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WEIGHTED COMPOSITION OPERATORS
FROM WEIGHTED HARDY SPACES

TO WEIGHTED-TYPE SPACES

Abstract. The boundedness and compactness of the weighted composition operator
from weighted Hardy spaces to weighted-type spaces are studied in this paper.

1. Introduction
Let D be the open unit disk in the complex plane C. We denote by H(D)

the class of all holomorphic functions on D. Let ϕ be an analytic self-map
of D. The composition operator Cϕ is defined by

(Cϕf)(z) = f(ϕ(z)), z ∈ D, f ∈ H(D).
It is interesting to provide a function theoretic characterization of when
ϕ induces a bounded or compact composition operator between spaces of
analytic functions. The book [2] contains plenty of information on this topic.

Let ϕ be an analytic self-map of D and u ∈ H(D). The weighted compo-
sition operator uCϕ on H(D) is given by (uCϕf)(z) = u(z)f(ϕ(z)), z ∈ D,
f ∈ H(D).

Throughout this paper, we assume that {β(n)}∞n=0 is a sequence of pos-
itive numbers such that

β(0) = 1, lim inf
n→∞

β(n)1/n = 1 and
∞∑
n=0

1/(β(n))2 =∞.

The weighted Hardy space, denoted by H2(β), is defined to be the set of all
f(z) =

∑∞
n=0 anz

n ∈ H(D) such that

‖f‖2H2(β) =
∞∑
n=0

|an|2(β(n))2 <∞.
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It is clear that H2(β) is a Hilbert space on D with the inner product given
by

〈f, g〉 =
∞∑
n=0

anbn(β(n))
2,

where f(z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n are in H2(β). Some well-
known special cases of this type of Hilbert space are: the Hardy space
H2 with weights β(n) ≡ 1, the Bergman space A2 with weights β(n) =
(n + 1)−1/2, and the Dirichlet space D2 with weights β(n) = (n + 1)1/2 for
all n. See [2] for more details of the weighted Hardy space.

A positive continuous function µ on [0, 1) is called normal, if there exist
positive numbers α and β, 0 < α < β, and δ ∈ [0, 1) such that (see [11])

µ(r)

(1− r)α
is decreasing on [δ, 1) and lim

r→1

µ(r)

(1− r)α
= 0;

µ(r)

(1− r)β
is increasing on [δ, 1) and lim

r→1

µ(r)

(1− r)β
=∞.

An f ∈ H(D) is said to belong to the weighted-type space, denoted by
H∞µ = H∞µ (D), if ‖f‖H∞

µ
= supz∈D µ(|z|) |f(z)| < ∞, where µ is normal on

[0, 1). H∞µ is a Banach space with the norm ‖·‖H∞
µ
. The little weighted-type

space, denoted by H∞µ,0, is the subspace of H∞µ consisting of those f ∈ H∞µ
such that lim|z|→1 µ(|z|)|f(z)| = 0. When µ(r) = (1 − r2)α, the induced
spaces H∞µ and H∞µ,0 become the Bers space H∞α and little Bers space H∞α,0,
respectively (see [6]).

Composition operators and weighted composition operators on weighted-
type spaces have been studied, for example, in [1, 3, 6, 9, 10]. For the
case of the unit ball, the problem has already been treated in [4, 22, 24].
Weighted composition operators from some function spaces (such as gen-
eralized weighted Bergman space, mixed norm space, F (p, q, s) space and
Bloch-type space) to weighted type space H∞µ in the unit ball were studied
in [5, 7, 8, 12–16, 18, 23].

In this paper, we study the weighted composition operator from the
weighted Hardy space H2(β) to spaces H∞µ and H∞µ,0. Some necessary
and sufficient conditions, for the weighted composition operator uCϕ to be
bounded and compact, are given. As corollaries, we obtain the character-
izations of the weighted composition operator from the Hardy space, the
Bergman space and the Dirichlet space to spaces H∞µ and H∞µ,0.

Throughout the paper, constants are denoted by C, they are positive and
may not be the same in every occurrence.
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2. Main results and proofs
In this section, we give our main results and their proofs. Before stating

these results, we need some auxiliary results, which are incorporated in the
lemmas which follow.

Lemma 1. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then uCϕ : H2(β) → H∞µ is compact if
and only if uCϕ : H2(β) → H∞µ is bounded and for any bounded sequence
(fk)k∈N in H2(β) which converges to zero uniformly on compact subsets of
D as k →∞, we have ‖uCϕfk‖H∞

µ
→ 0 as k →∞.

The proof of Lemma 1 follows by standard arguments (see, for example,
Proposition 3.11 of [2]). Hence, we omit the details.

Lemma 2. [9] Assume that µ is normal. A closed set K in H∞µ,0 is compact
if and only if it is bounded and satisfies

lim
|z|→1

sup
f∈K

µ(|z|)|f(z)| = 0.

Lemma 3. Let f ∈ H2(β). Then

|f(z)| ≤ ‖f‖H2(β)

√√√√ ∞∑
n=0

|z|2n
β2(n)

.

Proof. For w ∈ D, define Kw(z) =
∑∞

n=0
wn

β2(n)
zn. Then Kw ∈ H2(β). Let

f(z) =
∑∞

n=0 anz
n. From [2, page 16], we see that

f(w) = 〈f,Kw〉 =
∞∑
n=0

anw
n

β2(n)
β2(n) =

∞∑
n=0

anw
n(1)

and

‖Kw‖H2(β) =

√√√√ ∞∑
n=0

|w|2n
β4(n)

(β2(n)) =

√√√√ ∞∑
n=0

|w|2n
β2(n)

<∞.(2)

Then the desired result follows from (1) and (2).

Now we are in a position to state and prove our main results.

Theorem 1. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then uCϕ : H2(β) → H∞µ is bounded if
and only if

M := sup
z∈D

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

<∞.(3)
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Proof. Assume that uCϕ : H2(β)→ H∞µ is bounded. For a ∈ D, set

fa(z) =

∞∑
n=0

anzn

β2(n)

( ∞∑
n=0

|a|2n

β2(n)

)−1/2
.(4)

It is easy to see that fa ∈ H2(β) and supa∈D ‖fa‖H2(β) = 1. For any b ∈ D,
we have

∞ > ‖uCϕfϕ(b)‖H∞
µ

= sup
z∈D

µ(|z|)|(uCϕfϕ(b))(z)|(5)

= sup
z∈D

µ(|z|)|u(z)||fϕ(b)(ϕ(z))|

≥ µ(|b|)|u(b)|

√√√√ ∞∑
n=0

|ϕ(b)|2n
β2(n)

,

which implies (3).
Conversely, assume that (3) holds. Then, for any f ∈ H2(β),

µ(|z|)|(uCϕf)(z)| = µ(|z|)|u(z)||f(ϕ(z))|(6)

≤ µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

‖f‖H2(β).

Taking the supremum in (6) over D and using the condition (3), the bound-
edness of the operator uCϕ : H2(β)→ H∞µ follows, as desired.

Theorem 2. Assume that u ∈ H(D), ϕ is an analytic self-map of D and µ
is a normal function on [0, 1). Then uCϕ : H2(β)→ H∞µ is compact if and
only if u ∈ H∞µ and

lim
|ϕ(z)|→1

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

= 0.(7)

Proof. Assume that uCϕ : H2(β) → H∞µ is compact. Then it is obvious
that uCϕ : H2(β) → H∞µ is bounded. Taking the function f(z) = 1 ∈
H2(β), we see that u ∈ H∞µ . Let (ϕ(zk))k∈N be a sequence in D such that
limk⇀∞ |ϕ(zk)| = 1 (if such a sequence does not exist (7) is automatically
satisfied). Set

fk(z) =
∞∑
n=0

ϕ(zk)
n
zn

β2(n)

( ∞∑
n=0

|ϕ(zk)|2n

β2(n)

)−1/2
, k ∈ N.(8)

It is easy to see that supk∈N ‖fk‖H2(β) < ∞. Moreover, fk → 0 uniformly
on compact subsets of D as k →∞. By Lemma 1,

lim
k→∞

‖uCϕfk‖H∞
µ

= 0.(9)
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We have

‖uCϕfk‖H∞
µ

= sup
z∈D

µ(|z|)|u(z)fk(ϕ(z))|(10)

≥ µ(|zk|)|u(zk)|

√√√√ ∞∑
n=0

|ϕ(zk)|2n
β2(n)

,

which together with (9) implies that

lim
k→∞

µ(|zk|)|u(zk)|

√√√√ ∞∑
n=0

|ϕ(zk)|2n
β2(n)

= 0.

This proves that (7) holds.
Conversely, assume that u ∈ H∞µ and (7) holds. From this it follows that

(3) holds, hence uCϕ : H2(β) → H∞µ is bounded. In order to prove that
uCϕ : H2(β) → H∞µ is compact, according to Lemma 1, it suffices to show
that if {fk}k∈N is a bounded sequence in H2(β) converging to 0 uniformly
on compact subsets of D, then limk→∞ ‖uCϕfk‖H∞

µ
= 0.

Let {fk}k∈N be a bounded sequence in H2(β) such that fk → 0 uniformly
on compact subsets of D as k → ∞. By (7), we have that for any ε > 0,
there is a constant δ ∈ (0, 1), such that

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

< ε(11)

whenever δ < |ϕ(z)| < 1. Let K = {w ∈ D : |w| ≤ δ}. Inequality (11) along
with the fact that u ∈ H∞µ implies

‖uCϕfk‖H∞
µ

= sup
z∈D

µ(|z|)|(uCϕfk)(z)| = sup
z∈D

µ(|z|)|u(z)fk(ϕ(z))|

≤
(

sup
{z∈D: |ϕ(z)|≤δ}

+ sup
{z∈D: δ≤|ϕ(z)|<1}

)
µ(|z|)|u(z)||fk(ϕ(z))|

≤ ‖u‖H∞
µ

sup
w∈K
|fk(w)|

+ sup
{z∈D: δ≤|ϕ(z)|<1}

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

‖fk‖H2(β)

≤ ‖u‖H∞
µ

sup
w∈K
|fk(w)|+ Cε.

Observe that K is a compact subset of D, so that limk→∞ supw∈K |fk(w)|
= 0. Hence

lim sup
k→∞

‖uCϕfk‖H∞
µ
≤ Cε.
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Since ε is an arbitrary positive number, it follows that the last limit is
equal to zero. Therefore, uCϕ : H2(β) → H∞µ is compact. The proof is
completed.

Theorem 3. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then uCϕ : H2(β) → H∞µ,0 is bounded if
and only if uCϕ : H2(β)→ H∞µ is bounded and u ∈ H∞µ,0.

Proof. First assume that uCϕ : H2(β)→ H∞µ,0 is bounded. Then, it is clear
that uCϕ : H2(β) → H∞µ is bounded. Taking the function f(z) = 1, we
obtain that u ∈ H∞µ,0.

Conversely, assume that uCϕ : H2(β) → H∞µ is bounded and u ∈ H∞µ,0.
Then, for each polynomial p(z), we have that

µ(|z|)|(uCϕp)(z)| ≤ µ(|z|)|u(z)p(ϕ(z))|,

from which it follows that uCϕp ∈ H∞µ,0. Since the set of all polynomials is
dense inH2(β) (see [2]), we have that for every f ∈ H2(β) there is a sequence
of polynomials {pk}k∈N such that ‖f − pk‖H2(β) → 0, as k →∞. Hence

‖uCϕf − uCϕpk‖H∞
µ
≤ ‖uCϕ‖H2(β)→H∞

µ
‖f − pk‖H2(β) → 0

as k → ∞, since the operator uCϕ : H2(β) → H∞µ is bounded. Since
H∞µ,0 is a closed subset of H∞µ , we obtain uCϕ(H

2(β)) ⊂ H∞µ,0. Therefore
uCϕ : H2(β)→ H∞µ,0 is bounded.

Theorem 4. Assume that u ∈ H(D), ϕ is an analytic self-map of D and µ
is a normal function on [0, 1). Then the following statements are equivalent.

(i) uCϕ : H2(β)→ H∞µ,0 is compact;
(ii) uCϕ : H2(β)→ H∞µ is compact and u ∈ H∞µ,0;
(iii) u ∈ H∞µ,0 and

(12) lim
|ϕ(z)|→1

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

= 0;

(iv) (13) lim
|z|→1

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

= 0.

Proof. (i)⇒(ii). Assume that uCϕ : H2(β) → H∞µ,0 is compact. Then it is
clear that uCϕ : H2(β)→ H∞µ is compact. In addition, taking the function
f(z) = 1 we get u ∈ H∞µ,0.

(ii)⇒(iii). This implication follows from Theorem 2.
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(iii)⇒(iv). Suppose that u ∈ H∞µ,0 and (12) holds. From (12) we see that
for every ε > 0, there exists a δ ∈ (0, 1), such that

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

< ε

when δ < |ϕ(z)| < 1. From the assumption u ∈ H∞µ,0, we have that for the
above ε, there exists an r ∈ (0, 1) such that

µ(|z|)|u(z)| < ε√∑∞
n=0

δ2n

β2(n)

when r < |z| < 1. Therefore, if r < |z| < 1 and δ < |ϕ(z)| < 1, we obtain

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

< ε.(14)

If |ϕ(z)| ≤ δ and r < |z| < 1, we have that

µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

≤ µ(|z|)|u(z)|

√√√√ ∞∑
n=0

δ2n

β2(n)
< ε.(15)

Combing (14) with (15) we get (13).
(iv)⇒(i). Let f ∈ H2(β). From the proof of Theorem 1, we have that

µ(|z|)|(uCϕf)(z)| ≤ µ(|z|)|u(z)|

√√√√ ∞∑
n=0

|ϕ(z)|2n
β2(n)

‖f‖H2(β).

Taking the supremum in the above inequality over all f ∈ H2(β) such that
‖f‖H2(β) ≤ 1, then letting |z| → 1, by (13) it follows that

lim
|z|→1

sup
‖f‖H2(β)≤1

µ(|z|)|(uCϕ(f))(z)| = 0.

From this and by employing Lemma 2, we see that uCϕ : H2(β) → H∞µ,0 is
compact. The proof is completed.

Let β(n) ≡ 1. Then
∞∑
n=0

|ϕ(z)|2n

β2(n)
=

∞∑
n=0

|ϕ(z)|2n =
1

1− |ϕ(z)|2
.

From Theorems 1–4, we have the following corollary.

Corollary 1. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then the following statements hold.
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(i) The operator uCϕ : H2 → H∞µ is bounded if and only if

sup
z∈D

µ(|z|)|u(z)|√
1− |ϕ(z)|2

<∞.

(ii) The operator uCϕ : H2 → H∞µ,0 is bounded if and only if uCϕ : H2 →
H∞µ is bounded and u ∈ H∞µ,0.

(iii) The operator uCϕ : H2 → H∞µ is compact if and only if u ∈ H∞µ and

lim
|ϕ(z)|→1

µ(|z|)|u(z)|√
1− |ϕ(z)|2

= 0.

(iv) The operator uCϕ : H2 → H∞µ,0 is compact if and only if

lim
|z|→1

µ(|z|)|u(z)|√
1− |ϕ(z)|2

= 0.

Remark 1. Corollary 1(i) is a particular case of Theorem 1 in [17], as well
as of its generalization in [18].

Let β(n) = (n+ 1)−1/2. Then
∞∑
n=0

|ϕ(z)|2n

β2(n)
=
∞∑
n=0

(n+ 1)|ϕ(z)|2n � 1

(1− |ϕ(z)|2)2
.

From Theorems 1–4, we have the following corollary.

Corollary 2. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then the following statements hold.

(i) The operator uCϕ : A2 → H∞µ is bounded if and only if

sup
z∈D

µ(|z|)|u(z)|
1− |ϕ(z)|2

<∞.

(ii) The operator uCϕ : A2 → H∞µ,0 is bounded if and only if uCϕ : A2 →
H∞µ is bounded and u ∈ H∞µ,0.

(iii) The operator uCϕ : A2 → H∞µ is compact if and only if u ∈ H∞µ and

lim
|ϕ(z)|→1

µ(|z|)|u(z)|
1− |ϕ(z)|2

= 0.

(iv) The operator uCϕ : A2 → H∞µ,0 is compact if and only if

lim
|z|→1

µ(|z|)|u(z)|
1− |ϕ(z)|2

= 0.

Remark 2. Corollary 2(i) is a particular case of a result in [14], as well as
of its generalization in [19].
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Let β(n) = (n+ 1)1/2. Then
∞∑
n=0

|ϕ(z)|2n

β2(n)
=
∞∑
n=0

|ϕ(z)|2n

n+ 1
� ln

e

1− |ϕ(z)|2
.

From Theorems 1–4, we have the following corollary.

Corollary 3. Assume that u ∈ H(D), ϕ is an analytic self-map of D and
µ is a normal function on [0, 1). Then the following statements hold.

(i) The operator uCϕ : D2 → H∞µ is bounded if and only if

sup
z∈D

µ(|z|)|u(z)|
√

ln
e

1− |ϕ(z)|2
<∞.

(ii) The operator uCϕ : D2 → H∞µ,0 is bounded if and only if uCϕ : D2 →
H∞µ is bounded and u ∈ H∞µ,0.

(iii) The operator uCϕ : D2 → H∞µ is compact if and only if u ∈ H∞µ and

lim
|ϕ(z)|→1

µ(|z|)|u(z)|
√

ln
e

1− |ϕ(z)|2
= 0.

(iv) The operator uCϕ : D2 → H∞µ,0 is compact if and only if

lim
|z|→1

µ(|z|)|u(z)|
√
ln

e

1− |ϕ(z)|2
= 0.

Remark 3. Corollary 3(i) is a particular case of Theorem 1 in [20], as well
as of its generalization in [21].
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