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EXTREME POINTS AND SUPPORT POINTS
OF A CLASS OF ANALYTIC FUNCTIONS

WITH MISSING COEFFICIENTS

Abstract. Let Mn(a, b, c) denote a class of functions of the form f(z) = z −
an+1z

n+1 − · · · − akz
k − · · · which are analytic in open unit disk U = {z : |z| < 1}

and satisfy the condition
∞∑

k=n+1

k(k + a)

k + b
ak < c, ak ≥ 0, a ≥ b ≥ 0, 0 < c ≤ 1, n ∈ N = {1, 2, . . . }.

In this paper, we obtain the extreme points and support points of the classMn(a, b, c) of
functions.

1. Introduction
Let A denote the space of functions which are analytic in the unit disk

U = {z : |z| < 1}. If a function f(z) ∈ A then f(z) has the general form

(1.1) f(z) = z +
∞∑
k=2

akz
k z ∈ U.

The topology of A is defined to be the topology of uniform convergence on
compact subsets of the unit disk U . Suppose that K be a subset of the
space A, then f ∈ K is called an extreme point of K if and only if f can not
be expressed as a proper convex combination of two distinct elements of K.
The set of all extreme points of K is denoted by EK.

Furthermore, a function f is called a support point of a compact F of A
if f ∈ F and if there is a continuous linear functional J on A such that ReJ
is non-constant on F and

ReJ(f) = max{ReJ(g) : g ∈ F}.
We shall denote the set of all support points of F by suppF .
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Let T be the subclass of A consisting functions of the form

(1.2) f(z) = z −
∞∑
k=2

akz
k, ak ≥ 0.

Indeed, some authors studied various subclasses of functions related to T ,
see [1, 10, 11]. Also, H. Silverman [8] studied the class F ({bk}) given by

F ({bk}) =
{
f(z) : f(z) = z −

∞∑
k=2

akz
k,

∞∑
k=2

akbk ≤ 1, ak ≥ 0, z ∈ U
}
,

where {bk} is a positive sequence. Furthermore, H. Silverman [9] obtained
the extreme points of class F ({k}) and W. Deeb [2] obtained the support
points of F ({k}), respectively, where

F ({k}) =
{
f(z) : f(z) = z −

∞∑
k=2

akz
k,
∞∑
k=2

kak ≤ 1, ak ≥ 0, z ∈ U
}
.

Recently, Z. G. Peng [6], [7] have extended their results by considering a more
general subclass concerning F ({bn}).

Denote by Tn the class of functions of the form

(1.3) f(z) = z −
∞∑

k=n+1

akz
k, ak ≥ 0, z ∈ U, n ∈ N = {1, 2, . . . }

that are analytic in U . Here, we want to introduce and study the subclass
Mn(a, b, c) of Tn. A function f(z) ∈Mn(a, b, c) if and only if

Mn(a, b, c) =

{
f(z) : f(z) = z −

∞∑
k=n+1

akz
k,

∞∑
k=n+1

k(k + a)

k + b
ak ≤ c, ak ≥ 0,

a ≥ b ≥ 0, 0 < c ≤ 1, n ∈ N = {1, 2, . . . }
}
.

In particular, we have M1(0, 0, 1) ≡ F ({k}) when n = 1, a = b = 0,
c = 1, therefore, the classMn(a, b, c) is the generalization of the class F ({k})
studied by H. Silverman [9].

Goodman [4] proved that a sufficient condition for functions of the form
(1.1) to be univalent in U is that

(1.4)

∞∑
k=2

k|ak| ≤ 1,

moreover, condition (1.4) implies that such functions must be in S∗(0). Ob-
viously, it is clear that all the functions belonging toMn(a, b, c) are univalent
and are in S∗(0).
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We note that the classMn(a, b, c) is non-empty as it contains the func-
tions of the form

(1.5) f(z) = z −
∞∑

k=n+1

c(k + b)

k(k + a)
ϕkz

k,

where ϕk ≥ 0,
∑∞

k=n+1 ϕk ≤ 1, a ≥ b ≥ 0, 0 < c ≤ 1, n ∈ N.
In this paper, we obtain the extreme points and support points of the

subclassMn(a, b, c). Our results are the generalizations of the corresponding
results due to H. Silverman [9] and W. Deeb [2].

2. The extreme points of Mn(a, b, c)

Lemma 2.1. (See [5, P44]) Let A be a locally convex linear topological space
and let F be a compact subset of A.
(1) If F is non-empty then EF is non-empty.
(2) HEF = HF .
(3) If HF is compact then EHF ⊂ F .

Lemma 2.2. Let f1(z) = z and fk(z) = z − c(k+b)
k(k+a)z

k, (k ≥ n + 1), then
f(z) ∈ Mn(a, b, c) if and only if f(z) = λ1f1(z) +

∑∞
k=n+1 λkfk(z), where

λk ≥ 0 and λ1 +
∑∞

k=n+1 λk = 1.

Proof. Firstly, if f(z) = λ1f1(z) +
∑∞

k=n+1 λkfk(z), we have

(2.1) f(z) = z −
∞∑

k=n+1

c(k + b)

k(k + a)
λkz

k ∈ Tn,

where
ak =

c(k + b)

k(k + a)
λk.

So,
∞∑

k=n+1

k(k + a)

c(k + b)
ak =

∞∑
k=n+1

k(k + a)

c(k + b)

c(k + b)

k(k + a)
λk =

∞∑
k=n+1

λk = 1− λ1 ≤ 1,

hence, we know f(z) ∈Mn(a, b, c).
Conversely, suppose that f(z) ∈Mn(a, b, c), then it is easy to know that

(2.2) ak ≤
c(k + b)

k(k + a)
, (k ≥ n+ 1).

Now, suppose that

λk =
k(k + a)

c(k + b)
ak, (k ≥ n+ 1) , λ1 = 1−

∞∑
k=n+1

λk,

then f(z) = λ1f1(z) +
∑∞

k=n+1 λkfk(z).
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Theorem 2.3. The extreme points of the class Mn(a, b, c) are given by

EMn(a, b, c) = V =

{
z, z − c(n+ 1 + b)

(n+ 1)(n+ 1 + a)
zn+1,

z − c(n+ 2 + b)

(n+ 2)(n+ 2 + a)
zn+2, . . . , z − c(k + b)

k(k + a)
zk, . . .

}
,

where a ≥ b ≥ 0, 0 < c ≤ 1, k ≥ n+ 1, n ∈ N.
Proof. Suppose that z = tf1(z) + (1− t)f2(z) and 0 < t < 1, where

fi(z) = z −
∞∑

k=n+1

ak,iz
k ∈Mn(a, b, c), i = 1, 2.

Then
0 = tak,1 + (1− t)ak,2, k ≥ n+ 1, n ∈ N.

Because ak,1 ≥ 0, ak,2 ≥ 0, it follows that ak,1 = ak,2 = 0, for k ≥ n + 1,
n ∈ N. Hence f1(z) = f2(z) = z. This shows that z ∈ EMn(a, b, c). If

z − c(k + b)

k(k + a)
zk = tg1(z) + (1− t)g2(z), 0 < t < 1, k ≥ n+ 1, n ∈ N,

where

gi(z) = z −
∞∑

k=n+1

ak, iz
k ∈Mn(a, b, c), i = 1, 2,

then we have

(2.3)
c(k + b)

k(k + a)
= tak ,1 + (1− t)ak ,2, k ≥ n+ 1, n ∈ N.

Since gi(z) ∈Mn(a, b, c), definition gives us

(2.4) ak, i ≤
c(k + b)

k(k + a)
, i = 1, 2.

This implies that

ak, 1 = ak, 2 =
c(k + b)

k(k + a)
, k ≥ n+ 1, n ∈ N.

So g1(z) = g2(z). It gives us

z − c(k + b)

k(k + a)
zk ∈ EMn(a, b, c), k ≥ n+ 1, n ∈ N.

So V ⊂ EMn(a, b, c).
Conversely, from Lemma 2.2, we know Mn(a, b, c) = HV. In fact, it is

easy to prove that V is a compact set. Following the Lemma 2.1, it gives
EMn(a, b, c) = EHV ⊂ V. So EMn(a, b, c) = V .
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Putting n = 1, a = b = 0, c = 1 in Theorem 2.1, we have the Corollary 2.1
proved by H. Silverman [9].
Corollary 2.4. The extreme points of the class F ({k}) are given by

EF ({k}) = V =

{
z, z − 1

2
z2, z − 1

3
z3, . . . , z − 1

k
zk, . . . , (k ≥ 2)

}
.

3. The support points of Mn(a, b, c)

Lemma 3.1. (See [5, P42]) J is a complex-valued continuous linear func-
tional on A if and only if there is a sequence {bn} of complex numbers sat-
isfying limn→∞(|bn|)

1
n < 1 and such that J(f) =

∑∞
n=0 bnan, where f ∈ A

and f(z) =
∑∞

n=0 anz
n, (|z| < 1).

Theorem 3.2. The support points of the class Mn(a, b, c) are given by

SuppMn(a, b, c) =

{
f(z) ∈Mn(a, b, c) : f(z)

= z − c(n+ 1 + b)

(n+ 1)(n+ 1 + a)
φn+1z

n+1

− c(n+ 2 + b)

(n+ 2)(n+ 2 + a)
φn+2z

n+2 − · · · − c(k + b)

k(k + a)
φkz

k − . . .
}
,

where a ≥ b ≥ 0, 0 < c ≤ 1, φk ≥ 0,
∑∞

k=n+1 φk ≤ 1, n ∈ N and φi = 0, for
some i ≥ n+ 1.

Proof. Firstly, let a function f0(z) ∈Mn(a, b, c) and put

f0(z) = z − c(n+ 1 + b)

(n+1)(n+1+a)
φn+1z

n+1 − c(n+ 2 + b)

(n+2)(n+2+a)
φn+2z

n+2 − . . .

− c(k + b)

k(k + a)
φkz

k − · · · = z −
∞∑

k=n+1

c(k + b)

k(k + a)
φkz

k,

where
∑∞

k=n+1 φk ≤ 1, φk ≥ 0, φi = 0, for some i ≥ n+ 1. Now, we need to
take

bk =

{
0, k > 1, k 6= i,

1, k = 1, k = i.

Obviously, we have limn→∞(|bk|)1/k < 1. Furthermore, we define a func-
tional J on A by

J(f) =

∞∑
n=0

akbk, where f(z) = z −
∞∑

k=n+1

akz
k ∈ Tn ⊂ A.

It is clear that J is a continuous linear functional on Tn by Lemma 3.1.
Moreover, we note that J(f0) = a1b1 + aibi = 1 − 0 = 1. However, for any
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function

(3.1) f(z) = z −
∞∑

k=n+1

akz
k ∈Mn(a, b, c),

we can note that J(f) = a1b1 + aibi = 1− ai ≤ 1, (ai ≥ 0). So we have

ReJ(f0) = max{ReJ(f) : f ∈Mn(a, b, c)}

and ReJ(f) are not constant onMn(a, b, c). Hence, f0 is a support point of
Mn(a, b, c).

Conversely, suppose that f0 is a support point of Mn(a, b, c), and J
is a continuous linear functional on Mn(a, b, c). Note that ReJ is also a
continuous linear and is non-constant onMn(a, b, c). Consequently, we have

ReJ(f0) = max{ReJ(f) : f ∈Mn(a, b, c)}.

Let
M = ReJ(f0)

and
GJ = {f(z) : f ∈Mn(a, b, c) : ReJ(f) =M}.

On one hand, suppose that ReJ(f1) = ReJ(f2) = M, where f1 ∈
GJ , f2 ∈ GJ , 0 < t < 1. Then ReJ [tf1 + (1 − t)f2] = tReJ(f1) + (1 −
t)ReJ(f2) = tM + (1− t)M =M and so, tf1 + (1− t)f2 ∈ GJ , which gives
the convexity of GJ .

On the other hand, suppose that ReJ(fn) = M and fn → f , where
fn ∈ GJ . Then ReJ(fn) → ReJ(f) and so, ReJ(f) = M , which implies
that the GJ is closed. Furthermore, because S∗ is compact, we can claim
that GJ is compact due to the relation GJ ⊂Mn(a, b, c) ⊂ S∗.

So, the GJ is a convex compact subset ofMn(a, b, c). Thus, EGJ is not
empty (see Lemma 2.1). Now, suppose that g0 ∈ EGJ and g0 = tg1(z) +
(1− t)g2(z), where 0 < t < 1, g1(z) ∈Mn(a, b, c), g2(z) ∈Mn(a, b, c). Then,
since

ReJ(g1) ≤M, ReJ(g2) ≤M, tReJ(g1) + (1− t)ReJ(g2) = ReJ(g0) =M,

it follows that
ReJ(g1) = ReJ(g2) =M,

which implies g1 ∈ GJ , g2 ∈ GJ . Again, because g0 ∈ EGJ , so g1 = g2 = g0.
Thus g0 ∈ EMn(a, b, c). This shows that EGJ ⊂ EMn(a, b, c). Suppose

EGJ − {z} =
{
z − c(k + b)

k(k + a)
zk : k ∈ Z1

}
,
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where Z1 is a subset of Z0 = {n+1, n+2, . . . , n ∈ N}. We assert that Z1 is
a proper subset of Z0. In fact, if it is not the case, then

EGJ − {z} =
{
z − c(k + b)

k(k + a)
zk : k = n+ 1, n+ 2, . . . , n ∈ N

}
.

Since EGJ ⊂ GJ , it follows that

(3.2) ReJ(z − c(k + b)

k(k + a)
zk) =M,

for all k ≥ n+ 1, n ∈ N . Hence,

(3.3) ReJ(z)− c(k + b)

k(k + a)
ReJ(zk) =M,

for all k ≥ n+ 1, n ∈ N . Let k →∞. Since zk → 0 in the metric of A and J
is a continuous linear functional on A, it follows that ReJ(zk) → 0. Thus,
by (3.2) and (3.3), we have ReJ(z) =M and we also find that ReJ(zk) = 0,
for all k ≥ n + 1, n ∈ N. Furthermore, for any f(z) = z −

∑∞
k=n+1 akz

k ∈
Mn(a, b, c), since J is continuous on A and ReJ(zk) = 0, for k ≥ n + 1, it
follows that

ReJ(f) = ReJ(z)−
∞∑

k=n+1

akReJ(z
k) = ReJ(z) =M,

which contradicts the fact that ReJ is not constant on Mn(a, b, c). This
shows that there is an integer i ≥ n+1 not belonging to Z1. In other words,
z − c(i+b)

i(i+a)z
i does not belong to EGJ . Because GJ is a convex compact set,

so GJ = HEGJ (see Lemma 2.1). Since f0 ∈ GJ , it follows that

(3.4) f0(z) = φ1z +

∞∑
k=n+1

φkfk(z),

where φ1 ≥ 0, φk ≥ 0 and φ1 +
∑∞

k=n+1 φk = 1, fk(z) ∈ EGj . Because
z − c(i+b)

i(i+a)z
i does not belong to EGJ . So

f0(z) = z −
∞∑

k=n+1,k 6=i

φk
c(k + b)

k(k + a)
zk.

Putting n = 1, a = b = 0, c = 1 in Theorem 3.1, we have the Corollary 3.1
proved by W. Deeb [2].

Corollary 3.3. The support points of the class F ({k}) are given by

SuppF ({k})=
{
f(z)∈F ({k}) : f(z) = z−1

2
φ2z

2−1

3
φ3z

3−· · ·−1

k
φkz

k−. . .
}
,

where φk ≥ 0,
∑∞

k=2 φk ≤ 1 and φi = 0, for some i ≥ 2.
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Remark. For specific choices of parameters n, a, b, c, we can obtain the
extreme points and support points of the classes of functions concerning
Mn(a, b, c).
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