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A CLASS OF UNIVALENT FUNCTIONS INVOLVING
A DIFFERENTIO-INTEGRAL OPERATOR

Abstract. This paper focuses on a generalized linear operator Im which is a com-
bination of both differential and integral operators. Involving this operator, a class
TSk(I

m;α, β) (⊆ TS(Im;α, β)) with respect to k-symmetric points is defined. Results
based on coefficient inequalities and bounds for this class are obtained. Various integral
representations and some consequent results for TS(Im;α, β) class are also determined.
Further, results on partial sums are discussed.

1. Introduction
Let S denote the class of functions of the form

(1.1) f(z) = z +

∞∑
n=2

an z
n,

which are analytic and univalent in the unit disk U = {z ∈ C : |z| < 1} . Let
T denote the subclass of S consisting of functions, whose coefficients from
the second one are real and non-positive, of the form

(1.2) f(z) = z −
∞∑
n=2

|an| zn.

The convolution ∗ of two power series
∞∑
n=1

an z
n and

∞∑
n=1

bn z
n is defined by

∞∑
n=1

an z
n ∗

∞∑
n=1

bn z
n =

∞∑
n=1

anbn z
n.

Based on the work of Silverman [16] on the class T of univalent functions,
further studies involve various types of linear operators. We involve in this
study, for some m ∈ N0 = {0, 1, 2, ...} , a generalized linear operator Im ≡
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Im(A,B, µ, λ) : T → T which is defined for A ≥ 0, B ≥ 0, µ ≥ 0 and
λ > −1, by

(1.3) Im(A,B, µ, λ)f(z) = φm(A,B, µ)(z) ∗Rλf(z),

where

(1.4) Rλf(z) = z −
∞∑
n=2

(λ+ 1)n−1
(1)n−1

|an| zn

is the Ruscheweyh derivative [10] of the function f ∈ T of the form (1.2)
with the Pochammer symbol (x)n and

φm(A,B, µ)(z) = z +

∞∑
n=2

(
1 + A

1+µ(n− 1) + µ
)m−1

(1 +B(n− 1))m
zn.

The operator Im is recently considered in [4].
Let, for A ≥ 0, µ ≥ 0, an integral operator IA,µ:T → T be defined by

IA,µf(z) =


(1 + µ) z1−

1+µ
A

A

z�

0

t
1+µ
A
−2 f(t), A 6= 0,

f(z), A = 0

and a differential operator DA,µ : T → T be defined by

DA,µf(z) =
A

1 + µ
z(2−

1+µ
A

)
(
z(

1+µ
A
−1) f(z)

)′

.

We denote IA,0 ≡ IA.

It is observed that the operator Im is a differentio-integral operator and
is a combination of the operators IA,µ and DA,µ defined on the Ruscheweyh
derivative Rλf(z). We may express it as follows

I0f(z) ≡ IA,µR
λf(z) =

(1 + µ) z1−
1+µ
A

A

z�

0

t
1+µ
A
−2 Rλf(t), A 6= 0,

= Rλf(z), A = 0,

I1f(z) ≡ IB J1f(z) =
z1−

1
B

B

z�

0

t
1
B
−2J1f(t), B 6= 0,

= J1f(z), B = 0,

I2f(z) ≡ IBIBJ
2f(z) = I2B J2f(z), B 6= 0,

= J2f(z), B = 0,
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hence, for m ≥ 2,

Imf(z) ≡ IBIB...IB︸ ︷︷ ︸
m times

Jmf(z) = ImB Jmf(z), B 6= 0(1.5)

= Jmf(z), B = 0

where for some m ∈ N0, the operator Jm ≡ Jm (A,µ, λ) = Im(A, 0, µ, λ) is
defined by

J0f(z) = I0f(z), J1f(z) = Rλf(z), and for m ≥ 2,(1.6)

Jmf(z) =

{
DA,µJ

m−1f(z), A 6= 0,

Rλf(z), A = 0.

Let for some k ∈ N, εk = exp
(
2πi
k

)
, and for f ∈ T of the form (1.2),

(1.7) fk(z) =
1

k

k−1∑
j=0

ε−jk f(εjkz) = z −
∞∑
n=2

φkn |an| zn ∈ T,

where φ1n = 1, and

φkn =
1

k

k−1∑
j=0

ε
j(n−1)
k =

{
1, n− 1 = lk, l ∈ Z,
0, n− 1 = lk + p, p = 1, 2, 3, . . . , k − 1.

Points εjk z for j = 1, 2, . . . , k−1 (k ∈ N− {1}) are called k-symmetric points.
Clearly f1(z) = f(z) and f2(z) =

f(z)−f(−z)
2 .

Thus, for f ∈ T of the form (1.2), we write for convenience, the series
expansion of (1.3) as

(1.8) Imf(z) = z −
∞∑
n=2

Pn |an| zn,

where

(1.9) Pn =

(
1 + A

1+µ(n− 1)
)m−1

(1 +B(n− 1))m
(λ+ 1)n−1
(1)n−1

and for fk ∈ T of the form (1.7),

Imfk(z) = z −
∞∑
n=2

Pn φ
k
n |an| zn.

We also note that for m ∈ N, the operator Jm defined by (1.6) includes
various earlier defined operators, some of them based on the multiplier Pn
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are as follows:

Jm ≡ Rλ if Pn =
(λ+ 1)n−1
(1)n−1

,(1.10)

Jm ≡ Rλ

m,A if Pn = (1 +A(n− 1))m−1
(λ+ 1)n−1
(1)n−1

,

Jm ≡ Rλ,µ

m if Pn =

(
n+ µ

1 + µ

)m−1 (λ+ 1)n−1
(1)n−1

,

Jm ≡ Jm−1A,µ if Pn =

(
1 +

A

1 + µ
(n− 1)

)m−1
.

Operator Rλ

m,A is called the generalized Ruscheweyh derivative operator
whereas Rλ

1,A ≡ R
λ

m,0 ≡ Rλ is the Ruscheweyh derivative operator [10].
Operators Rλ

m,A, R
λ

m,1 and R
λ,µ

m are earlier studied in [15] ([12]), [13] and
[14] respectively by Shaqsi and Darus. Further, R0,µ

m ≡ R
µ

m is studied by
Flett [8].

Operator Jm−1A,µ is defined in [2] by Lupaş and is introduced by Cătuş [5]
for p-valent functions. Also Jm−1A,0 ≡ S

m−1
A is the generalized Sălăgean oper-

ator defined by Al-Oboudi [3] ([1]) whereas Sm−10 ≡ Sm−1 is the Sălăgean
operator [11] of order m − 1. The operator Jm−11,µ is studied by Cho and
Srivastava [6] ([7]) and Jm−11,1 is studied by Urelgaddi and Somanatha [17].

From the operators Im and Jm defined by (1.3) and (1.6), respectively, we
find an identity operator: I = I0(0, B, µ, 0) ≡ I1(A, 0, µ, 0) ≡ J1(A,µ, 0) ≡
Jm(0, µ, 0) : T → T with If(z) = f(z).

A function f ∈ T is said to be in TSk(I
m;α, β), a class of starlike

functions of order α (0 ≤ α < 1) and type β (0 < β ≤ 1) with respect to
k-symmetric points involving the operator Im, if and only if for z ∈ U,
Imfk(z) 6= 0,

(1.11)

∣∣∣∣∣∣∣
z(Imf(z))

′

Imfk(z)
− 1

z(Imf(z))
′

Imfk(z)
+ (1− 2α)

∣∣∣∣∣∣∣ < β, z ∈ U.

Further, f ∈ T is said to be in TCk(I
m;α, β), a class of convex functions

of order α (0 ≤ α < 1) and type β (0 < β ≤ 1) with respect to k-symmetric
points involving the operator Im, if and only if zf ′ ∈ TSk(I

m;α, β). De-
note TS1(I

m;α, β) = TS(Im;α, β); TC1(I
m;α, β) = TC(Im;α, β) and

TS2(I
m;α, β) = TSs(I

m;α, β); TC2(I
m;α, β) = TCs(I

m;α, β).

We note that the classes TS(I;α, β) ≡ S∗(α, β) and TC(I;α, β) ≡
C∗(α, β) were studied by Gupta and Jain in [9].
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In this study, involving a generalized linear operator Im which is a
differentio-integral operator, a class TSk(Im;α, β) (⊆ TS(Im;α, β)) with
respect to k-symmetric points of univalent functions belonging to the class
T , is defined. Results based on coefficient inequalities and bounds for this
class are obtained. Various integral representations and some consequent re-
sults are determined for TS(Im;α, β) class. Further, results on partial sums
are discussed for the class TS(Jm;α, β).

2. Coefficient inequalities
We now give results for the class TSk(Im;α, β).

Theorem 1. Let a linear operator Im, under its parametric conditions, be

defined by (1.3). A function f(z) = z −
∞∑
n=2
|an| zn ∈ TSk(Im;α, β) if and

only if

(2.1)
∞∑
n=2

[
n(1 + β)− {1− β (1− 2α)}φkn

]
Pn |an| ≤ 2β (1− α) ,

where Pn is given by (1.9). The result is sharp, for the extremal function
given for some n ≥ 2 by

(2.2) f(z) = z − 2β (1− α)
[n(1 + β)− {1− β (1− 2α)}φkn]Pn

zn.

Proof. Consider for z ∈ U,∣∣z (Imf(z))′ − Imfk(z)∣∣− β∣∣z (Imf(z))′ + (1− 2α) Imfk(z)
∣∣

<
∣∣∣− ∞∑

n=2

(
n− φkn

)
Pn |an| zn−1

∣∣∣
− β

∣∣∣2 (1− α)− ∞∑
n=2

{
n+ (1− 2α)φkn

}
Pn |an| zn−1

∣∣∣
≤
∞∑
n=2

(
n− φkn

)
Pn |an| − 2β (1− α) +

∞∑
n=2

β
{
n+ (1− 2α)φkn

}
Pn |an|

≤ 0,

if (2.1) holds. This proves that the condition (1.11) is true. Hence, f ∈
TSk(I

m;α, β). Conversely, let for z ∈ U, 0 6= Imfk(z) ∈ T,∣∣∣∣∣∣∣
z(Imf(z))

′

Imfk(z)
− 1

z(Imf(z))
′

Imfk(z)
+ (1− 2α)

∣∣∣∣∣∣∣ < β, z ∈ U.
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Since |Re(z)| ≤ |z| , z ∈ U, we have∣∣∣∣∣∣∣Re


z(Imf(z))
′

Imfk(z)
− 1

z(Imf(z))
′

Imfk(z)
+ (1− 2α)


∣∣∣∣∣∣∣ < β.

On choosing such real value of z ∈ U for which z(Imf(z))
′

Imfk(z)
is real and then

taking z → 1−, we get
∞∑
n=2

(
n− φkn

)
Pn |an|

2 (1− α)−
∞∑
n=2
{n+ (1− 2α)φkn}Pn |an|

≤ β,

which proves (2.1). Equality in (2.1) holds for the function given by (2.2).
This proves Theorem 1.

Corollary 1. A function f(z) = z −
∞∑
n=2
|an| zn ∈ TS(Im;α, β) if and

only if

(2.3)
∞∑
n=2

[n(1 + β)− {1− β (1− 2α)}] Pn |an| ≤ 2β(1− α),

where Pn is given by (1.9). The result is sharp, the extremal function is given
for some n ≥ 2 by

f(z) = z − 2β (1− α)
[n(1 + β)− {1− β (1− 2α)}]Pn

zn.

Corollary 2. A function f(z) = z −
∞∑
n=2
|an| zn ∈ TSs(Im;α, β) if and

only if

(2.4)
∞∑
n=2

[
n(1 + β)− {1− β (1− 2α)} {1− (−1)n}

2

]
Pn |an| ≤ 2β(1−α),

where Pn is given by (1.9). The result is sharp, the extremal function is given
for some n ≥ 2 by

f(z) = z − 2β (1− α)[
n(1 + β)− {1− β (1− 2α)} {1−(−1)

n}
2

]
Pn
zn.

Corollary 3. A function f(z) = z −
∞∑
n=2
|an| zn ∈ TSk(Jm;α, β) if and

only if
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(2.5)
∞∑
n=2

[
n(1 + β)− {1− β (1− 2α)}φkn

]
Qn |an| ≤ 2β(1− α),

where

(2.6) Qn =

(
1 +

A

(1 + µ)
(n− 1)

)m−1 (λ+ 1)n−1
(1)n−1

.

The result is sharp, for the extremal function given for some n ≥ 2 by

f(z) = z − 2β (1− α)
[n(1 + β)− {1− β (1− 2α)}φkn]Qn

zn.

Remark 1. Results, similar to Corollaries 1 and 2 can also be obtained
for TS(Jm;α, β) and TSs(Jm;α, β) classes.

Corollary 4. If a function f(z) = z−
∞∑
n=2
|an| zn ∈ TSk(Im;α, β), then

∞∑
n=2

Pn |an| ≤
2β (1− α)

[1 + β (3− 2α)]
,

where Pn is given by (1.9).

Proof. From Theorem 1, we have

(2.7) [2(1 + β)− {1− β (1− 2α)}]
∞∑
n=2

Pn |an|

≤
∞∑
n=2

[
n(1 + β)− {1− β (1− 2α)}φkn

]
Pn |an| ≤ 2β(1− α),

which proves the result.

Theorem 2. Let the linear operator Im under its parametric conditions
along with A

1+µ ≤ B, be defined by (1.3). If a function f ∈ T of the form
(1.2) satisfies

(2.8)
∞∑
n=2

[n(1 + β)− {1− β (1− 2α)}]
(λ+ 1)n−1
(1)n−1

|an|

≤ 2β (1− α) (1 +B)m(
1 + A

1+µ

)m−1 ,

then f ∈ TS(Im;α, β).
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Proof. Since,
∞∑
n=2

[n(1 + β)− {1− β (1− 2α)}] Pn |an|

≤ 1

(1 +B)m

(
1 +

A

1 + µ

)m−1
∞∑
n=2

[n(1 + β)− {1− β (1− 2α)}]
(λ+ 1)n−1
(1)n−1

|an|

≤ 2β (1− α) ,
if (2.3) holds. Hence, by Corollary 1, f ∈ TS(Im;α, β).

3. Bounds

Theorem 3. If a function f(z) = z −
∞∑
n=2
|an| zn ∈ TSk(Im;α, β), then

r − 2β (1− α)
[1 + β (3− 2α)]

r2 ≤ |Imf(z)|(3.1)

≤ r + 2β (1− α)
[1 + β (3− 2α)]

r2, |z| = r < 1.

The bounds are sharp for the function:

(3.2) Imf(z) = z − 2β (1− α)
[1 + β (3− 2α)]

z2, z = ±r (r < 1) .

Proof. From (1.8) and the Corollary 4, we get

|Imf(z)| =
∣∣∣z − ∞∑

n=2

Pn |an| zn
∣∣∣ ≤ |z|+ |z|2 ∞∑

n=2

Pn |an|

≤ r + 2β (1− α)
[1 + β (3− 2α)]

r2.

Similarly, we get the other side of inequality (3.1). Since, equality attains
for the function given by (3.2), the sharpness is verified.

Corollary 5. If a function f(z) = z −
∞∑
n=2
|an| zn ∈ TSk(I

m;α, β),

then Imf maps the disk U onto a domain that contains the disk
{
w : |w| <

1+β
[1+β(3−2α)]

}
.

Corollary 6. If a function f(z) = z−
∞∑
n=2
|an| zn ∈ TSk(Jm;α, β), then

for |z| = r < 1,
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|f(z)| ≤ r + 2β (1− α)(
1 + A

(1+µ)

)m−1
(λ+ 1) [1 + β (3− 2α)]

r2,(3.3)

|f(z)| ≥ r − 2β (1− α)(
1 + A

(1+µ)

)m−1
(λ+ 1) [1 + β (3− 2α)]

r2.(3.4)

The bounds are sharp for the function:

(3.5) f(z) = z − 2β (1− α)(
1 + A

(1+µ)

)m−1
(λ+ 1) [1 + β (3− 2α)]

z2,

z = ±r (r < 1) ,

and the disk U is mapped by f onto a domain that contains the disk:w : |w| <

1− 2β (1− α)(
1 + A

(1+µ)

)m−1
(λ+ 1) [1 + β (3− 2α)]


 .

From (2.1) and (2.3), we have TSk(Im;α, β) ⊆ TS(Im;α, β). We prove
next results for TS(Im;α, β) class.

4. Integral representations

Theorem 4. A function f(z) = z−
∞∑
n=2
|an| zn ∈ TS(Im;α, β) if and only

if

(4.1) Imf(z) = z exp

{
2(1− α)

z�

0

ϕ(t)

(1− tϕ(t))
dt

}
,

where ϕ(z) is analytic and |ϕ(z)| < β, z ∈ U.

Proof. From (4.1), we get[
log

Imf(z)

z

]′
= 2(1− α) ϕ(z)

(1− zϕ(z))
or,

z (Imf(z))
′

Imf(z)
− 1 = 2(1− α) zϕ(z)

(1− zϕ(z))
or,

z(Imf(z))
′

Imf(z) − 1

z(Imf(z))
′

Imf(z) + (1− 2α)
= zϕ(z),
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which proves that f ∈ TS(Im;α, β). Conversely, let

(4.2)
z(Imf(z))

′

Imf(z) − 1

z(Imf(z))
′

Imf(z) + (1− 2α)
= w(z),

where w(z) is analytic in U with w(0) = 0 and |w(z)| < β. So, letting
w(z) = zϕ(z) with |ϕ(z)| < β, z ∈ U, we get the representation (4.1).

Remark 2. Results of Gupta and Jain [9] for the classes S∗(α, β) and
C∗(α, β) follow from our results obtained in Theorems 1, 3 and 4.

Theorem 5. A function f(z) = z−
∞∑
n=2
|an| zn ∈ TS(Im;α, β) if and only

if

(4.3) Imf(z) = exp
z�

0

1 + (1− 2α)w(t)

t (1− w(t))
dt,

where w(z) is analytic and |w(z)| < β, z ∈ U.

Proof. From (4.3), we get for z ∈ U, 0 6= Imf(z),

(log Imf(z))
′
=

1 + (1− 2α)w(z)

z (1− w(z))
, z ∈ U,

which proves

(4.4)
z (Imf(z))

′

Imf(z)
=

1 + (1− 2α)w(z)

1− w(z)
,

and hence,

|w(z)| =

∣∣∣∣∣∣∣
z(Imf(z))

′

Imf(z) − 1

z(Imf(z))
′

Imf(z) + (1− 2α)

∣∣∣∣∣∣∣ < β,

which proves that f ∈ TS(Im;α, β). Similarly, converse part can be proved.

Theorem 6. A function f(z) = z −
∞∑
n=2
|an| zn ∈ TS(Im;α, β) if

(4.5)
z (Imf(z))

′

Imf(z)
≺ 1 + (1− 2α)βz

1− βz
, z ∈ U.
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Proof. Let (4.5) holds, we get by subordination property

z (Imf(z))
′

Imf(z)
=

1 + (1− 2α)w(z)

1− w(z)
,

where w(z) is analytic and |w(z)| < β ≤ 1, z ∈ U. Hence,

|w(z)| =

∣∣∣∣∣∣∣
z(Imf(z))

′

Imf(z) − 1

z(Imf(z))
′

Imf(z) + (1− 2α)

∣∣∣∣∣∣∣ < β,

which proves that f ∈ TS(Im;α, β).

5. Some consequent results

Theorem 7. If a function f(z) = z−
∞∑
n=2
|an| zn ∈ TS(Im;α, β), then for

ζ, |ζ| = 1,

(5.1)
1

z

[
z +Kz2

(1− z)2
∗ Imf(z)

]
6= 0,

where

(5.2) K =
{1− (1− 2α)βζ}

2(1− α)βζ
.

Or, equivalently

(5.3) 1−
∞∑
n=2

[n+ (n− 1)K] Pn |an| zn−1 6= 0,

where Pn is given by (1.9).

Proof. If f ∈ TS(Im;α, β), then we have

z (Imf(z))
′
− Imf(z)

z (Imf(z))
′
+ (1− 2α) Imf(z)

6= βζ

and hence,

1

2(1− α)βζz

{
z (Imf(z))

′
(1 + βζ)− Imf(z) {1− (1− 2α)βζ}

}
6= 0.

On writing

Imf(z) =
z

(1− z)
∗ Imf(z), z (Imf(z))

′
=

z

(1− z)2
∗ Imf(z),
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we get
1

z

[
z

(1− z)2

{
1 +
{1− (1− 2α)βζ} z

2(1− α)βζ

}
∗ Imf(z)

]
6= 0,

which proves (5.1). Further, using the expansions, we get (5.3).

Remark 3. For K given by (5.2) and |z| = r < 1, we see that∣∣∣1− ∞∑
n=2

[n+ (n− 1)K] Pn |an| zn−1
∣∣∣ ≥ 1−

∞∑
n=2

[n+ (n− 1)K] Pn |an| rn−1

> 1−
∞∑
n=2

[n+ (n− 1)K] Pn |an| ≥ 0,

if (2.3) is true and hence, negation (5.3) is verified for the class TS(Im;α, β).

Theorem 8. If a function f(z) = z −
∞∑
n=2
|an| zn ∈ TS(Im;α, β), then

Re

{
z (Imf(z))

′

Imf(z)

}
>

1− (1− 2α)β

1 + β
, z ∈ U.

Proof. Since,

∣∣∣∣z (Imf(z))′Imf(z)
− 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣
−
∞∑
n=2

(n− 1)Pn |an| zn−1

1−
∞∑
n=2

Pn |an| zn−1

∣∣∣∣∣∣∣∣ ≤
∞∑
n=2

(n− 1)Pn |an|

1−
∞∑
n=2

Pn |an|

≤ 2(1− α)β
1 + β

,

if inequality (2.3) holds and hence, we get the result.

6. Partial sums
Let

f1(z) = z, fp(z) = z −
p∑

n=2

|an| zn, p ≥ 2

be the partial sums of functions f ∈ T of the form (1.2).

Theorem 9. If a function f(z) = z −
∞∑
n=2
|an| zn ∈ TS(Jm;α, β), then

Re

(
f(z)

fp(z)

)
> 1− 1

cp+1
,(6.1)

Re

(
fp(z)

f(z)

)
>

cp+1

1 + cp+1
.(6.2)
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Proof. In view of the Remark 1, from Corollary 3, we get

(6.3)
∞∑
n=2

cn |an| ≤ 1,

where

cn =
[n(1 + β)− {1− β (1− 2α)}] Qn

2β (1− α)
,

and Qn is given by (2.6). It is easy to verify that

cn+1 > cn > 1, n ≥ 2.

Hence,

(6.4)
p∑

n=2

|an|+ cp+1

∞∑
n=p+1

|an| ≤
∞∑
n=2

cn |an| ≤ 1.

Set

w1(z) = cp+1

{
f(z)

fp(z)
−
(
1− 1

cp+1

)}
= 1−

cp+1

∞∑
n=p+1

|an| zn−1

1−
p∑

n=2
|an| zn−1

.

With the use of (6.4), we get

∣∣∣∣w1(z)− 1

w1(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

−cp+1

∞∑
n=p+1

|an| zn−1

2− 2
p∑

n=2
|an| zn−1 − cp+1

∞∑
n=p+1

|an| zn−1

∣∣∣∣∣∣∣∣∣
≤

cp+1

∞∑
n=p+1

|an|

2− 2
p∑

n=2
|an| − cp+1

∞∑
n=p+1

|an|
≤ 1,

which yields the result (6.1). Similarly, if

w2(z) = (1 + cp+1)

{
fp(z)

f(z)
−
(

cp+1

1 + cp+1

)}

= 1 +

(1 + cp+1)
∞∑

n=p+1
|an| zn−1

1−
∞∑
n=2
|an| zn−1

.
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Again, with the use of (6.4), we get

∣∣∣∣w2(z)− 1

w2(z) + 1

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

(1 + cp+1)
∞∑

n=p+1
|an| zn−1

2− 2
∞∑
n=2
|an| zn−1 + (1 + cp+1)

∞∑
n=p+1

|an| zn−1

∣∣∣∣∣∣∣∣∣
≤

(1 + cp+1)
∞∑

n=p+1
|an|

2− 2
p∑

n=2
|an| − (cp+1 − 1)

∞∑
n=p+1

|an|
≤ 1,

which yields (6.2). This proves Theorem 9.
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