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THE BOUNDARY VALUE PROBLEM OF HIGHER ORDER

DIFFERENTIAL EQUATIONS WITH DELAY*

Abstract. In the paper, Guo–Krasnoselskii’s fixed point theorem is adapted to study
the existence of positive solutions to a class of boundary value problems for higher order
differential equations with delay. The sufficient conditions, which assure that the equa-
tion has one positive solution or two positive solutions, are derived. These conclusions
generalize some existing ones.

1. Introduction

The boundary value problems (bvps for short) for delay differential equa-
tions arise in a variety of areas of applied mathematics, physics and varia-
tional problems of control theory. In recent years, many researchers have
done a great deal of research works upon bvps of lower order differential
equations with delay, and some good results were produced, see, for exam-
ple [1–9]. But higher order cases have not been focused. In fact, the bvps
of higher order delay differential equations also have extensive applications
in many fields [13]. Recently, Graef and Yang [10] considered the following
multi-point higher order bvp of ordinary differential equation

(1.1) u(n)(t) + λg(t)f(u(t)) = 0, 0 < t < 1,

with boundary condition

u(0) = u′(0) = · · · = u(n−3)(0) = u(n−2)(0) =
m
∑

i=1

aiu
(n−2)(1) = 0,

by using Krasnose’skii fixed point theorem, the authors obtained some suf-
ficient conditions for the existence of positive solutions. While in [11], Shen
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and Dong studied the following bvp of higher order delay differential equa-
tion

(1.2) u(n)(t) + λg(t)f(u(t− τ)) = 0, 0 < t < 1,

with boundary condition

u(t) = u′(t) = · · · = u(n−3)(t) = u(n−2)(t) = 0, −τ ≤ t ≤ 0,

u(n−2)(1) = 0.

Motivated by the above works, we will consider the existence of positive
solutions for the bvp of higher order differential equation with delay as

(1.3)











−u(n)(t) = λp(t)f [t, u(t− τ)], 0 < t < 1, λ > 0,

u(t) = u
′

(t) = · · · = u(n−3)(t) = u(n−2)(t) = 0, −τ ≤ t ≤ 0,

u(n−2)(1) = (n− 1)!au(η).

In equation (1.3), we assume that the following conditions (H1)−(H4)
hold

(H1) f ∈ C(J ×R,R), J = [0, 1], 0 < a ≤ 1, 0 < η < 1, 0 < τ < 1.
(H2) p(s) ∈ C(J1, R

+), J1 = (0, 1).

(H3)
	1
0 s(1− s)p(s)ds < ∞,

	1−θ+τ
θ+τ G2(s, s)p(s)ds > 0, 0 < θ ≤ 1 − θ ≤

1− τ, where G2 is second order Green function as defined later.
(H4) u ∈ C[−τ, 1] ∩ Cn(0, 1); u(t) ≥ 0, t ∈ [−τ, 1].

Here we allow that p(t) has some suitable singularity at the ends of (0, 1).

Many differential equations, which have been researched, become special
cases of (1.3). For example, the both differential equations (1.1), (1.2) men-
tioned above are special cases of (1.3). Particularly, the existence of positive
solutions for bvp (1.3) when n = 2 has been widely studied by many authors,
we refer the reader to [5–7, 9] and references therein.

For the existence of positive solutions to bvps of second/ higher order
differential equations, we mainly adopt the scheme which transform it into
integral equations. During the process of transformation, several kinds of
Green functions play important role. Based on the transformation, a cone
and a completely continuous operator are defined over a Banach space. Then
we apply all kinds of fixed-point theorems to solve the problems. In this
paper, the Green function is the same as that defined in paper [11]. That is,
the second order Green function is defined by

G2(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1,

t(1− s), 0 ≤ t ≤ s ≤ 1,
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and for n ≥ 3, the n-order Green function is defined by

Gn(t, s) =
t�

0

Gn−1(v, s)dv.

Lemma 1.1. Gn(t, s) satisfy:

(i) Gn(t, s) ≤ G2(s, s), (t, s) ∈ [0, 1]× [0, 1], n ≥ 2, n ∈ N.

(ii) Let 0 < θ ≤ 1− θ ≤ 1− τ, Jθ = [θ, 1− θ], for t ∈ Jθ, s ∈ [0, 1], one has

G2(t, s) ≥ min{t, 1− t}G2(s, s) ≥ θG2(s, s),(1.4)

Gn(t, s) ≥ θn−1G2(s, s), t ∈ Jθ, n ≥ 2, n ∈ N.(1.5)

Proof. At first, we prove the conclusion (i) of Lemma 1.1 by induction.
Clearly, G2(t, s) ≤ G2(s, s). Assuming that when n = k, Gk(t, s) ≤ G2(s, s).
Then for n = k + 1, when (t, s) ∈ [0.1]× [0, 1]

Gk+1(t, s) =
t�

0

Gk(v, s)dv ≤
1�

0

G2(s, s)dv = G2(s, s).

Therefore, the conclusion (i) of Lemma 1.1 hold.
For the conclusion (ii) of Lemma 1.1, formula (1.4) is clear. We prove

the relation formula (1.5) in the following. For t ∈ Jθ, by (1.4) we have
G2(t, s) ≥ θG2(s, s). Assuming when n = k, Gk(t, s) ≥ θk−1G2(s, s). Then
when n = k + 1, t ∈ Jθ

Gk+1(t, s) =
t�

0

Gk(v, s)dv ≥
t�

0

θk−1G2(s, s)dv = tθk−1G2(s, s) ≥ θkG2(s, s).

Therefore, (1.5) holds.
Let

E = {u ∈ C[−τ, 1] : u(t) ≥ 0, for t ∈ J ;u(t) = u
′

(t) = · · · = u(n−3)(t)

= u(n−2)(t) = 0, for t ∈ [−τ, 0]; u(n−2)(1) = (n− 1)!u(η)}.
With the norm ‖ · ‖ given by ‖u‖ = sup{|u(t)| : −τ ≤ t ≤ 1}, (E, ‖ · ‖) is a
Banach space. It is obvious that‖ · ‖ = ‖ · ‖[0,1] for u ∈ E.

Define a cone K ∈ E by

K = {u ∈ E : u(t) ≥ 0, for t ∈ [0, 1]; min
t∈Jθ

u(t) ≥ γ‖u‖},

where γ = θn−1(1−aηn−1)
1+a−aηn−1 .

Definition 1.1. u(t) is the positive solution of BVP(1.1) if and only if it
satisfies the following conditions:

1. u(t) ⊂ C[−τ, 1] ∩ Cn(0, 1);u(t) ≥ 0, t ∈ J ;
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2. u(t) = u
′

(t) = · · · = u(n−3)(t) = u(n−2)(t) = 0, for t ∈ [−τ, 0] and
u(1) = (n− 1)!au(η) (0 < η < 1);

3. u(n)(t) = −λp(t)f(t, u(t− τ)), ∀t ∈ J1.

If u(t) is the solution of bvp (1.3), then u(t) can be represented as

u(t) =











0, −τ ≤ t ≤ 0,

λ
	1
0Gn(t, s)p(s)f(s, u(s− τ))ds

+ aλtn−1

1−aηn−1

	1
0Gn(η, s)p(s)f(s, u(s− τ))ds, 0 < t < 1.

Define an operator Φ : K → K by the formula

Φu(t) =











0, −τ ≤ t ≤ 0

λ
	1
0 Gn(t, s)p(s)f(s, u(s− τ))ds

+ aλtn−1

1−aηn−1

	1
0 Gn(η, s)p(s)f(s, u(s− τ))ds, 0 < t < 1.

The operator Φ has the following properties.

Lemma 1.2. The fixed point of the Φ is the solution of equation (1.3).

The proof of the Lemma is easy, and we omit it here. By the Lemma, we
know that positive solutions of the differential equation (1.3) are equivalent
to a fixed point of Φ in K.

Lemma 1.3. Φ : K → K is a completely continuous operator.

Proof. Clearly ‖Φu‖ = ‖Φu‖[0,1], ∀u(t) ∈ K,

‖Φu‖ = ‖Φu‖[0,1] ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
aλ

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds,

≤ λ(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)f(s, u(s− τ))ds.

We have

Φu(t) ≥ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

≥ λθn−1
1�

0

G2(s, s)p(s)f(s, u(s− τ))ds

≥ θn−1(1 + a− aηn−1)

1− aηn−1
‖Φu‖ = γ‖Φu‖.
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Then Φ : K → K. Because Φ is a sequential compact set, we can
conclude that Φ is a completely continuous operator by Arzela–Ascoli The-
orem.

One of the main tool of this paper is the following Guo–Kranoselskii fixed
point theorem in cones [12].

Lemma 1.4. [12] Let E be a Banach space and K a conic in E. Ω1,Ω2

are two open subsets in E, and 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If Φ : K ∩ (Ω2\Ω1) → K

is a completely continuous operator and satisfies

(i) ‖Φu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Φu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Φu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2 and ‖Φu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1,

then E has a fixed point in K ∩ (Ω2\Ω1).

2. Main results

Let

M0 = lim
u→0

inf min
t∈(0,,1)

f(t, u)

u
, M∞ = lim

u→∞
inf min

t∈(0,,1)

f(t, u)

u
.

M0 = lim
u→0

sup max
t∈(0,,1)

f(t, u)

u
, M∞ = lim

u→∞
sup max

t∈(0,,1)

f(t, u)

u
.

M1 = γθn−1
1−θ+τ�

θ+τ

G2(s, s)p(s)ds, M2 =
(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds.

In the following, we discuss the existence of the positive solutions for
arbitrary values and some compositions of M0,M∞,M0 and M∞. In The-
orem 2.1 and Theorem 2.2, we take a suitable positive ε > 0 such that
M0 − ε > 0,M∞ − ε > 0.

Theorem 2.1. If the conditions (H1)–(H4) and the following conditions

hold

0 < M∞ < +∞,(2.1)

0 < M0 < +∞,(2.2)

1

M1(M∞ − ε)
≤ λ ≤ 1

M2(M0 + ε)
,(2.3)

then the equation (1.3) has at least one solution.

Proof. By (2.2), (2.3), for a given ε > 0, ∃r1 > 0, when 0 < u ≤ r1,
f(t, u) ≤ (M0 + ε)u.
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Let Ω1 = {t ∈ [−τ, 1] : ‖u‖ < r1}, for u ∈ K ∩ ∂Ω1, we have

‖Φu‖ ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
λa

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

=
λ(1 + a− aηn−1)

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds}

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)u(s− τ)ds

=
λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1

1−τ�

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

≤ λ(M0 + ε)(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds‖u‖

= λM2(M
0 + ε)‖u‖ ≤ ‖u‖.

For the same ε > 0 as given above, from (2.1) and (2.3), ∃R1 > r1, that
we can derive that when u(t) ≥ R1, f(t, u) > (M∞ − ε)u.

Let Ω2 = {t ∈ [−τ, 1] : ‖u‖ < R1}, for u ∈ K ∩ ∂Ω2. We get

‖Φu‖ ≥ λ sup
t∈J

1�

0

Gn(t, s)p(s)f(s, u(s− τ))ds

≥ λ(M∞ − ε) sup
t∈J1

1�

0

Gn(t, s)p(s)u(s− τ)ds

= λ(M∞ − ε) sup
t∈J1

1−τ�

0

G2(t, s+ τ)p(s+ τ)u(s)ds

≥ λ(M∞ − ε)γ sup
t∈J1

1−θ�

θ

Gn(t, s+ τ)p(s+ τ)ds‖u‖

= λ(M∞ − ε)γ sup
t∈J1

1−θ+τ�

θ+τ

Gn(t, s)p(s)ds‖u‖

≥ λ(M∞ − ε)γθn−1
1−θ+τ�

θ+τ

G2(s, s)p(s)ds‖u‖

= λM1(M∞ − ε)‖u‖ ≥ ‖u‖.
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Therefore, by Lemma 1.4, Φ has a fixed point u(t) ∈ K ∩ (Ω2\Ω1), and
u(t) is a positive solution of equation (1.3). Thus Theorem 2.1 is proved.

Theorem 2.2. If the conditions (H1)–(H4) and the following conditions

0 < M0 < +∞,(2.4)

0 < M∞ < +∞,(2.5)

1

M1(M0 − ε)
≤ λ ≤ 1

M2(M∞ + ε)
,(2.6)

hold, then the equation (1.3) has at least one solution.

Proof. By (2.4), (2.6), for a given ε > 0, ∃r2 > 0, when 0 < u ≤ r2,
f(t, u) ≥ (M0 − ε)u.

Let Ω1 = {t ∈ [−τ, 1] : ‖u‖ < r2}, for u ∈ K ∩ ∂Ω1. We have

‖Φu‖ ≥ λ sup
t∈J1

1�

0

Gn(t, s)p(s)f(s, u(s− τ))ds

≥ λ(M0 − ε) sup
t∈J1

1�

0

Gn(t, s)p(s)u(s− τ)ds

= λ(M0 − ε) sup
t∈J1

1−τ�

0

G2(t, s+ τ)p(s+ τ)u(s)ds

≥ λ(M0 − ε)γ sup
t∈J1

1−θ�

θ

Gn(t, s+ τ)p(s+ τ)ds‖u‖

= λ(M0 − ε)γ sup
t∈J1

1−θ+τ�

θ+τ

Gn(t, s)p(s)ds‖u‖

≥ λ(M0 − ε)γθn−1
1−θ+τ�

θ+τ

G2(s, s)p(s)ds‖u‖

= λM1(M0 − ε)‖u‖ ≥ ‖u‖.
For the same ε > 0 as mentioned above, from (2.5) and (2.6), ∃R2 > r2,

we can derive that when u(t) ≥ R2, f(t, u) > (M∞ + ε)u.

Let Ω2 = {t ∈ [−τ, 1] : ‖u‖ < R2}, for u ∈ K ∩ ∂Ω2. We get

‖Φu‖ ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
λa

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds
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=
λ(1 + a− aηn−1)

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds}

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)u(s− τ)ds

=
λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1

1−τ�

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

≤ λ(M∞ + ε)(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds‖u‖

= λM2(M
∞ + ε)‖u‖ ≤ ‖u‖.

Therefore, by Lemma 1.4, Φ has a fixed point u(t) ∈ K ∩ (Ω2\Ω1),
and u(t) is a positive solution of equation (1.3), completing the proof of
Theorem 2.2.

Theorem 2.3. If the conditions (H1)−(H4) hold and M∞ = ∞,M0 = 0.
Then there exists two positive numbers λ1, λ2, when λ1 ≤ λ ≤ λ2 , bvp (1.3)
has at least a positive solution.

Proof. Since M∞ = ∞, we can choose a positive constant M > 0 such that
f(t, u) ≥ M = αR3 (α > 0), for any u ≥ R3, t ∈ J .

Let

λ1 = [αθn−1
1−θ�

θ

G2(s, s)p(s)ds]
−1,Ω2 = {t ∈ [−τ, 1] : ‖u‖ < R3}.

For u ∈ K ∩ ∂Ω2, λ ≥ λ1, we have

‖Φu‖ ≥ λ sup
t∈J1

1�

0

Gn(t, s)p(s)f(s, u(s− τ))ds ≥ λM sup
t∈J1

1�

0

Gn(t, s)p(s)ds

≥ λM sup
t∈J1

1−θ�

θ

Gn(t, s)p(s)ds ≥ λMθn−1
1−θ�

θ

G2(s, s)p(s)ds

≥ λαR3θ
n−1

1−θ�

θ

G2(s, s)p(s)ds =
λ

λ1
R3 ≥ R3 = ‖u‖.

Because M0 = 0, we choose a value small enough for ε > 0, so that

λ2 = [
ε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds]
−1 > λ1,

and ∃0 < r3 < R3, such that f(t, u) ≤ εu for any u ≤ r3.
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Let Ω1 = {t ∈ [−τ, 1] : ‖u‖ < r3}, for u ∈ K ∩ ∂Ω1. We have

‖Φu‖ ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
λa

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

=
λ(1 + a− aηn−1)

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

≤ λε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)u(s− τ)ds

=
λε(1 + a− aηn−1)

1− aηn−1

1−τ�

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

≤ λε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds‖u‖ =
λ

λ2
‖u‖ ≤ ‖u‖.

Therefore, by Lemma 1.4, Φ has at least one fixed point u(t) ∈ K ∩
(Ω2\Ω1), and equation (1.3) has at least one positive solution. Theorem 2.3
is proved.

Remark 2.1. If M0 = ∞,M∞ = 0, similarly we can verify that bvp (1.3)
has at least one positive solution.

Theorem 2.4. If the conditions (H1)−(H4) and the following conditions

hold:

(1) M0 = 0 and M∞ = 0.
(2) There exist positive numbers ρ > 0, δ > 0, such that f(t, u) ≥ δ for any

u ≥ ρ, t ∈ J .

Then there exist two positive numbers λ1, λ2, when λ1 ≤ λ ≤ λ2, the equation

(1.3) has at least two solutions.

Proof. Let

λ1 =

[

δθn−1
1−θ�

θ

G2(s, s)p(s)ds

]−1

,

λ2 =

[

ε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds

]−1

.

Here we take ε > 0 satisfying λ1 ≤ λ2.
Because M0 = 0, for a given ε > 0, ∃0 < r4 < ρ, such that f(t, u) ≤ εu

for all 0 < u ≤ r4, t ∈ J .
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Let Ω1 = {u ∈ E : ‖u‖ < r4}, for u ∈ K ∩ ∂Ω1. We have

‖Φu‖ ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
λa

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

=
λ(1 + a− aηn−1)

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds}

≤ λε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)u(s− τ)ds

=
λε(1 + a− aηn−1)

1− aηn−1

1−τ�

0

G2(s+ τ, s+ τ)p(s+ τ)u(s)ds

≤ λε(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)ds‖u‖ =
λ

λ2
‖u‖ ≤ ‖u‖.

Let Ω2 = {u ∈ E : ‖u‖ < ρ}, for u ∈ K ∩ ∂Ω2. We have

‖Φu‖ ≥ λ sup
t∈J1

1�

0

Gn(t, s)p(s)f(s, u(s− τ))p(s)ds ≥ λδ sup
t∈J1

1−θ�

θ

Gn(t, s)p(s)ds

≥ λδθn−1
1−θ�

θ

G2(s, s)p(s)ds =
ρλ

λ1
≥ ρ = ‖u‖.

Therefore, by Lemma 1.4, Φ has at least one fixed point u1 ∈ K∩(Ω2\Ω1),
and equation (1.3) has at least one positive solution u1 satisfying ‖u1‖ < ρ.

By M∞ = 0, for the same value of ε as mentioned above, ∃R4 > ρ, when
u ≥ R4, f(t, u) ≤ εu.

Let Ω3 = {u ∈ E : ‖u‖ < R4}. We can prove that Φ has at least one
fixed point u2 ∈ K ∩ (Ω3\Ω2) when λ1 ≤ λ ≤ λ2, then equation (1.3) has
another positive solution u2 which satisfies ‖u2‖ > ρ. So the equation (1.3)
at least has two positive solutions.

Theorem 2.5. If the conditions (H1)−(H4) and the following conditions

hold:

(1) M0 = ∞ and M∞ = ∞.

(2) There exist two positive constants α, β (β ≥ λ) such that
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(2.7) 0 < f(t, u)

<

[

α(1− aηn−1)

β(1 + a− aηn−1)
−

τ�

0

G2(s, s)p(s)f(s, 0)ds

]

1
	1
τ G2(s, s)p(s)ds

,

t ∈ J1, θα < u < α.

then (1.3) has at least two solutions.

Proof. Since f is continuous in u, there exists a positive constant α1 : α1 <

α such that

(2.8) 0 < f(t, u)

<

[

α1(1− aηn−1)

β(1 + a− aηn−1)
−

τ�

0

G2(s, s)p(s)f(s, 0)ds

]

1
	1
τ G2(s, s)p(s)ds

,

s ∈ J, θα1 < u < α1.

Because M0 = ∞, there exists L > 0, 0 < r5 < α1 such that

(2.9) f(t, u) ≥ Lu, 0 < u < r5;λLθ
n−1γ

1−θ+τ�

θ+τ

G2(s, s)p(s)ds ≥ 1.

Let Ω1 = {u ∈ E : ‖u‖ < r5}, for u ∈ K ∩ ∂Ω1. We have by (2.9) that

‖Φu‖ ≥ λ sup
t∈J1

1�

0

Gn(t, s)p(s)f(s, u(s− τ))ds

≥ λL sup
t∈J1

1�

0

Gn(t, s)p(s)u(s− τ)ds

≥ λL sup
t∈J1

1−τ�

0

Gn(t, s+ τ)p(s+ τ)u(s)ds

≥ λLγ sup
t∈J1

1−θ�

θ

Gn(t, s+ τ)p(s+ τ)ds‖u‖

≥ λLγ sup
t∈J1

1−θ+τ�

θ+τ

Gn(t, s)p(s)ds‖u‖

≥ λLγθn−1
1−θ+τ�

θ+τ

G2(s, s)p(s)ds‖u‖ ≥ ‖u‖.

On the other hand, let Ω2 = {u ∈ E : ‖u‖ < α1}, for u ∈ K ∩ ∂Ω2 and



98 Z. He, J. Shen

λ ≤ β. We have by (2.8) that

‖Φu‖ ≤ λ

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

+
λa

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds

=
λ(1 + a− aηn−1)

1− aηn−1

1�

0

Gn(s, s)p(s)f(s, u(s− τ))ds}

≤ λ(1 + a− aηn−1)

1− aηn−1

1�

0

G2(s, s)p(s)f(s, u(s− τ))ds

=
λ(1 + a− aηn−1)

1− aηn−1

·
[ τ�

0

G2(s, s)p(s)f(s, 0)ds+
1�

τ

G2(s, s)p(s)f(s, u(s− τ))ds

]

≤ λ(1 + a− aηn−1)

1− aηn−1
· α1(1− aηn−1)

β(1 + a− aηn−1)
≤ α1 = ‖u‖.

Therefore, by Lemma 1.4, Φ has at least one fixed point u1 ∈ K∩(Ω2\Ω1),
and u1 is the positive solution of equation (1.3) such that ‖u1‖ < α1 < α.
By M∞ = ∞ and (2.7), analogously, we can prove that equation (1.3) has at
least another positive solution u2 which satisfies ‖u2‖ > α. So the equation
(1.3) has at least two positive solutions.

3. Examples

Example 1. Consider the problem

(3.1)















−u(4)(t) = 1√
t

√
t2 + 1

u2(t− 1

2
)[1+u(t− 1

2
)]

2+u(t− 1

2
)

, 0 < t < 1,

u(t) = u′(t) = u′(t) = u′′(t) = 0, −τ ≤ t ≤ 0,

u′′(1) = 3!12u(
1
2),

where f(t, u) =
√
t2 + 1

u2(t− 1

2
)(1+u(t− 1

2
)

2+u(t− 1

2
)

; p(t) = 1√
t
, t = 0 is its singularity.

Here we have M∞ = ∞,M0 = 0. If we choose M = 100, θ = 1
4 , ε1 =

100
11 ,

then when u ≥ 11, f(t, u) ≥ M . We can calculate that λ1 = 168.3.
Choosing ε2 = 0.01, r3 =

ε2
2 , we have f(t, u) ≤ 2u2 ≤ ε2u for any u ≤ r3

and we can calculate that λ2 = 244.565.
By Theorem 2.3, we have that if 168.3 = λ1 ≤ λ ≤ λ2 = 244.565, the

problem (3.1) has at least one positive solution.
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Example 2. Consider the boundary value problem

(3.2)















−u(4)(t) = 1√
1−t

(t2 + 1)
√

u(t− 1
2) tanhu(t− 1

2), 0 < t < 1,

u(t) = u′(t) = u′(t) = u′′(t) = 0, −τ ≤ t ≤ 0,

u′′(1) = 3!12u(
1
2),

where f(t, u) = (t2 + 1)
√

u(t− 1
2) tanhu(t − 1

2); p(t) = 1√
1−t

, t = 1 is its

singularity.

If we choose ε = 0, 01, ρ = 1, δ = e2−1
e2+1

, then calculates easily that

λ1 = 46.545, λ2 = 260.87

and

M0 = 0,M∞ = 0, f(t, u) ≥ δ.

From Theorem 2.4, we have that if 46.545 = λ1 ≤ λ ≤ λ2 = 260.87, the
problem (3.2) has at least two positive solutions.

References

[1] J. W. Lee, D. O’Regan, Existence results for differential delay equations-I, J. Differ-
ential Equations 102 (1993), 342–359.

[2] A. Carvalho, L. A. Ladeira, M. Martelli, Forbidden periods in delay differential equa-

tion, Portugal. Math. 57(3) (2000), 259–271.
[3] J. K. Hale, W. Huang, Global geometry of stable regions for two delay differential

equations, J. Math. Anal. Appl. 178 (1993), 344–362.
[4] Y. Li, Y. Kuang, Periodic solutions in periodic state-dependent delay differential

equations and population models, J. Math. Anal. Appl. 255 (2001), 265–280.
[5] D. Q. Jiang, Multiple positive solutions for boundary value problems of second-order

delay differential equations, Appl. Math. Lett. 15 (2002), 575–583.
[6] D. Bai, Y. Xu, Existence of positive solutions for boundary-value problems of second-

order delay differential equations, Appl. Math. Lett. 18 (2005), 621–630.
[7] W. B. Wang, J. H. Shen, Positive solutions to a multi-point boundary value problem

with delay, Appl. Math. Comput. 188 (2007), 96–102.
[8] T. Jankowski, Solvability of three point boundary value problems for second order

ordinary differential equations with deviating arguments, J. Math. Anal. Appl. 312
(2005), 620–636.

[9] B. Du, X. P. Hu, W. G. Ge, Positive solutions to a type of multi-point boundary

value problem with delay and one-dimensional p-Laplacian, Appl. Math. Comput.
208 (2009), 501–510.

[10] J. R. Graef, B. Yang, Positive solutions to a multi-point higher order boundary-value

problem, J. Math. Anal. Appl. 316 (2006), 409–421.
[11] J. H. Shen, J. Dong, Existence of positive solutions to BVPS of higher delay differ-

ential equations, Demonstratio Math. 42 (2009), 53–64.



100 Z. He, J. Shen

[12] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic
Press, New York, 1988.

[13] J. Henderson, Boundary Value Problems for Functional Equations, World Scientific,
1995.

J. Shen (corresponding author)

DEPARTMENT OF MATHEMATICS

HANGZHOU NORMAL UNIVERSITY

HANGZHOU, ZHEJIANG 310036, P.R. CHINA

E-mail: jhshen2ca@yahoo.com

Z. He

COLLEGE OF SCIENCE

ZHEJIANG FORESTRY UNIVERSITY

HANGZHOU, ZHEJIANG 311300, P.R. CHINA

Received September 6, 2010; revised version April 19, 2011.


	Code: 10.1515/dema-2013-0443


