (I)fm(A N B) = ‘me(A) N ‘me(B).

Proof. 1. Let A\B € L and A C B . Observe that for all x € R and for all

n € N we have n(A —z) C n(B —x). If x € ®f;,(A), then there exists a
finite set F' C [—1, 1] such that

[-1,1\F C lirginfn(A —x).

Thus
[—1,1]\F C liminfn(A — z) C liminfn(B — x),

n—o0 n—oo

which means that « € ® ¢, (B).

2. The proof is straightforward.

3. The proof of the inclusion ®f;,(AN B) C @i (A) N i (B) follows
from monotonicity of the operator ®y;,. Now we prove the converse inclu-
sion. If € ®4;,(A) N Py (B), then there exists a finite set Fy C [—1,1]
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such that
[—1,1]\F C lirginfn(A —x)

and there exists a finite set Fy C [—1,1] such that
[—1,1]\F> C linrgioréfn(B —x).
Let FF = Fy U Fy. Then
[—1,1]\F C linniiorgfn(A —z)Nliminfn(B —z) =liminf n((AN B) — z).

n—o0 n—o0

Consequently we have that € ®7;,(ANB). =

REMARK 9. For each set A € £ and y € R we have ®¢;,(4) +y =
(I)fin(A“‘y)'

3. The construction of measurable set for which the set of its
fin-density point is non-measurable

THEOREM 10. Assume Martin’s aziom. There exists a measurable set
A C R such that ® ¢, (R\A) is non-measurable.

Before we prove Theorem 10 we recall the following definitions and the-
orems which shall be useful in the proof.

DEFINITION 11. (see [K], p. 60) A set H C R has the property (x) if the
following condition is satisfied: if B C H or B C R\H, and B has the Baire
property, then B is of the first category.

DEFINITION 12. (see [K]|, p. 58) A set A C R is called saturated non-
measurable if \,(A) = A.(R\A) = 0, where \, is the Lebesgue inner measure.

DEFINITION 13. (see [K]|, p. 258) A Hamel basis H C R is called a Burstin
basis in R if for each set B € B(R) such that card(B) > s we have that
HNB#0.

THEOREM 14. (see [K|, p. 258) Ewvery Burstin basis in R is saturated
non-measurable.

THEOREM 15. (see |K]|, p. 258) Every Burstin basis in R fulfills condi-
tion ().

THEOREM 16. (see [K]|, pp. 259, 260) There exists a Burstin basis in R.
Proof of Theorem 10. Let H C R be a Burstin basis. From Theorem 15
it follows that H and R\ H have the property (x). Applying Theorem 14 we

conclude that the set H is saturated non-measurable. We now use the fact
that we can decompose the real line into two disjoint sets F7, Eo such that
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Eq is a null set and FEs is a set of the first category (see for instance [O],
p. 4). Then
H = (HﬂEl)U(HﬂEQ).

Obviously H N Ey is a null set and H N Ey is of the first category. Observe
that if A C R is saturated non-measurable and A\(AAB) = 0, then B is
also saturated non-measurable. Similarly, if A C R fulfills property ()
and AAB is of the first category, then B also fulfills property (x). Hence
HnNEy = H\(HNE)) is saturated non-measurable and HNE; = H\(HNE>)
fulfills property ().

The construction of the set A. The identity card(H N Ey) = card(H N
E;) = ¢, follows from Martin’s axiom. Let {z9,21,...,2a,--- }a<w. b€ a
well-ordering of H N Es and let Fy, F3, Fy, ... be arbitrary residual and null
sets. Take zg € H N Fs.

Now we show that for all ¢ € N there exists a straight line /., ; such that
l.,,i contains (zo,0), (hos, 1) for some ho; € H N Ey, in addition hg; # ho;
for i # j and [, ; also has non-empty intersection with every set F}, x {%},
n > 2.

Consider the set L of all straight lines [, such that [, contains point
(20,0) and [, is neither vertical nor horizontal. The set of all direction
coefficients of the lines from the set L is equal to R\{0} and is obviously
residual and of full measure. Now we define a sequence of homeomorphisms
between the set R\{zp} and the set of all direction coefficients of the lines
from L in the following way

(2) Ny p—

n(x — 2p)

for x € R\{20} and n e N.

Homeomorphism f, -, maps a first coordinate of the point (z, 1) € (R\{z0})
x {1} into the direction coefficient a € R\{0} of the line I, : y = a(z — z)
which goes through (x, %)

Notice that Wy, .y = fn.2o (R\({z0} U F},)) is of the first category for each
n > 2 and Dy = R\({0} UU,;2 o Wh ) is the set of direction coefficients of
those lines [,, which have non-empty intersection with every set F;, x {%},
n > 2. It is easily seen that the set Dy is residual.

Now we prove that for all i € N there exists direction coefficients ag; € Dg
such that the line 1., ;: y = ag(xz — 2p) contains a point (hg;, 1), where
ho; € HNEy and ho; # hoj for i # j (ie. fi} (ag;) € HNE for alli € N).

The proof of this fact is by mathematical induction.

Let ¢ = 1 and put Dy = Dy. On the contrary, suppose that fl_zl0 (ap1) ¢
H N E; for all ag1 € Dp. It means that

i3, (Do) CR\(H N Ey).
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Since the set R\(H N E4) has the property (x), then it does not contain
a residual set f_ ;0(D0,1)~ Thus we get the contradiction. Let us denote by
(ho,1,1) the point of intersection of straight line I,,1 : y = ao1(x — 20)
with the set (H N Ep) x {1}. Let us assume that for some k£ > 1 we
have chosen pairwise different direction coefficients ag,1,a0,2,. .., aok, pair-
wise different elements of (H N Ey): hoa,hog2,...,hor and put Doy =
Do \ {ao,1,a02,...,a0k}. Obviously the set Dy is residual. The proof
of existence of direction coefficient ag 11 is analogus to proof of the exis-
tence ag 1. In this way for zg € HNE> we have found sequences {ao,i}i eN and
{ho,i};cy consisting of different terms with values in R\ {0} and (H N Ey),
respectively, such that

(3) fia(ao)€HNE) and f;} (ag;) €F, for all n > 2 and for all i €N.

Applying the definitions of homeomorphisms fi ., f2,29, f3,29, - - - We can ex-
press (3) in the following way

1
(4) — (hoi — 20) + 20 € F,, for all n > 2 and for all ¢ € N.
n

Let a < w,. Suppose that for every 25 € H N E3, 8 < o and for every 1 € N
we have found ag; € R\{0} and hg; € (H N E1)\U;en {Pr.i : 7 < B} such
that

ff’zlﬁ(aﬁ,i) € HNE; and f;iﬁ(aﬁ,i) € F, forall n>2and for all i € N.
Applying the definitions of homeomorphisms f1 ., f2,24, f3,24, - . - defined by
(5) fn,z@ (z) =

we can rewrite (5) in the following way:

Y P for z € R\ {23}

1
(6) —(hg; — 28) + 23 € F}, for all n > 2 and for all i € N.
n

Now, for z, € HNEy we shall find ho; € (HNED)\ Ujen{hs,i 0 8 < a} and
direction coefficients aq,; € R\{0} such that %(ha,i —2q) + 2o € F, for every
n,i € N. The set (J;en{hg : 8 < a} is of the first category by Martin’s
axiom. We will denote by [, arbitrary straight line containing point (z4,0).
We can now proceed analogously to the proof of existence hg; and ag; for
zo to obtain the set

Dq = R\({O} U G Wn)

It is the set of direction ratios of those lines [, which have non-empty
intersection with every set Fj, X {%}, n > 2. Obviously the set D, is
residual.
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Now we prove that for all i € N there exists direction ratio an; € Dq
such that the line [, ;: ¥ = aq,i(z — zq) intersects the set

(BN {hsa 1 8 < a}) x {1}
1€EN
(ie. fiz (aai) € (HNE)\ U{hgi: B <a}forallicN).
€N
The proof of this fact is by mathematical induction.
Let i =1 and D, 1 = D,. On the contrary, suppose that

ff;zla(aa,l) ¢ (HnN Ep)\ U{hﬁvi 1B <a}forall ag; € Da.
€N
It means that

[ (Do) € R((H A B\ | J{hs 1 B < a})
ieN
= R\(HNEU | J{hgi: 8 < a}.
€N
Hence
fik Da\ U Thsa s < a} CR\(HN Ey),
€N

Since the set R\ (H N E1) has the property (x), then it cannot contain a resid-
ual set fizla (Da, i)\ Uienths,i - B < a}. Finally, we got the contradiction.

Let us denote by (ha,1,1) the point of intersection of straight line
Lot t Y = aq1(x — zo) with the set ((H N E1)\ U;enths,i @ B < a}) x {1}
Let us assume that for some k& > 1 we have chosen pairwise different direc-
tion coefficients an,1,@a,2; - - -, Gq i, Pairwise different elements of (H N Ey):
haisha2, ... ha i and put Dy i = Do \{aa,1,00.2, - ., Gqk}. Obviously the
set Dy is residual. The proof of the existence of the direction coefficient
o k+1 is analogous to the proof of the existence of aq,1.

In this way for 2z, € H N E2 we have found sequences {aq,},.y and
{ha,i};ey consisting of different terms with values at R\ {0} and (H N Ey)
\Uienths,i : B < a}, respectively, such that

(1) fiz(aai) EHNEy and f,} (aq,)€F, for all n > 2 and for all i€N.

We can rewrite (7) in following way

1
(8) —(hayi — 2a) + 20 € F,, for all n > 2 and for all i € N.
n

We have constructed the set

A= [jG{za—}-%(ha,i—za):a<wc}UQ{ha7i:a<wc}.

n=21=1
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Observe that for alln > 2 and ¢ € N the set {za—i—%(ha’i—za) ra<w} CF,
and J;en {ha,i : @ <we} € HN Ep. So all these sets are null sets. Hence
A(A) =0.

We shall show below that ® ¢, (R\A) = R\(H N E»).

1. First we shall show that ®z;,(R\A) C R\(H N E»).

Notice that from the definition of A we get that

Za + haji — 24 € A,

1
Zo + 3 (hai — 2a) € A,

1
Zo + 3 (hai — 2a) € A,

1
Za + - (hai — 2a) € A,

for each a < we, i.e. for each z € H N Es and for each n,i € N. Hence
(hai—2a) € R\(n(A—zq)) = n((R\A) — z4) for every n,i € N, and a < w.
From the above we conclude that z, ¢ ®;,(R\A) for every a < w.. Hence
(H N Ep) C R\ @ (R\A).

2. To prove the converse inclusion it is sufficient to show that if x €
R\ (H N Ey), then for each a € [—1, 1]\ {0} there exists m € N such that for
each k > m we have ¢ +2 ¢ A. To prove the last statement we show that
at most two of the numbers £ +x, k = 1,2,... belong to A. To obtain a
contradiction, suppose that there exist three different numbers t1,t9,t3 € A
such that

=2y
=—+z
1 kl )
= L 4
= x,
2= 1
th= L 4
= — X
P T

for different ki, ko, k3, k; € N, ¢ = 1,2, 3. From the above it follows that
a=ki(ty —z) =ko(ta — x) = k3(t3 — x).

koto—kity
ko—k1

(k‘QtQ — k‘ltl)(k‘g — k‘l) = (k3t3 — kltl)(kQ — k‘l).

ksts—kitq

and x = e

Hence we have x = . Consequently

1

Since t; = 2o, + 7~ (hay,i — 2a;) for i = 1,2, 3, where 24, and hq, ; are different
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for ¢ = 1,2, 3, we obtain

1 1
Zay (k2k3 — —kok3 — k1ks + —k‘1k32) +
ng no
1 1
Zay (-klks + —kiks + k1ko — —k1/€2> +
i ni
1 1
Zas <—k2k3 + —koks + k1ks — —k1k3> +
ns ns
1 1 1 1
hai 1 <__k1k33 + —k?1k‘2> + hay 2 <—k2k3 - —k‘lkz) +
ni ni na2 n2

1 1
hahg (——kzkﬁg + —k1k3> =0.
ns ns

Since zo, € H N Ea, hq,; € H N Ey are linearly independent we get the
system of equalities
koks — %kgkg — k1ko + %klkg =0
—k1ks + n%lﬁks + kiko — n%klk‘z =0
—kaks + o-koks + kiks — o-kiks =0

—%klk‘g + %klk‘g =0

n%k:gk:g — n%k:lkg =0
—n—lgk‘zkg + %k‘lkg = 0.

From the last three equation we obtain immediately k1 = ko = k3, contrary
to the fact that k; are different for ¢ = 1,2, 3.
Hence

(I)fm(R\A) = R\(H N EQ).

The set H N E, is saturated non-measurable, so ®y;,(R\A) is non-
measurable. Consequently, we have that R\ A is measurable, but ® ¢, (R\A)
is nonmeasurable. m

Similarly, we can prove

THEOREM 17. Assume Martin’s aziom. There exists a set A C R having
the Baire property such that the set ®f;,(R\A) has not the Baire property.

4. Finite density topology
We define

(9) Tr={AcL:ACPp,(A)}
THEOREM 18. The family Ty is a topology on the real line.
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Proof. 1. From the properties of ®y;, it follows immediately that () =
(I)fin(@) and R = ‘I)fm(R). Hence @,R € 7}

2. Let A, B € Ty then A C ®5;,(A), B C ®4;,,(B) and A, B € L. Hence
ANB e Land ANB C @i (A)NPpin(B) = @fin(ANB). We thus obtain
that AN B € T;.

3. To prove that Ty is closed under arbitrary unions observe that from
Proposition 4 it follows that Ty C 75. Let Ay € Ty for all t € T'. Obviously
Ay € Ty for all ¢ € T. Tt is well known that 75 C £ and 7; is a topology.
From this we have |J A; € £. From monotonicity of the operator ® ¢, we
have that teT

A CPpin(Ar) C (I)fin<UAt) for each t € T.
teT

Finally, we obtain (J A; C ®fin(User A¢). =
teT

We call the topology 7Ty the finite density topology.
THEOREM 19. Topology Ty is stronger than the natural topology.

Proof. We first prove that any open set in natural topology is open in
fin-density topology. Consider any nonempty set I € T4 Obviously
I € L. Let z € I. There exists § > 0 such that (—9,5) C I —z . We have

R =liminfn (—4,d) C liminf n(I — ).
n—oo n—oo

We obtain that [—1,1] C liminfn (I —x). Hence I € Ty.
n—oo

We now give an example of a set A € L such that A € T¢\ 7. Choose
x1 € (0,1], 29 € (0, %], 21 > X9 such that i—f ¢ Q, next we choose x3 € (O, %],
x3 < x2 such that i—i’, i—z ¢ Q and so on. In this way we obtain the sequence
(zn)nen which includes at most one rational number and is convergent to
0. Put A = R\{x1,22,...}. Obviously A ¢ Tnat , A\{0} € Tnat and by
the first part of the proof we conclude that A\ {0} C ®s;,(A\ {0}). To

prove that 0 € ®;,(A) we show that [-1,1] C lirginan. The last fact

is equivalent to the statement: for each z € [—1,1] there exists a natural
number ng such that for n > ng, &+ € A. Let x € [~1,0]. Then z € nA
for every n € N. Let us take x € (0,1] and the sequence (%)keN' On the
contrary, suppose that there exist two different numbers ,;"’—1 , % ¢ A, where
ki,ko € N. Then k% = X, and ,f—z = xp, and ny # ng, where x,,,, x,, ¢ A.

We obtain that
Tny _ k1
T, ko
k

The number T s rational, which is in contradiction with the definition

of the sequence (zp)nen. We have proved that at most one of the number
(%)keN is not a member of a set A. Consequently A € T¢\Tnat. w
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PROPOSITION 20. The set of irrational numbers is open in Ty.

Proof. Let y € R\Q. We shall now prove more that
[—1,1] C liminfn((R\Q) — y).
n—oo

This condition is equivalent to the following one: for each x € [—1, 1] there
exists k € N such that for n > k we have T 4y € R\Q.

To prove the last statement we show that there exists at most one positive
integer n such that ¢ n ((R\Q) — y). Converslely, suppose that there are
ni, n2 € N, np # ng, and x ¢ n1((R\Q) —y) and z ¢ n2((R\Q) — y).

Hence

T T
— +y ¢R\Q and — +y ¢ R\Q,
niy ny
£—l—yzp— and nﬁ‘i‘y:%,Wth@p1,p2€ZQ1,Q2€N.
2

From the above equalities we obtain that

P2 __ p1i
"2 q2 1

y=—"—- " cQ,
ng —ny

contrary to y € R\Q. Therefore R\Q € 7;. =
COROLLARY 21. The set of rational numbers is closed in Ty.

The idea of the next proposition and its proof came from Lemma 5.1
in [HJ.

PROPOSITION 22. There exists a nonempty perfect set F C R such that
(R\F)U{x} € Ty for each x € F.

Proof. Let H be any Hamel basis of the space of reals over the field of
rational numbers, containing a nonempty perfect set F' (see [K]|, p. 270).
Since R\F' € Tpat, Theorem 19 gives that R\F € Tj, which means that
R\F C @, (R\F). We have to prove that each point x € F is a fin-density
point of (R\F') U {x}. We shall show that

[~1,1] € liminfn [(R\F) U {2}) - a].

Let a € [-1,1]. Clearly, we may assume that a # 0. There exists at most one
positive integer n, such that a ¢ n((R\F) — x). To obtain a contradiction,
suppose that we have ni, ng € N, ny # ng such that a ¢ ni((R\F) — x)
and a ¢ na((R\F) — ). Consequently, ;- +x = 22 and ;= +z = 21, where
21,29 € F and z1, 29,z are different. Hence we have:

x(ny —ng) — zang + z1n1 = 0.

Since z1, zo, x are different and 21, zo and x are elements of a Hamel basis,
therefore they are linearly independent. We obtain n; = ngy = 0, contrary
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to the fact that ni # no. Finally,
(R\F)U{z} C ®fin((R\F)U{x}) for each x € F.
It means that (R\F)U{z} € T;. =

From the previous theorem it follows that (R\F)U {z} ¢ Tpa: for each
x e F.
PROPOSITION 23. The family Tyg = {A € B(R): A C ®5;n(A)} is not a
topology on the real line.

Proof. By Proposition 22 there exists a nonempty perfect set F' C R such
that (R\F) U {z} C @i ((R\F) N {x}) for every = € F. Let C' C F, where
C is not a Borel set. Consider {(R\F)U{z}:z € C}. The set (R\F)U{z}
is a Borel set for each € C and (R\F') U {z} € Tyg. Simultaneously

U (R\F)U{z}) = (R\F) UC.
zeC
Obviously the set |J ((R\F)U {z}) is not a Borel set, therefore T;p is not
zeC

closed under arbitrary unions. Thus finally, 75 is not a topology. m
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