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NON LINEAR DIFFERENTIAL POLYNOMIALS SHARING

FIXED POINTS WITH FINITE WEIGHTS

Abstract. We employ the notion of weighted sharing to investigate the uniqueness
of meromorphic functions when two nonlinear differential polynomials share fixed points.
The results of the paper improve and generalize the recent results due to Xu–Lu–Yi [10].

1. Introduction, definitions and results

In this paper, by meromorphic functions, we will always mean meromor-
phic functions in the complex plane. We adopt the standard notations in
the Nevanlinna theory of meromorphic functions as explained in [5], [13] and
[14]. It will be convenient, to let E denote any set of positive real numbers of
finite linear measure, not necessarily the same at each occurrence. For any
non-constant meromorphic function h(z) we denote by S(r, h) any quantity
satisfying

S(r, h) = o(T (r, h)) (r −→ ∞, r 6∈ E).

Let f and g be two non-constant meromorphic functions and let a be a
finite complex number. We say that f and g share a CM, provided that f−a
and g−a have the same zeros with the same multiplicities. Similarly, we say
that f and g share a IM, provided that f − a and g− a have the same zeros
ignoring multiplicities. In addition, we say that f and g share ∞ CM, if 1/f
and 1/g share 0 CM, and we say that f and g share ∞ IM, if 1/f and 1/g
share 0 IM. A finite value z0 is said to be a fixed point of f(z) if f(z0) = z0.

Throughout this paper, we need the following definition.

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.
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In 1959, Hayman (see [4], Corollary of Theorem 9) proved the following
theorem.

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3)
is an integer. Then fnf ′ = 1 has infinitely many solutions.

Corresponding to which, Yang and Hua [11] obtained the following result.

Theorem B. Let f and g be two non-constant meromorphic functions,
n ≥ 11 be a positive integer. If fnf ′ and gng′ share 1 CM, then either
f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1c2 = −1 or f ≡ tg for a constant t such that tn+1 = 1.

In 2000, Fang [2] proved the following result.

Theorem C. Let f be a transcendental meromorphic function, and let n
be a positive integer. Then fnf ′ − z = 0 has infinitely many solutions.

Corresponding to Theorem C, Fang and Qiu [3] proved the following
result.

Theorem D. Let f and g be two non-constant meromorphic functions, and
let n ≥ 11 be a positive integer. If fnf ′ − z and gng′ − z share 0 CM, then
either f(z) = c1e

cz2, g(z) = c2e
−cz2, where c1, c2 and c are three nonzero

complex numbers satisfying 4(c1c2)
n+1c2 = −1 or f = tg for a complex

number t such that tn+1 = 1.

Using the idea of sharing fixed points, recently Xu–Lu–Yi [10] proved
the following uniqueness theorems for meromorphic functions where an ad-
ditional condition namely the sharing of poles are taken under consideration.

Theorem E. Let f and g be two non-constant meromorphic functions, and
let n, k be two positive integers with n > 3k+10. If (fn)(k) and (gn)(k) share

z CM, f and g share ∞ IM, then either f(z) = c1e
cz2, g(z) = c2e

−cz2, where
c1, c2 and c are three constants satisfying 4n2(c1c2)

nc2 = −1 or f ≡ tg for
a constant t such that tn = 1.

Theorem F. Let f and g be two non-constant meromorphic functions sat-
isfying Θ(∞, f) > 2

n
, and let n, k be two positive integers with n ≥ 3k + 12.

If (fn(f − 1))(k) and (gn(g − 1))(k) share z CM, f and g share ∞ IM, then
f ≡ g.

Now one may ask the following question which is the motivation of the
paper.

Question 1. Is it possible simultaneously to relax the nature of sharing the
fixed point and reduce the lower bound of n in Theorem E and Theorem F ?
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In the paper, we will not only affirmatively solve the above question but
also obtain a more generalised result. Relaxation of the sharing can be done
by the following definition known as weighted sharing of values introduced
by I. Lahiri [7, 8] which measure how close a shared value is to being shared
CM or to being shared IM.

Definition 1. Let k be a nonnegative integer or infinity. For a ∈ C ∪
{∞} we denote by Ek(a; f) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m ≤ k and k+1 times if m > k. If
Ek(a; f) = Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0
is an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g
with multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k)
if and only if it is an a-point of g with multiplicity n(> k), where m is not
necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with
weight k. Clearly, if f , g share (a, k) then f , g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f , g share a value a IM or CM if and only if
f , g share (a, 0) or (a,∞) respectively.

We now state the main results of the paper.

Theorem 1. Let f and g be two transcendental meromorphic functions,
and let n(≥ 1), k(≥ 1) and m(≥ 0) be three integers such that n > 3k+m+6.
Let [fn(f − 1)m](k) and [gn(g − 1)m](k) share (z, 2), f and g share (∞, 0).
Then each of the following holds:

(i) when m = 0, then either f(z) = c1e
cz2, g(z) = c2e

−cz2, where c1, c2
and c are three constants satisfying 4n2(c1c2)

nc2 = −1 or f ≡ tg for a
constant t such that tn = 1;

(ii) when m = 1 and Θ(∞, f) + Θ(∞, g) > 4
n
, then f ≡ g;

(iii) when m ≥ 2, then either f ≡ g or f and g satisfy the algebraic equation
R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

Theorem 2. Let f and g be two rational meromorphic functions, and let
n(≥ 1), k(≥ 1) and m(≥ 0) be three integers such that n > 3k +m+ 9. Let
[fn(f − 1)m](k) and [gn(g− 1)m](k) share (z, 2), f and g share (∞, 0). Then
(i)–(iii) of Theorem 1 hold.

Remark 1. Obviously Theorems 1 and 2 both are two-fold improvements
of Theorem E and Theorem F in a compact form.

We now explain some definitions and notations which are used in the
paper.
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Definition 2. [6] Let a ∈ C∪ {∞}. For a positive integer p we denote by
N(r, a; f |≤ p) the counting function of those a-points of f (counted with
multiplicities), whose multiplicities are not greater than p. By N(r, a; f |≤ p)
we denote the corresponding reduced counting function.

In an analogous manner we define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 3. [8] Let k be a positive integer or infinity. We denote
by Nk(r, a; f) the counting function of a-points of f , where an a-point of
multiplicity m is counted m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + · · ·+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 4. [1] Let f and g be two non-constant meromorphic functions
such that f and g share the (a, 2) for a ∈ C∪{∞}. Let z0 be an a-point of f
with multiplicity p and also an a-point of g with multiplicity q. We denote
by NL(r, a; f) (NL(r, a; g)) the reduced counting function of those a-points

of f and g, where p > q ≥ 3 (q > p ≥ 3). Also we denote by N
(3
E (r, a; f) the

reduced counting function of those a-points of f and g, where p = q ≥ 3.

Definition 5. [7, 8] Let f and g be two non-constant meromorphic func-
tions such that f and g share the value a IM. We denote by N∗(r, a; f, g)
the reduced counting function of those a-points of f whose multiplicities
differ from the multiplicities of the corresponding a-points of g. Clearly
N∗(r, a; f, g) = N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.
Let F and G be two non-constant meromorphic functions defined in C. We
shall denote by H the following function:

H =

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G− 1

)

.

Lemma 1. [12] Let f be a non-constant meromorphic function,

R(z, f) =
P (z, f)

Q(z, f)
=

p
∑

i=0
ai(z)f

i

q
∑

j=0
bj(z)f j

be a non-constant irreducible rational in f with meromorphic coefficients
ai(z), bj(z) such that T (r, ai) = S(r, f), i = 0, 1, . . . , p, T (r, bj) = S(r, f),
j = 0, 1, . . . , q. Then the characteristic function of R(z, f) satisfies

T (r, R(z, f)) = dT (r, f) + S(r, f),
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where d = max{p, q}.

Lemma 2. [16] Let f be a non-constant meromorphic function, and p, k be
positive integers. Then

Np

(

r, 0; f (k)
)

≤ T
(

r, f (k)
)

− T (r, f) +Np+k(r, 0; f) + S(r, f),(2.1)

Np

(

r, 0; f (k)
)

≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.2)

Lemma 3. [1] Let F , G be two non-constant meromorphic functions sharing
(1, 2), (∞, k) where 0 ≤ k < ∞ and H 6≡ 0. Then

(i) T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G)−m(r, 1;G)−N
(3
E (r, 1;F )−NL(r, 1;G) + S(r, F )

+ S(r,G);
(ii) T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G)−m(r, 1;F )−N
(3
E (r, 1;G)−NL(r, 1;F ) + S(r, F )

+ S(r,G).

Lemma 4. [5, 13] Let f be a transcendental meromorphic function, and let
a1(z), a2(z) be two distinct meromorphic functions such that T (r, ai(z)) =
S(r, f), i = 1, 2. Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 5. Let f and g be two rational (transcendental) meromorphic func-
tions and let n(≥ 1), k(≥ 1), m(≥ 0) be three integers. Suppose that F1 =
(fn(f−1)m)(k)

a0+a1z
and G1 =

(gn(g−1)m)(k)

a0+a1z
. If there exist two nonzero constants c1

and c2 such that N(r, c1;F1) = N(r, 0;G1) and N(r, c2;G1) = N(r, 0;F1),
then n ≤ 3k +m+ 5 (n ≤ 3k +m+ 3), where a0, a1 are complex constants
which are not simultaneously zero.

Proof. By the second fundamental theorem of Nevanlinna we have

T (r, F1) ≤ N(r, 0;F1) +N(r,∞;F1) +N(r, c1;F1) + S(r, F1)(2.3)

≤ N(r, 0;F1) +N(r, 0;G1) +N(r,∞;F1) + S(r, F1).

By (2.1), (2.2), (2.3) and Lemma 1 we obtain

(2.4) (n+m)T (r, f)

≤ T (r, F1)−N(r, 0;F1) +Nk+1(r, 0; f
n(f − 1)m) + log r + S(r, f)

≤ N(r, 0;G1) +Nk+1(r, 0; f
n(f − 1)m) +N(r,∞; f) + 2 log r + S(r, f)

≤ Nk+1(r, 0; f
n(f − 1)m) +Nk+1(r, 0; g

n(g − 1)m) +N(r,∞; f)

+ kN(r,∞; g) + 2 log r + S(r, f) + S(r, g)

≤ (k +m+ 2)T (r, f) + (2k +m+ 1)T (r, g) + 2 log r + S(r, f) + S(r, g).
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Similarly, we obtain

(n+m)T (r, g) ≤ (k +m+ 2)T (r, g) + (2k +m+ 1)T (r, f)(2.5)

+ 2 log r + S(r, f) + S(r, g).

Combining (2.4), (2.5) and noting that T (r, f) ≥ log r and T (r, g) ≥ log r
we get

(n− 3k −m− 5){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

which gives n ≤ 3k+m+5. When f and g are transcendental meromorphic
functions then noting that log r = o(1)T (r, f) = o(1)T (r, g) we can prove
the lemma similarly. This completes the proof of the lemma.

Lemma 6. [15] Suppose that f and g be two nonconstant meromorphic
functions. Let

V =

(

F ′

F − 1
−

F ′

F

)

−

(

G′

G− 1
−

G′

G

)

.(2.6)

If F , G share (∞, 0) and V ≡ 0, then F ≡ G.

Lemma 7. Suppose that f and g be two nonconstant meromorphic func-

tions. Let V be given by (2.6), where F = (fn(f−1)m)(k)

z
, G = (gn(g−1)m)(k)

z
,

and n(≥ 1), k(≥ 1), m(≥ 0) are positive integers and suppose that V 6≡ 0.
If f , g share (∞, 0) and F , G share (1, 2), then the poles of F and G are
zeros of V and
(

n+m+ k − 1
)

N(r,∞; f |≥ 1) =
(

n+m+ k − 1
)

N(r,∞; g |≥ 1)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G) + S(r, f) + S(r, g).

Proof. Since f , g share (∞, 0), we note that the order of the possible poles
of F and G are at least n+m+ k. So F , G share (∞, n+m+ k− 1). Now
using the Milloux theorem [5] , p. 55, and Lemma 1, we obtain from the
definition of V that

(2.7) m(r, V ) = S(r, f) + S(r, g).

Thus
(

n+m+ k − 1
)

N(r,∞; f |≥ 1) =
(

n+m+ k − 1
)

N(r,∞; g |≥ 1)

=
(

n+m+ k − 1
)

N
(

r,∞;F |≥ n+m+ k
)

≤ N(r, 0;V ) ≤ T (r, V ) +O(1)

≤ N(r,∞;V ) +m(r, V ) +O(1)

≤ N(r,∞;V ) + S(r, f) + S(r, g)

≤ N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G)

+S(r, f) + S(r, g).

This completes the proof of the lemma.
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Lemma 8. Let f and g be two nonconstant meromorphic functions such
that

Θ(∞, f) + Θ(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then

fn(af + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lem-
ma 6 [9].

3. Proof of the Theorem

Proof of Theorem 2. Let F (z) and G(z) be given as in Lemma 7. Then
F (z), G(z) are rational meromorphic functions that share (1, 2) and (∞, 0).
So

N∗(r,∞;F,G) ≤ N(r,∞;F |≥ n+m+ k) = N(r,∞; f |≥ 1).

If possible, we suppose that H 6≡ 0. Then F 6≡ G. So, from Lemma 6 we
have V 6≡ 0. From Lemma 1 and (2.1) we obtain

(3.1) N2(r, 0;F ) ≤ N2

(

r, 0; (fn(f − 1)m)(k)
)

+ S(r, f)

≤ T
(

r, (fn(f−1)m)(k)
)

−(n+m)T (r, f)+Nk+2(r, 0; f
n(f−1)m)+S(r, f)

≤ T (r, F )−(n+m)T (r, f)+Nk+2(r, 0; f
n(f−1)m)+log r+S(r, f).

In a similar way we obtain

N2(r, 0;G) ≤ T (r,G)− (n+m)T (r, g) +Nk+2(r, 0; g
n(g − 1)m)(3.2)

+ log r + S(r, g).

Again by (2.2) we have

N2(r, 0;F ) ≤ kN(r,∞; f) +Nk+2(r, 0; f
n(f − 1)m) + S(r, f).(3.3)

N2(r, 0;G) ≤ kN(r,∞; g) +Nk+2(r, 0; g
n(g − 1)m) + S(r, g).(3.4)

From (3.1) and (3.2) we get

(3.5) (n+m){T (r, f) + T (r, g)}

≤ T (r, F ) + T (r,G) +Nk+2(r, 0; f
n(f − 1)m)

+Nk+2(r, 0; g
n(g − 1)m)−N2(r, 0;F )−N2(r, 0;G)

+ 2 log r + S(r, f) + S(r, g).
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Then using Lemma 1, Lemma 3, (3.3) and (3.4) we obtain from (3.5)

(n+m){T (r, f) + T (r, g)}

≤ N2(r, 0;F ) +N2(r, 0;G) + 2N(r,∞;F ) + 2N(r,∞;G)

+ 2N∗(r,∞;F,G) +Nk+2(r, 0; f
n(f − 1)m)

+Nk+2(r, 0; g
n(g − 1)m)−NL(r, 1;F )−NL(r, 1;G)

+ 2 log r + S(r, f) + S(r, g)

≤ 2Nk+2(r, 0; f
n(f − 1)m) + 2Nk+2(r, 0; g

n(g − 1)m)

+ (k + 2)N(r,∞; f) + (k + 2)N(r,∞; g) + 2N∗(r,∞;F,G)

−N∗(r, 1;F,G) + 6 log r + S(r, f) + S(r, g)

≤ 2(k +m+ 2){T (r, f) + T (r, g)}+ (k + 2)(N(r,∞; f)

+N(r,∞; g)) + 2N∗(r,∞;F,G)−N∗(r, 1;F,G)

+ 6 log r + S(r, f) + S(r, g).

Using Lemma 2, Lemma 7 and noting that f and g are rational functions
we obtain from above

(n− 3k −m− 9){T (r, f) + T (r, g)}

≤
2

n+m+ k − 1

[

N(r, 0;F ) +N(r, 0;G) +N∗(r, 1;F,G)
]

−N∗(r, 1;F,G) + S(r, f) + S(r, g)

≤
2

n+m+ k − 1
[Nk+1(r, 0; f

n(f − 1)m) + kN(r,∞; f)

+Nk+1(r, 0; g
n(g − 1)m) + kN(r,∞; g) +N∗(r, 1;F,G)]

−N∗(r, 1;F,G) + S(r, f) + S(r, g).

From this we obtain

[(n− 3k −m− 9)(n+m+ k − 1)− (4k + 2m+ 2)]{T (r, f) + T (r, g)}

≤ S(r, f) + S(r, g),

which leads to a contradiction as n > 3k +m+ 9.
We now assume that H ≡ 0. That is

(

F ′′

F ′
−

2F ′

F − 1

)

−

(

G′′

G′
−

2G′

G− 1

)

= 0.

Integrating both sides of the above equality twice we get

1

F − 1
=

A

G− 1
+B,(3.6)

where A( 6= 0) and B are constants.
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Now we consider the following three cases.

Case 1. Let B 6= 0 and A = B. Then from (3.6) we get

1

F − 1
=

BG

G− 1
.(3.7)

If B = −1, then from (3.7) we obtain

FG = 1, i.e.,

(fn(f − 1)m)(k)(gn(g − 1)m)(k) = z2.(3.8)

We now consider the following two subcases.

Subcase (i). Let m = 0. Then from (3.8) we have

(fn)(k)(gn)(k) = z2.

Then we obtain f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three
constants satisfying 4n2(c1c2)

nc2 = −1 (see P. 15 [10]).

Subcase (ii). Next we assume that m ≥ 1. From our assumption it is
clear that f 6= 0 and f 6= ∞. Let f(z) = eα, where α is a nonconstant entire
function. Then by induction we get

(fn+m)(k) = tm(α′, α′′, . . . , α(k))e(n+m)α,(3.9)

.

(−1)i mCi(f
n+m−i)(k) = tm−i(α

′, α′′, . . . , α(k))e(n+m−i)α,(3.10)

.

(−1)m(fn)(k) = t0(α
′, α′′, . . . , α(k))enα,(3.11)

where ti(α
′, α′′, . . . , α(k)) (i = 0, 1, . . . ,m) are differential polynomials in α′,

α′′, . . . , α(k). Obviously

ti(α
′, α′′, . . . , α(k)) 6≡ 0

for i = 0, 1, 2, . . . ,m, and

(fn(f − 1)m)(k) 6= 0.

From (3.9)–(3.11) we obtain

(3.12) N(r, 0; tmemα(z) + · · ·+ tm−ie
(m−i)α(z) + · · ·+ t0)

≤ N(r, 0; z2) = S(r, f).

Since α is an entire function, we obtain T (r, α(j)) = S(r, f) for j = 1, 2, . . . , k.
Hence T (r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. So from (3.12), Lemmas 1 and
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4 we obtain

mT (r, f) = T (r, tmemα + · · ·+ tm−ie
(m−i)α + · · ·+ t1e

α) + S(r, f)

≤ N(r, 0; tmemα + · · ·+ tm−ie
(m−i)α + · · ·+ t1e

α)

+N(r, 0; tmemα + · · ·+ tm−ie
(m−i)α + · · ·+ t1e

α + t0) + S(r, f)

≤ N(r, 0; tme(m−1)α + · · ·+ tm−ie
(m−i−1)α + · · ·+ t1) + S(r, f)

≤ (m− 1)T (r, f) + S(r, f),

which is a contradiction.

If B 6= −1, from (3.7), we have 1
F

= BG
(1+B)G−1 and so N(r, 1

1+B
;G) =

N(r, 0;F ). Now, from the second fundamental theorem of Nevanlinna, we
get

T (r,G) ≤ N(r, 0;G) +N

(

r,
1

1 +B
;G

)

+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G).

Using (2.1) and (2.2) we obtain from above inequality

T (r,G) ≤ Nk+1(r, 0; f
n(f − 1)m) + kN(r,∞; f) + T (r,G) +Nk+1(r, 0; g

n(g − 1)m)

− (n+m)T (r, g) +N(r,∞; g) + 2 log r + S(r, g).

Hence

(n+m)T (r, g) ≤ (2k +m+ 2)T (r, f) + (k +m+ 3)T (r, g) + S(r, g).

In a similar way we can obtain

(n+m)T (r, f) ≤ (k +m+ 3)T (r, f) + (2k +m+ 2)T (r, g) + S(r, g).

Thus, combining the above two, we obtain

(n− 3k −m− 5){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

a contradiction as n > 3k +m+ 9.

Case 2. Let B 6= 0 and A 6= B. Then from (3.6) we get F =
(B+1)G−(B−A+1)

BG+(A−B) and so N(r, B−A+1
B+1 ;G) = N(r, 0;F ). Proceeding as in Sub-

case (i) we obtain a contradiction.

Case 3. Let B = 0 and A 6= 0. Then from (3.6) F = G+A−1
A

and

G = AF − (A − 1). If A 6= 1, we have N(r, A−1
A

;F ) = N(r, 0;G) and

N(r, 1 − A;G) = N(r, 0;F ). So, by Lemma 5, we have n ≤ 3k + m + 5, a
contradiction. Thus A = 1 and hence F = G. That is

[fn(f − 1)m](k) = [gn(g − 1)m](k).

Integrating we get

[fn(f − 1)m](k−1) = [gn(g − 1)m](k−1) + ck−1,
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where ck−1 is a constant. If ck−1 6= 0, from Lemma 5 we obtain n ≤ 3k +
m+ 2, a contradiction. Hence ck−1 = 0. Repeating k-times, we obtain

fn(f − 1)m = gn(g − 1)m.(3.13)

Now we consider following three subcases.

Subcase (i). Let m = 0. Then fn = gn and so f ≡ tg for a constant t
such that tn = 1.

Subcase (ii). Let m = 1. Then from (3.13) we have

fn(f − 1) ≡ gn(g − 1).(3.14)

So by Lemma 8 we obtain f ≡ g.

Subcase (iii). Let m ≥ 2. Then from (3.13) we obtain

(3.15) fn[fm + · · ·+ (−1)i mCif
m−i + · · ·+ (−1)m] = gn[gm

+ · · ·+ (−1)i mCig
m−i + · · ·+ (−1)m].

Let h = f
g
. If h is a constant, then substituting f = gh in (3.15) we obtain

gn+m(hn+m − 1) + · · ·+ (−1)i mCig
n+m−i(hn+m−i − 1)

+ · · ·+ (−1)mgn(hn − 1) = 0,

which imply h = 1. Hence f ≡ g.
If h is not a constant, then from (3.15) we can say that f and g satisfy

the algebraic equation R(f, g) = 0, where

R(x, y) = xn(x− 1)m − yn(y − 1)m.

This completes the proof of the theorem.

Proof of Theorem 1. Let F (z) and G(z) be given as in Lemma 7. Then
F (z), G(z) are transcendental meromorphic functions that share (1, 2) and
(∞, 0). Proceeding in a similar way as in the proof of Theorem 2 and noting
that log r = o{T (r, f)}, we obtain the conclusions of the theorem.
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