
DEMONSTRATIO MATHEMATICA
Vol. XLVI No 3 2013

Gopal Datt, Deepak Kumar Porwal

PRODUCT OF WEIGHTED HANKEL
AND WEIGHTED TOEPLITZ OPERATORS

Abstract. In this paper, we discuss some properties of the weighted Hankel operator
Hβ
ψ and describe the conditions on which the weighted Hankel operator Hβ

ψ and weighted
Toeplitz operator T βφ , with φ, ψ ∈ L∞(β) on the space H2(β), β = {βn}n∈Z being a
sequence of positive numbers with β0 = 1, commute. It is also proved that if a non-zero
weighted Hankel operator Hβ

ψ commutes with T βφ , which is not a multiple of the identity,
then Hβ

ψ = µT βφ , for some µ ∈ C.

1. Preliminaries
Let β = {βn}n∈Z be a sequence of positive numbers with β0 = 1. Let

f(z) =
∞∑

n=−∞
anz

n, an ∈ C, be the formal Laurent series (whether or not the

series converges for any values of z). Define ‖f‖β as

‖f‖2β =

∞∑
n=−∞

|an|2βn2.

The space L2(β) consists of all f(z) =
∑∞

n=−∞ anz
n, an ∈ C for which

‖f‖β <∞. The space L2(β) is a Hilbert space with the norm ‖ · ‖β induced
by the inner product 〈

f, g
〉
=

∞∑
n=−∞

an bnβn
2,

for f(z) =
∑∞

n=−∞ anz
n, g(z) =

∑∞
n=−∞ bnz

n. The collection {en(z) =

zn/βn}n∈Z form an orthonormal basis for L2(β).
The collection of all f(z) =

∑∞
n=0 anz

n (formal power series) for which
‖f‖2β=

∑∞
n=0 |an|2βn

2<∞, is denotedbyH2(β). H2(β) is a subspace ofL2(β).

2010 Mathematics Subject Classification: Primary 47B35; Secondary 47B20.
Key words and phrases: Toeplitz operator, Hankel operator, weighted Hankel opera-

tor, weighted Toeplitz operator.



572 G. Datt, D. K. Porwal

Let L∞(β) denotes the set of formal Laurent series φ(z) =
∑∞

n=−∞ anz
n

such that φL2(β) ⊆ L2(β) and there exists some c > 0 satisfying ‖φf‖β
≤ c‖f‖β , for each f ∈ L2(β). For φ ∈ L∞(β), define the norm ‖φ‖∞ as

‖φ‖∞ = inf{c > 0 : ‖φf‖β ≤ c‖f‖β, for all f ∈ L2(β)}.

L∞(β) is a Banach space with respect to ‖ · ‖∞. H∞(β) denotes the set of
formal Power series φ such that φH2(β) ⊆ H2(β).

The study over these spaces is more interesting as well as demandable
because of the tendency of these spaces to cover Bergman spaces, Hardy
spaces and Dirichlet spaces (see [11]). Reference [11] provides a nice survey
over the historical growth, details and applications of these spaces. If βn = 1,
for each n ∈ Z and the functions under considerations are complex-valued
measurable functions defined over the unit cicle T then these spaces coincide
with classical spaces L2(T), H2(T), L∞(T) andH∞(T). In this literature, we
consider the spaces L2(β), H2(β), L∞(β) and H∞(β) under the assumption
that β = {βn}n∈Z is a sequence of positive numbers with β0 = 1, r ≤ βn

βn+1

≤ 1, for n ≥ 0 and r ≤ βn
βn−1

≤ 1, for n ≤ 0, for some r > 0.

2. Motivations and aims
In 1964, Brown and Halmos [1] studied algebraic properties of a class

of operators on the space H2(T) known as Toeplitz operators Tφ = PMφ,
where P is an orthogonal projection of L2(T) onto H2(T). In 1980, Power
[8] studied the Hankel operators Sφ = PJMφ defined on the space H2(T),
where J is the reflection operator. We would prefer the references [8] and
[10] for the readers to get in touch of the study made about these operators
in the past for quite some times.

In [11], Shield made a comprehensive study of the operatorMβ
φ (f 7→ φf)

on L2(β) with the symbol φ ∈ L∞(β).
Let P β : L2(β) → H2(β) be the orthogonal projection of L2(β) onto

H2(β) and Jβ : L2(β) → L2(β) denote the reflection operator defined as
Jβf =

∑∞
n=−∞ anβne−n, for each f(z) =

∑∞
n=−∞ anz

n in L2(β), where
{en(z) = zn/βn}n∈Z is the orthonormal basis of L2(β). In the year 2005,
Lauric [5] discussed the notion of weighted Toeplitz operator T βφ = P βMβ

φ

on H2(β) and made a comprehensive study towards the commutant of these
operators. Motivated by the work of Power [8], authors in [2] made a study
on the weighted Hankel operator Hβ

φ = P βJβMβ
φ on H2(β) and proved that

if β = {βn}n∈Z is a semi-dual sequence (i.e. β−n = βn for each natural num-
ber n) then the weighted Hankel and weighted Toeplitz operators suggests
the following connections between them
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(2.1) Hβ

zφ̃
Hβ
zψ = T βφψ − T

β
φ T

β
ψ and Hβ

zφ̃
T β
z−1ψ

= Hβ

φ̃ψ
− T βφH

β
ψ .

These relations were known among the Hankel and Toeplitz operator from
long back (see [8]). In [9], D. Sarason made use of these relations to study
the semicommutators of the Toeplitz operators. The work presented in this
note is due to a motivation from the work of Sarason [9] and Power [8]. We
are focussed to identify the weighted Toeplitz operators and weighted Hankel
operators that commute. During the course of study various compact Hankel
operators are obtained. It is also shown that a weighted Hankel operator
on H2(β) cannot be an isometry and then a characterization for the symbol
ψ ∈ L∞(β) is obtained so that the product of induced weighted Toeplitz
operator T βψ with any weighted Hankel operator becomes a weighted Hankel
operator (see Theorem 3.6).

3. Product of Hβ
φ and T βψ

Let Hβ
φ be the weighted Hankel operator on H2(β) with the symbol

φ(z) =
∑∞

n=−∞ anz
n in L∞(β), then for j ≥ 0,

Hβ
φej =

1

βj

∞∑
n=0

a−n−jβ−nen.

The adjoint Hβ∗
φ of the weighted Hankel operator Hβ

φ is given by

Hβ∗
φ ej = β−j

∞∑
n=0

a−n−j
en
βn
, for j ≥ 0.

We begin with the following observation.

Theorem 3.1. A weighted Hankel operator on H2(β) cannot be an isom-
etry.

Proof. Let φ(z) =
∑∞

n=−∞ anz
n. If possible, a non-zero weighted Hankel

operator Hβ
φ on H2(β) is an isometry. Then for each j ≥ 0, ‖Hβ

φej‖ = 1 or
equivalently

(3.1.1)
1

β2j

∞∑
n=0

|a−n−j |2β2−n = 1.

Now, we use equation (3.1.1) and apply the strong induction method to
achieve the goal. Indeed, equation (3.1.1) with j = 0, 1 gives

∑∞
n=0 |a−n|2β2−n

= 1 and

1 =
1

β21

∞∑
n=0

|a−n−1|2β2−n ≤
1

β21

∞∑
n=0

|a−n−1|2β2−n−1
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=
1

β21

∞∑
n=0

|a−n|2β2−n −
|a0|2β20
β21

≤ 1− |a0|
2β20
β21

≤ 1.

As a consequence, |a0|
2

β2
1

= 0 so that a0 = 0. Now assume that for a natural
number n0, a0 = a−1 = a−2 = · · · = a−n0+1 = 0. Then equation (3.1.1), for
j = n0 and n0 + 1 gives

1

β2n0

∞∑
n=0

|a−n−n0 |2β2−n = 1

and

1 =
1

β2n0+1

∞∑
n=0

|a−n−n0−1|2β2−n ≤
1

β2n0+1

∞∑
n=0

|a−n−n0−1|2β2−n−1

=
1

β2n0+1

( ∞∑
n=0

|a−n−n0 |2β2−n − |a−n0 |2
)

=
1

β2n0+1

(β2n0
− |a−n0 |2)

≤ 1− |a−n0 |2

β2n0+1

≤ 1.

This implies that, |a−n0 |
2

β2
n0+1

= 0 and hence a−n0 = 0. Therefore, by the

principle of mathematical induction, an = 0, for each n ≤ 0. Consequently,
φ ∈ zH∞(β) and hence Hβ

φ = 0. This is a contradiction. Hence the result.

It is interesting to note that each symbol φ in {z−j : j ≥ 0} induces
a non-zero weighted Hankel operator on H2(β). In fact, each such Hβ

φ is a
finite rank operator, as for j ≥ 0,

Hβ
z−j

em =

{
βm−j
βm

e−m+j , if 0 ≤ m ≤ j,
0, otherwise.

With this observation, it is easy to extend the result if φ is a Laurent polyno-
mial i.e. φ(z) = a−nz

−n+a−n+1z
−n+1+···+a−1z−1+a0+a1z1+···+amzm,

for some m,n ≥ 0.

Theorem 3.2. If φ ∈ L∞(β) is a Laurent polynomial then the weighted
Hankel operator Hβ

φ on H2(β) is a compact operator.

Proof. In this situation, Hβ
φ = a−nHz−n + a−n+1Hz−n+1 + · · ·+ a−1Hz−1 +

a0H1, which is a compact operator being a finite sum of compact operators.

It immediately yields the following.
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Corollary 3.3. If φ ∈ L∞(β) is of the form φ(z) =
∑∞

n=−m anz
n, m ≥ 0

then the weighted Hankel operator Hβ
φ on H2(β) is a compact operator.

Now we show an example insuring that these are not the only φ inducing
the compact weighted Hankel operators.

Example. Consider the sequence β = {βn}n∈Z , where βn = 1, for each n.
Let φ(z) =

∑∞
n=−∞ anz

n, where

an =

{
2n, if n ≤ 0,

0, if n > 0.

Then φ ∈ L∞(β) as the series
∑∞

n=−∞ a−nz
n ∈ L∞(β) being bounded and

analytic in |z| ≤ 1 (see [11, Theorem 10’(vii)]) and L∞(β) ≡ L∞(T).
∞∑
j=0

‖Hβ
φej‖

2 =
∞∑
j=0

∞∑
n=0

|a−n−j |2 =
∞∑
j=0

∞∑
n=0

1

2n+j

=
∞∑
n=0

1

2n

∞∑
j=0

1

2j
<∞.

Hence, Hβ
φ is a Hilbert–Schmidt operator and so is compact.

Corollary 3.4. If φ ∈ L∞(β) is of the form φ(z) =
∑∞

n=−m anz
n, m ∈ Z

then the weighted Hankel operator Hβ
φ on H2(β) is hyponormal if and only

if it is normal.

Proof. If m < 0, then Hβ
φ = 0 and hence, there is nothing to prove. For

m ≥ 0, the “only if” part follows as hyponormal compact operator is always
normal and “if” part is trivial.

It is interesting to find some spaces H2(β) where hyponormal weighted
Hankel operators are always normal, even if the inducing symbols are not of
the form as in Corollary 3.4.

Theorem 3.5. If φ ∈ L∞(β) is not of the form φ(z) =
∑∞

n=−m anz
n, m ∈

Z then the hyponormal weighted Hankel operator Hβ
φ on H2(β) is normal if

and only if βn = 1 for each n.

Proof. Let the hyponormal weighted Hankel operator Hβ
φ on H2(β) is nor-

mal. Then, for each j ≥ 0, ‖Hβ∗
φ ej‖ = ‖Hβ

φej‖ which implies that

β2−j

∞∑
n=0

|a−n−j |2

βn
2 =

1

βj
2

∞∑
n=0

|a−n−j |2β2−n.
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For j = 0 this means that
∑∞

n=0(|a−n|2β2−n −
|a−n|2
βn

2 ) = 0 and since each
term in the bracket is positive, we get

|a−n|2

βn
2 = |a−n|2β2−n,

for each n ≥ 0. Let k ≥ 0 be an arbitrary number, then we can find
k0 > k such that a−k0 6= 0. Now, |a−k0 |

2

βk0
2 = |a−k0 |2β2−k0 provides that

βk0 = β−k0 = 1. Hence, βm = 1 for |m| ≤ k0. In particular, βk = 1. As
k ≥ 0 is arbitrary so βn = 1 for each n.
Converse is obvious as every hyponormal Hankel operator is normal (see
Power [8]).

If T βψ denote the weighted Toeplitz operator on H2(β) with the symbol
ψ(z) =

∑∞
n=−∞ bnz

n, for j ≥ 0 then

T βψ ej =
1

βj

∞∑
n=0

bn−jβnen

and

T β∗ψ ej = βj

∞∑
n=0

bj−n
en
βn
.

Analogously, for φ ∈ L∞(β) and ψ ∈ H∞(β), the product Hβ
φT

β
ψ of the

weighted Hankel operator Hβ
φ and the weighted Toeplitz operator T βψ is a

weighted Hankel operator. In fact, it is Hβ
φψ, being T

β
ψ = Mβ

ψ |H2(β). How-
ever, in the main theorem of this section we prove the following.

Theorem 3.6. Let Hβ
φ and T βψ be non-zero operators for φ, ψ ∈ L∞(β).

Then the product Hβ
φT

β
ψ is a weighted Hankel operator if and only if ψ ∈

H∞(β).

Proof. We only prove that if φ, ψ ∈ L∞(β) are such that Hβ
φ 6= 0, T βψ 6= 0

and Hβ
φT

β
ψ = Hβ

ξ , for some ξ ∈ L∞(β) then ψ(z) ∈ H∞(β). Suppose
φ(z) =

∑∞
n=−∞ anz

n, ψ(z) =
∑∞

n=−∞ bnz
n and ξ(z) =

∑∞
n=−∞ cnz

n. Now,
for each j ≥ 0,

Hβ
φT

β
ψ ej = Hβ

φ

(
1

βj

∞∑
k=0

bk−jβkek

)
=

1

βj

∞∑
k=0

bk−jβk

(
1

βk

∞∑
n=0

a−n−kβ−nen

)

=
1

βj

∞∑
n=0

( ∞∑
k=0

bk−ja−n−k

)
β−nen
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and

Hβ
ξ ej =

1

βj

∞∑
n=0

c−n−jβ−nen.

Therefore, for n, j ≥ 0, we have

(3.6.1) c−n−j =

∞∑
k=0

bk−ja−n−k.

Since Hβ
φ is a non-zero operator, we assume that a−l0 6= 0, for some l0 ≥ 0.

We prove the result using the strong induction by considering the two cases.
Case (i). Let a0 6= 0. Then equation (3.6.1) gives, for each l ≥ 0, c−l =

c−l−0 =
∑∞

k=0 bka−l−k. Also, c−l = c−0−l =
∑∞

k=0 bk−la−k. Consequently,
for l ≥ 1

∞∑
k=0

bka−l−k =

∞∑
k=0

bk−la−k =

l−1∑
k=0

bk−la−k +

∞∑
k=l

bk−la−k.

A change of variables shows that both the infinite summands in the above
equation are equal and hence, for l ≥ 1

(3.6.2)
l−1∑
k=0

bk−la−k = 0.

Putting l = 1, we get b−1a0 = 0 so that b−1 = 0. Now, assume that
b−1 = b−2 = b−3 = · · · = b−n = 0. Then equation (3.6.2) with l = n + 1
becomes b−n−1a0 = 0, which implies b−n−1 = 0. Thus, b−p = 0, for each
p ≥ 1 and hence ψ(z) =

∑∞
n=0 bnz

n ∈ H∞(β).
Case (ii). Let a0 = a−1 = a−2 = a−3 = · · · = a−(k0−1) = 0 and

a−k0 6= 0. Again, by equation (3.6.1), for l ≥ 0,
∞∑
k=0

bka−k−k0−l = c−(k0+l)−0 = c−k0−l

= c−0−(k0+l) =

∞∑
k=0

bk−k0−la−k

=

k0+l−1∑
k=0

bk−k0−la−k +
∞∑

k=k0+l

bk−k0−la−k

=

k0+l−1∑
k=0

bk−k0−la−k +
∞∑
k=0

bka−k−k0−l.
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This yields that for l ≥ 1,

(3.6.3)

k0+l−1∑
k=0

bk−k0−la−k = 0.

Now, on proceeding as in case (i) and using equation (3.6.3) in place of
(3.6.2), we can prove that b−p = 0, for each p ≥ 1. It provides that ψ ∈
H∞(β). Hence the theorem is proved.

4. When do the weighted Hankel and weighted Toeplitz operators
commute?
The study made in the paper so far was in a more general setting, how-

ever, we prefer to impose some restrictions to progress further. In what fol-
lows, we will consider β = {βn}n∈Z as a semi-dual sequence. Now onwards,
the spaces L2(β), H2(β) or L∞(β) all are considered with β = {βn}n∈Z as
a semi-dual sequence of positive numbers with β0 = 1, r ≤ βn

βn+1
≤ 1, for

n ≥ 0 and r ≤ βn
βn−1

≤ 1, for n ≤ 0, for some r > 0. For φ ∈ L∞(β), with

formal Laurent series expression φ(z) =
∑∞

n=−∞ anz
n, we use the symbol φ̃

to represent the expression φ̃(z) =
∑∞

n=−∞ a−nz
n. Now, if φ is in L∞(β),

then all the functions φ̃, φ+ φ̃ and φφ̃ belong to L∞(β). In the next result,
we identify the weighted Toeplitz operators induced by symbol φ with φ = φ̃
that can commute with any weighted Hankel operator.

Theorem 4.1. Let φ ∈ L∞(β) be such that φ = φ̃. If any non-zero
weighted Hankel operator Hβ

ψ on H2(β), ψ ∈ L∞(β) commutes with the
weighted Toeplitz operator T βφ on H2(β) then φ is a constant function.

Proof. Let φ(z) =
∑∞

n=−∞ anz
n and ψ(z) =

∑∞
n=−∞ bnz

n be in L∞(β)

satisfying 0 6= Hβ
ψ , H

β
ψT

β
φ = T βφH

β
ψ . This gives that, for each i, j ≥ 0,〈

Hβ
ψT

β
φ ej , ei

〉
=
〈
T βφH

β
ψej , ei

〉
.

However, one can see that〈
Hβ
ψT

β
φ ej , ei

〉
=
βi
βj

∞∑
k=0

ak−jb−i−k and
〈
T βφH

β
ψej , ei

〉
=
βi
βj

∞∑
k=0

ai−kb−k−j .

This yields that

(4.1.1)
∞∑
k=0

ak−jb−i−k =
∞∑
k=0

ai−kb−k−j ,

for each i, j ≥ 0.
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If we put i = 0, then equation (4.1.1) becomes
j−1∑
k=0

ak−jb−k +

∞∑
k=j

ak−jb−k =

∞∑
k=0

a−kb−k−j ,

for each j > 0. This implies that for each j > 0,

(4.1.2)

j−1∑
k=0

ak−jb−k = 0.

Combining (4.1.1) with the fact that φ = φ̃ i.e. an = a−n, we find that
for j > i > 0,

(4.1.3)

j−i−1∑
k=0

ak−jb−i−k = 0.

Since Hβ
ψ is a non-zero weighted Hankel operator, we can find a non-

negative integer n0 such that b−n0 6= 0.
In case n0 = 0, the repetitive use of (4.1.2), for j = 1, 2, 3, · · · gives

aj = a−j = 0. Hence, φ is a constant function.
In case n0 > 0, then using (4.1.3) for i = n0, we have

j−n0−1∑
k=0

ak−jb−n0−k = 0,

for j > n0. Now, on taking the values j = n0+1, n0+2, n0+3, ··· successively,
we get an0+s = a−(n0+s) = 0, for each s ≥ 1.

If we apply (4.1.3) for j = n0 + 1, we get
n0−i∑
k=1

ak−n0−1b−i−k = 0,

for n0 + 1 > i and then on setting i = n0 − 1, n0 − 2, . . . , 2, 1, it gives
as = a−s = 0, for each 2 ≤ s ≤ n0. Now on putting j = n0 + 1 in equation
(4.1.2), we get a−1 = 0. Hence in this case also, φ becomes a constant
function. Hence the result.

Almost along the same arguments as in Theorem 4.1, we can prove the
following.

Theorem 4.2. Let φ, ψ ∈ L∞(β) and Hβ
ψ be a non-zero weighted Hankel

operator on H2(β). Then T β
φ̃
Hβ
ψ = Hβ

ψT
β
φ if and only if φ ∈ H∞(β).

Corollary 4.3. If φ, ψ ∈ L∞(β) are such that Hβ
ψ is a non-zero weighted

Hankel operator and Hβ
ψT

β
φ is a weighted Hankel operator on H2(β) then

T β
φ̃
Hβ
ψ is a weighted Hankel operator on H2(β).
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Proof. Theorem 3.6 gives φ ∈ H∞(β) and then result follows by using
Theorem 4.2.

Now, we show that the commutativity of a weighted Hankel operator
with weighted Toeplitz operators T βφ or T β

φ̃
is the one and same.

Theorem 4.4. Let φ, ψ ∈ L∞(β). Then T βφH
β
ψ = Hβ

ψT
β
φ if and only if

T β
φ̃
Hβ
ψ = Hβ

ψT
β

φ̃
.

Proof. Suppose φ(z) =
∑∞

n=−∞ anz
n and ψ(z) =

∑∞
n=−∞ bnz

n in L∞(β)

are such that T βφH
β
ψ = Hβ

ψT
β
φ . An usual computation show that for i, j ≥ 0

〈
T βφH

β
ψei, ej

〉
=
〈
Hβ
ψei, T

β∗
φ ej

〉
=

〈
1

βi

∞∑
k=0

b−k−iβ−kek, βj

∞∑
l=0

aj−l
βl

el

〉

=
βj
βi

∞∑
k=0

aj−kb−k−i

and〈
Hβ
ψT

β
φ ei, ej

〉
=
〈
T βφ ei, H

β∗
ψ ej

〉
=

〈
1

βi

∞∑
k=0

ak−iβkek, β−j

∞∑
l=0

b−j−l
βl

el

〉

=
βj
βi

∞∑
k=0

ak−ib−j−k.

Thus,

T βφH
β
ψ = Hβ

ψT
β
φ ⇐⇒

∞∑
k=0

aj−kb−k−i =
∞∑
k=0

ak−ib−j−k

⇐⇒
〈
T β
φ̃
Hβ
ψej , ei

〉
=
〈
Hβ
ψT

β

φ̃
ej , ei

〉
⇐⇒ T β

φ̃
Hβ
ψ = Hβ

ψT
β

φ̃
.

Corollary 4.5. If φ ∈ L∞(β) is such that T βφH
β
ψ = Hβ

ψT
β
φ , for some

ψ ∈ L∞(β) then φ+ φ̃ is a constant function.

Proof. With the given conditions, T β
φ+φ̃

commutes with Hβ
ψ and then ap-

plying Theorem 4.1, we get the result.

Theorem 4.6. Let φ, ψ ∈ L∞(β) be such that T βφ on H2(β) is not a
multiple of identity operator and Hβ

ψ on H2(β) is a non-zero operator. Then
T βφH

β
ψ = Hβ

ψT
β
φ implies that Hβ

ψ = Hβ
µzφ, for some complex number µ.
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Proof. Let φ, ψ ∈ L∞(β) be such that T βφH
β
ψ = Hβ

ψT
β
φ . For m,n ≥ 0, let

Cn,m =
〈
Hβ
ψT

β
φ em, en

〉
and Dn,m =

〈
T βφH

β
ψem, en

〉
. Then Cn,m = Dn,m, for

each m,n ≥ 0. One can see that, for m > 0 and n ≥ 0,

Dn+1,m−1 =
βn+1

βm−1

∞∑
k=0

b−(k+m−1)an+1−k

=
βn+1

βm−1
b−(m−1)an+1 +

βn+1

βm−1

βm
βn
Dn,m

=
βn+1

βm−1
b−(m−1)an+1 +

βn+1

βm−1

βm
βn
Cn,m

and

Cn,m =
βn
βm

∞∑
k=0

ak−mb−n−k

=
βn
βm

a−mb−n +
βn
βm

βm−1
βn+1

Cn+1,m−1

=
βn
βm

a−mb−n +
βn
βm

βm−1
βn+1

Dn+1,m−1

=
βn
βm

a−mb−n +
βn
βm

βm−1
βn+1

(
βn+1

βm−1
b−(m−1)an+1 +

βn+1

βm−1

βm
βn
Cn,m

)
=
βn
βm

a−mb−n +
βn
βm

b−(m−1)an+1 + Cn,m.

This gives an+1b−(m−1) = −a−mb−n, for each m > 0 and n ≥ 0. Using
Corollary 4.5, φ + φ̃ is a constant function so that am + a−m = 0, for each
m > 0. Therefore, we have

(4.6.1) an+1b−(m−1) = amb−n,

for each m > 0 and n ≥ 0.
We claim that an+1 = 0 if and only if b−n = 0, for n ≥ 0.
If there exists n0 ≥ 0 such that b−n0 = 0, then (4.6.1) implies that either

an0+1 = 0 or b−m+1 = 0, for all m > 0. But the latter would imply that
Hβ
ψ = 0, hence an0+1 = 0. Conversely, if there exists n0 ≥ 0 such that

an0+1 = 0, then (4.6.1) yields that either am = 0, for all m > 0 or b−n0 = 0.
The former implies that φ is a constant function so that T βψ = 0 is a multiple
of the identity, which is a contradiction. Hence, b−n0 = 0. Therefore the
claim.

Hβ
ψ being a non-zero operator, take a non-negative integer n0 such that

b−n0 6= 0. Define λ =
b−n0
an0+1

. Then (4.6.1) gives b−m+1 = µa−m, for each

m > 0, where µ = −λ. Moreover, Hβ
ψ = Hβ

µzφ.



582 G. Datt, D. K. Porwal

Theorem 4.7. Let φ ∈ L∞(β). If the weighted Hankel operator Hβ
zφ com-

mutes with the weighted Toeplitz operator T βφ then φφ̃ is a constant function.

Proof. Evidentally, Hβ
zφ commutes with Hβ

zφH
β
zφ. By using the equation

(2.1), we have Hβ
zφH

β
zφ = T β

φφ̃
− T β

φ̃
T βφ . Now Theorem 4.4 helps to conclude

that Hβ
zφ commutes with T β

φφ̃
. Moreover, φ̃φ̃ = φφ̃ and now the result follows

using Theorem 4.1.

An additional use of Theorem 4.6 gives the following.

Corollary 4.8. If Hβ
ψ is a non-zero weighted Hankel operator such that

T βφH
β
ψ = Hβ

ψT
β
φ , where T βφ is not a multiple of the identity operator on H2(β)

then Hβ
ψ = Hβ

µzφ, for some complex number µ. In this case, φ + φ̃ and φφ̃
are constant functions.

We conclude the study with the result which identifies the weighted
Toeplitz operators commuting with a weighted Hankel operators.

Theorem 4.9. Let φ ∈ L∞(β) be such that φφ̃ and φ + φ̃ are constant,
then the weighted Hankel operator Hβ

zφ commutes with the weighted Toeplitz
operator T βφ .

Proof. Put φ+ φ̃ = c and φφ̃ = d. Then φφ̃ and φ+ φ̃ are in H∞(β). Hence
Hβ
zc = Hβ

zd = 0. Now, by applying the equation (2.1), we have

0 = Hβ
zd = Hβ

zφφ̃
= T βφH

β
zφ +Hβ

zφ̃
T βφ

= T βφH
β
zφ +Hβ

z(c−φ)T
β
φ

= T βφH
β
zφ −H

β
zφT

β
φ .

Hence the theorem.
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