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SLICE THEOREM FOR DIFFERENTIAL SPACES AND
REDUCTION BY STAGES

Abstract. We show that the space P/G of orbits of a proper action of a Lie group
G on a locally compact differential space P is a locally compact differential space with
quotient topology. Applying this result to reduction of symmetries of Hamiltonian systems,
we prove the reduction by stages theorem.

1. Introduction

A symplectic manifold is a pair (M,w), where M is a manifold and w
is a closed non-degenerate 2-form on M. We denote by C* (M) the ring of
smooth functions on M. Since w is non-degenerate, for each h € C*(M),
there exists a unique vector field X} on M, called the Hamiltonian vector
field of X}, such that

(1) Xy dw = —dh,

where _| denotes the left interior product (contraction) of vector fields and
forms. If M is the phase space of a Hamiltonian system with Hamiltonian
h € C*(M), then integral curves of the Hamiltonian vector field Xp of h
are trajectories of the system. In this case, equation is equivalent to the
Hamiltonian equations of motion of the system.

Let G be a locally compact, connected Lie group with a Lie algebra g and
its dual g*. The group G is a symmetry group of the Hamiltonian system
(M,w, h) if there is a smooth action

Q:GxM—M:(g,z) = Py(x) = gz

of G on (M, w) that preserves the symplectic form w and preserves the Hamil-
tonian h. In other words, we assume that for every g € G,

@Zw =w and <I>’g"h = h.
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DEFINITION 1. The action of G on M is proper if for every convergent
sequence (x,) in M, and a sequence (gy,) in G such that the sequence (g, )
is convergent, there exists a convergent subsequence, (g, ) of (g,) and

T (gnin) = (Jim g, )(lim ).

For each z € M, the isotropy group of x is G, = {g € G | gz = z}. If
the action of G on M is proper, then all isotropy groups are compact. For
every compact subgroup K of G, the set of points of symmetry type K is
Mg = {x € M | G, = K}. Similarly, the set of points of orbit type K is
Mgy ={r € M | G; is conjugate to K}. The properness of the action of G
implies that connected components of My and of M) are submanifolds of
M. We denote by 9 the family of all connected components of sets M)
of orbit type K, for all compact subgroups K of G.

In order to describe the geometric structure of the space of G-orbits
in M, we have to define what we mean by a stratified space. Let T be
a topological space and let 91 be a locally finite family of locally closed
manifolds N contained in T' that cover T'. In other words, we assume that
each N € 91 is a locally closed connected subset of T' carrying the structure
of a smooth manifold such that the manifold topology of N is induced by
the inclusion map N < T. Moreover, we assume that T = U yenV, and for
each x € T', there exists an open neighbourhood U of x that intersects only a
finite number of manifolds IV in 1. We say that T is stratified by the family
N if the following condition is satisﬁedlﬂ

CONDITION 2. For N,N' e M, if N' n N # (&, then either N' = N or
N’ = N\N.

Manifolds NV € 91 are called strata of the stratification of T" defined by 1.

Let R = M /G be the space of orbits of a proper action of G on M and
let p: M — R be the orbit map. Consider the family 91 consisting of the
projections to R of manifolds in 9. In other words, elements of 91 are of
the form N = p(C), where C' is a connected component of Mg for some
compact subgroup K of G.

THEOREM 3. For a proper action of a connected Lie group G on a manifold
M, the family N s locally finite, consists of locally closed manifolds, and it
defines a stratification of the orbit space R = M/G.

Proof. Bierstone [2]. »

'In the literature, there are a variety of definitions of the notion of “stratification”. For
example, Mather defines stratification of a topological space S as a map from S to the
sheaf of germs of manifolds satisfying certain conditions, [I2]. Our definition is equivalent
to Mather’s in the case when S is a differential space. It is more convenient because it
does not require the introduction of sheaves.
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The stratification of R defined by 91 is called the orbit type stratification
of the orbit space.

THEOREM 4. If the proper action of G on M preserves the symplectic form
w, then each stratum of the orbit space R = M /G is a Poisson manifold
singularly foliated by symplectic manifolds.

Proof. See Cushman and Bates [5], and Libermann and Marle [9]. =

The existence of symmetries of a Hamiltonian system usually simplifies
solving equations of motion. Since the Hamiltonian h is G-invariant, it
pushes forward to a function h on the orbit space R. In other words, h = p*h.
Suppose that ¢ : I — M is an integral curve of X;. Then, the projection
¢ = poc is contained in a symplectic leaf of a stratum of R and it is an
integral curve of the Hamiltonian vector field of A defined in terms of the
symplectic form on that leaf. In other words, if L is a symplectic leaf of
R containing ¢, and wy, is the symplectic form on L, then ¢ : I — L is an
integral curve of a vector field X# on L such that

(2) X#JWL = —dﬁw,

where E| 1, is the restriction of h to L. Usually, dim L is smaller than dim M,
and the differential equation satisfied by ¢ has a smaller number of dependent
variables than the equation satisfied by c.

In mechanics, the passage from M to the space R = M /G of G-orbits in
M is called reduction of symmetries. In applications, the symmetry group
G has often a normal subgroup H. It may be convenient to reduce first the
symmetries of the system given by H, and to pass to the space P = M/H
of H-orbits in M. Let m : M — P = M/H denote the orbit map. Since
the action of G on M is proper, the action of H on M is proper, and by
the theorems above, P is a stratified space, each stratum of P is a Poisson
manifold singularly foliated by symplectic manifolds.

The quotient group G/H acts on P. Let Q = P/(G/H) be the space of
(G/H)-orbits in P and n: P — @ be the orbit map. We have the following
identifications R = M /G = (M/H)/(G/H) = P/(G/H) = @, which means
that there is a bijection 8 : R — @ such that

(3) Bop=mnom.

Equation is an equality of maps in the category of sets. However, our
sets have structures and individual maps may preserve these structures. For
example, if we consider the orbit type stratifications of M corresponding to
the action of G and H, respectively, then p and 7 are morphisms of stratified
spaces. On the other hand, 8 and 7 are continuous maps. It would be nice if
all maps involved here, were morphisms in a category such that equation ((3))
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guarantees that reduction by stages gives the same structure as the reduction
of all symmetries at once.

The category of differential spaces and its subcategory of subcartesian
differential spaces provide the required setting. We assume that the reader
is familiar with the techniques of the theory of differential spaces. A compre-
hensive bibliography of the literature on differential spaces during the period
1965-1992 is given in [3].

THEOREM 5. The space R = M /G of G-orbits of a proper action of a
connected Lie group on a manifold M, endowed with the differential structure

C*(R) = {f : R—>R | p"f € C*(M)},
1s a subcartesian space.

Proof. Cushman and Sniatycki [7], and Sniatycki [I8]. See also Cushman,
Duistermaat and Sniatycki [6]. m

THEOREM 6. Strata of the orbit type stratification of the orbits space R =
M/G of a proper action of G on M are orbits of the family of all vector
fields on R.

Proof. Lusala and Sniatycki [T0], and Sniatycki [I9]. See also Cushman,
Duistermaat and Sniatycki [6].

Theorems [p]and [f] show that the stratification structure of the orbit space
R of a proper action of a connected Lie group G on a manifold M is encoded
in the differential structure C*(R). Hence, the stratification structure is
invariant under diffeomorphisms of differential spaces.

The orbit maps p : M — R = M/G and # : M — P = M/G are
smooth in the category of differential spaces. Our aim in this paper is to
show that the orbit map n: P — @ = P/G is smooth and that §: R — Q
is a diffeomorphism. This will justify reduction by stages.

2. Properness of the action of G/H

Since H is a normal Lie subgroup of G, the quotient K = G/H is a Lie
group. The action of K on P = M/H, induced by the action of G on M, is
given by (G/H) x (M/H) — M/H : (Hg, Hx) — Hgxz. With this notation,
we can rewrite the expression for the action. Our aim in this section is to
prove that the properness of the action of G on M implies that the action
of G/H on M, given above, is proper. Our main tool for this task is Palais’
Slice Theorem [I4], which we shall state presently. Here, we need the Slice
Theorem for the action of H on M, and we formulate the definition of the
slice accordingly.
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For each x € M, the isotropy group H, of x is given by
(4) Hy ={ge H | gz =a}.

Since H is a closed subgroup of GG, the assumed properness of the action of
G on M implies that the action of H on M is proper. Therefore, for every
x € M, the isotropy group H, of x is compact.

DEFINITION 7. A slice through x € M, for an action of a Lie group H on
M, is a submanifold S, of M containing x such that

1. S, is transverse and complementary to the orbit Hx of H through x. In
other words,

T,.M =T,S, ®T,(Hzx).
2. For every 2’ € S,, the manifold S, is transverse to the orbit Hz’, that is
T M =1T,5, + Tm/(H.%/)

3. S, is H.-invariant.
4. For any the following holds: If gz’ € S, then g € H,.

THEOREM 8. Let H x M — M : (g,x) — gx be a proper action of a Lie
group H on a manifold M. For every x € M, there exists a slice S, for the
action of H on M.

Proof. Palais [14]. =

REMARK 9. Let S, be a slice at x for the action of H. Shrinking S, if
necessary, we may assume that HS, is an H-invariant open neighborhood of
x in M. Moreover, for any 2’ € S, the orbit Hz' of H through 2’ intersects
S, along the orbit H,z' of H, through z’. For details, see [14].

Consider a convergent sequence (pp) of orbits in P = M/H. Let x be
a point in M contained in the limit orbit p = lim, o p,. We can write
p=Hx =mn(x). Let H, = {g € H | gx = x} be the isotropy group of z. By
Theorem [§], there exists a slice S, through z for the action of H on M such
that HS, is an H-invariant neighbourhood of x in M. Since the sequence
of H-orbits p, converges to p, it follows that there exists N > 0 such that
for every n > N, the orbit p, intersects HS,. Without loss of generality,
for each n € N, we can choose a point x,, contained in the orbit p, and such
that x, € S, whenever n > N. Note that for n > N, the point x, € S, is
determined up to the action of g € H,. Property 1 of Definition [7] implies
that S, N Hz = {x}. Since p = lim,_,« pn, for every neighbourhood U of x
in S;, there exists Ny > 0 such that p, € HU for all n > Ny. Therefore,
x, € U for all n > Ny;. This implies that x = lim,_.o Ty,.

Suppose now that (k,) is a sequence in G/H such that the sequence
(knprn) converges. As before, let y be a point in the orbit ¢ = limy, o knpp,
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and let Sy be a slice at y for the action of H on M. We may construct a
sequence (y,,) in M such that y, is in the intersection of the orbit k,p, and
Sy for all n greater than some constant N’. The same argument as before
proves that y = limy,, o0 Yn-

Elements of G/H are H-orbits in G. Hence, there exists a sequence
gn € G such that k,, = g, H, and

Hy, = kupn = gnHpp = g HHx), = Hgpay,

where the last equality follows from the fact that H is a normal subgroup
of G. In other words, there exist elements g, € H such that y, = gngnTn.
We have shown above that the sequences z, and y, converge in M. Since
the action of G on M is proper, it implies that there exists a convergent
subsequence gn, gn, of gngn such that

(5) y = lHm yn = (Hm gn,gn,)(lim 2n) = gz,

where ¢ = (im0 gny gn,, ). Hence, the sequence (gn,gn,H) converges in
G/H to gH. Since H is a normal subgroup of G, and g,, € H, it follows
that gn, gn, = gn,Gn, for some g, € H. Hence,

GnypGn, H = gnkgng = g H = kny,,
and the sequence k,, converges to gH in G/H. Let k: G - K = G/H de-
note the quotient map. Then gH = limy_, &y, , and equation projected
to P gives
lim Eyypp = g = 7(y) = m(gx) = wlg)m(z) = (lim Ky, )p

k—o0
Thus, we have proved the following result

PROPOSITION 10. Let H be a normal Lie subgroup of a Lie group G. If
G has a smooth proper action on a manifold M, then the induced action of
G/H on M/H is proper.

3. The Slice Theorem of Palais

In the preceding section, we used Palais’ Slice Theorem in the formulation
adapted for a proper action of a Lie group on a manifold. The original result
of Palais is also valid for locally compact topological spaces [14]. In this
section, we review the original formulation of Palais’ results. Definitions
and Theorems are quoted from reference [14]. Remarks are added by the
authors.

We consider a continuous action ® : G x P — P : (g,p) — ®4(p) = gp
of a Lie group GG on a locally compact topological space P.
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DEFINITION 11. P is a proper G-space if each point p € P has a neigh-
bourhood U such that for every q € P, there exists a neighbourhood V of ¢
for which the closure of the set {g e K | gU n'V # J} is compact.

In the following we assume that P is a proper G-space.

DEFINITION 12. Let H be a closed subgroup of G. A subset ¥ of P is
an H-kernel if there exists an equivariant map ¢ : GX — G/H such that
o Y (H) =3X.

REMARK 13. The map ¢ is uniquely determined by X.

Proof. Let y € GX. Then y = gs for some g € G and s € ¥. Moreover,
o(y) = p(gs) = gp(s) = gH since p(s) = H for every s € ¥. If h € H, then
for each s € X, p(hs) = hp(s) = hH = H. Since, ¥ = ¢ }(H), it follows
that 3 is H-invariant.

Suppose now that g1s1 = goss for g1,g92 € G and s1,s9 € S. Then, g1 H =
©(g181) = p(g2s2) = ga(s2) = goH. Hence, ¢ : G — G/H : gs — gH is
well defined and uniquely determined by X. =
THEOREM 14. Let H be a closed subgroup of G. If 3 is an H-kernel in P,
then
1. ¥ s closed in GX.

2. ¥ is tnvariant under H.
3. gXn X # & implies that g€ H.

If H is compact, then in addition

4. 3 has a neighbourhood U in P such that the set {g € G | gU nU # &}
has compact closure.

Conversely, if the above conditions hold then H is compact and Y is an
H-kernel in P.
Proof. See Theorem 2.14 in [14]. =

DEFINITION 15. Let a subset 3 of P be an H-kernel. If GY is open in P,
the set X is called an H-slice in P. If in addition GX = P then ¥ is a global
H-slice in P.

Since P is a proper G-space, for each p € P, the isotropy group G, =
{g€ G| gp = p} of pis compact.
DEFINITION 16. A subset ¥ of P is a slice at p if ¥ is a G,-slice contain-
ing p.

In the following, we shall denote a slice at p € P by X, or ¥.
THEOREM 17. If P is a proper G-space, then for every point p € P there
exists a slice at p.

Proof. See Proposition 2.3.1 in [14]. =
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Next, we show that the notions of a “proper action”, given in Definition
and of a “proper G-space”, given in Definition are equivalent.

REMARK 18. A locally compact topological space P is a proper G-space if
and only if the action of G on P is proper.

Proof. Given py € P, let U be a neighbourhood of py in P with compact
closure. Take any ¢o € P and let V' be a neighbourhood of gy with compact
closure. We want to show that the set W = {g € G | gU n'V # J} has
compact closure. In other words, if g, is a sequence of points in W then
there exists a convergent subsequence. Each g, € W is the limit point of
a sequence gn,, € W. That is, for each n,m, there exists p,,, € U such
that gn mpn,m € V. Since V has compact closure, there exists a subsequence
gn,m;Pn,m; convergent to some gn € V. Similarly, since U has compact
closure, there exists a subsequence of py, ,,, convergent to p, € U in the limit
as k — oo. Without loss of generality, we may assume that g, mpPnm — ¢n
and ppm — pn as m — 0. By construction g, — gn as m — 00. The
assumption that the action is proper implies ¢, = g,p, for every n € N.

Let us now consider sequences g, € W, p, € U and ¢, € V such that
Gn = Gnpn for all n € N. Since U and V are compact, without loss of
generality, we may assume that these sequences are convergent to p € U and
q € V, respectively. Properness of the action of G’ on P implies that there is
a subsequence convergent to g € G such that ¢ = gp. However, W is closed
which implies that g € W. Hence, W is compact.

Conversely, suppose that P is a proper G-space. Let p, be a sequence
of points in P convergent to p and g, be a sequence in GG such that the
sequence g,p, converges to ¢ € P. Let U and V be a neighbourhoods of p
and ¢, respectively, such that U, V and W are compact, where W = {g €
G| gUNV # &}. Since p, — p and g,p, — ¢, there exists N > 0 such that
gn € W € W for all n > N. Compactness of W ensures that the sequence
gn has a convergent subsequence g, with limit g € W. Since the action of
G on P is continuous, it follows that ¢ = lim, e gnpn = limy, 00 g, Pn,, =
(limyn—o0 Gn,, ) (imMp—o0 Pp,, ) = gp. This implies that the action ® of G on
P is proper. =

4. Proper actions on subcartesian spaces

In this section, we assume that P is a locally compact, subcartesian
differential space, and that the action of G on P is smooth. Let H be a
compact subgroup of G. We begin with a lemma, which will be needed in
the following.

LEMMA 19. Consider an action ® : H x P — P : (g,p) — ®4(p) = gp of
a compact Lie group H on a subcartesian differential space P. Let du be a
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Haar measure on H, normalized so that the total volume of H is 1. For each
feC™®(P), the H-average

F=| oyt duto
H
18 a smooth function on P.

Proof. The pull-back ®* f of f € C*™(P) by the action @ is a smooth function
on H x P such that ®*f(g,p) = f(gp) = ®;f(p). For each p € P, the
function g — @7 f(p) on H is smooth. Hence, the integral

f@=L}ﬁ@W@=L}W@mW@

exists and f is a function on P. We need to show that f is smooth.
Since P is subcartesian, for each p € P, there exists a neighbourhood V,
of p and a diffeomorphism ¢, of V), onto a subset of R"». Hence,

idx @p: HxV,— H x¢,(Vp) : (9,9) = (9,0(q)) € H x R"™
is a diffeomorphism. This implies that there exists a function Fj, € C*(H x
R™) such that ((id x gop)_l)*(q)*fmxvp) = Fy|Hxy,(v,)- Therefore, for every

(9,9) € H x V), ®*f(g9,q) = F,(9,p(q)). Integrating this equation over H,
we get for each g € V),

fv, (@) = fH ®* f(g,q)du(g) = JH Fp(9,¢p(q))dp(g).

Since F, € C*(H x R™) and H is compact, it follows that f|Vp is smooth.
This means that there exists a function h, € C*(P) such that ﬁvp = hy|v,-
This holds for every p € P, which ensures that f € C*(P). m

Let 3 be an H-slice at p for the action of G on P. By definition of the
slice, ¥ is invariant under the action of H on P. Hence, we have an action
of HonX

(6) HxY—YX:(g,5) = gs = Pys.

Let 3X/H be the space of H orbits in ¥ and let py, : ¥ — X /H denote the orbit
map. The differential structure C*(X) of 3 is generated by restrictions to
of smooth functions on P. We consider the orbit space ¥/H as a differential
space with the differential structure C*(X/H) = {f : ¥ — R | pf €
C= ()},

By definition of the slice, the space GE = {gs€ P | g € G and s € ¥}
is an open G-invariant neighbourhood of p € P. Its differential structure is
generated by the restrictions to GX of smooth functions on P. We denote
the space of G-orbits in GX by GX/G and the orbit map by pgy : GX —



Slice theorem for differential spaces and reduction by stages 201

GY/G. The differential structure C*(GX/G) of GX/G consists of functions
f:G¥/G — R such that pfy, f € C*(GY).

Let ¢ty : ¥ < GX be the inclusion map. For each s € 3, the H-orbit Hs
extends to the unique G-orbits through s. Thus, we have a one-to-one map
p:YX/H - GEX/G : Hs — Gs. Moreover, every G-orbit in G¥ intersects
> along a unique H-orbit, which implies that § is invertible. We have the
following commutative diagram

s
Y — GX
le lpcz.
Y/H 7 GX/G

THEOREM 20. The bijection 5: ¥/H — GX/G : Hs — Gs is a diffeomor-
phism.

Proof. For every G-invariant function f € C*(GX), the restriction of f to
Y is H-invariant. It implies that §: ¥/H — GX/G is smooth.

In order to demonstrate that 37! : GX/G — X/H is smooth, we have
to show that every H-invariant function h on X extends to a G-invariant
function on GX. Since each point ¢ € GX can be presented as g = gs for
some g € G and s € X, we can define a function f on GX by

(7) f(gs) = h(s).
If (g1,s1) and (g2, s2) € G x X are such that g1s1 = g252, then s9 = g;lglsl,
which implies that g;lgl € H. The H-invariance of h implies that h(s2) =
h(gglglsl) = h(s1). Hence, f is well defined by equation ([7)).

Next, we need to show that f is smooth. For each £ in the Lie algebra g
of G, let X¢ be the vector field on P corresponding to the action of exp t&
on P. Since GX is G-invariant, the restriction X|§GE of X¢ to G¥ is a vector
field on GX. By assumption, P is subcartesian, which implies that G¥ < P
is subcartesian. Hence, for each ¢ € G, there exists an open neighbourhood
U, of ¢ in GX and a diffeomorphism ¢, of U, onto a subset of R"s. For each
Eeg, goq*Xqu is a vector field on ¢(U,). Consider the following system of

differential equations on p(U,) for functions F, € C*(R") :

-1
Soq*Xqu(Fq) =0V eg, and Fq|<pq(quE) = (Soq )*(f|quE)'
Since every G-orbit in GY intersects i, there exists a unique solution of
this system, and it satisfies the condition ¢} (Fq)|quUq/ = on(Fy), AU for
every q,q € GX. Hence, there exists a unique smooth function on G which
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coincides with ¢y (Fq)‘Uq for every g € GX. It is easy to see that this function
is the function f defined above. m

Next we show that the quotient and differential space topologies of our
orbit spaces coincide.

PROPOSITION 21. The differential space topology of C*(X/H) coincides
with the quotient topology.

Proof. Taking into account reference [15], in order to prove that the topology
of the orbit space ¥./H induced by C*(X/H) coincides with the quotient
topology, it suffices to show that for each set V in ¥/H, which is open in
the quotient topology, and each y € V, there exists h € C*(X/H) such that
h(y) # 0 and h|(E/H)\V = 0.

For y € ¥/H, choose ¢ € ¥ such that px(¢q) = y. Since GX is open in
P, and P is locally compact and Hausdorff, it follows that there exists an
open neighbourhood W of ¢ in GX with closure W contained in p~1(V),
where p : P — P/G is the orbit map. Moreover, there exists a non-negative
function f € C*(GX) such that f(q) > 0, and f/gs 3 = 0, where GX\W

denotes the complement of W in G¥; see [I7], p. 78.
By Lemma [TI9] the H-average

f= JH % f du(g)

of f over H is in C*(GX). The assumption that f is non-negative and
f(g) > 0 implies that f(g) > 0. Since f|GE\W = 0, it follows that f\GZ\HW =
0. The compactness of W and H imply that the union HW of all H-orbits
through W is compact, and HW = HW, where HW is the union of all
H-orbits through W. Moreover, the assumption that W < p~1(V) and the
H-invarance of p~*(V), ensure that HW = HW < p~'(V). Thus, f is an
H-invariant smooth function on G¥ such that f (p) > 0 and f vanishes on
GR\p (V).

Let f|2 be the restriction of f to X. Since the differential structure O (%)
is induced by the restrictions to ¥ of smooth functions on P, it follows that
f|2 is smooth. Moreover, ﬁz(q) = f(q) > 0, because ¢ € X. On the other

hand, f vanishes on GX\p~*(V). Hence, ﬁg vanishes on
(G2 I (V) A =S\(p (V) n %) = S\ (V).

Further, fm is H-invariant because f and ¥ are H-invariant. By the defini-
tion of the differential structure C*(¥X/H) of the orbit space, there exists a
function h € C*(X/H) such that fi5; = p5;h. Clearly,

h(y) = h(p(q)) = p5:h(q) = f(q) >0,
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and

0= (1=)impsiov) = 2P)isst(v) = Plosenv = himyw,

which ensures that the quotient topology and the differential space topology
of ¥/H coincide. m

PROPOSITION 22. For a proper action ® : G x P — P of a Lie group G
on a locally compact, subcartesian differential space P, the differential space
topology of C*(P/QG) coincides with the quotient topology.

Proof. Let V' be a neighbourhood of y € P/G that is open in the quotient
topology. Choose p € P such that p(p) = y. The set p~1(V) is an open
G-invariant neighbourhood of p in P.

Let ¥ be a slice through p for the action of G on P. Then G is an open
G-invariant neighbourhood of p in P. We denote the isotropy group of p by
H, and the orbit map by py : X — X/H.

Since P is locally compact and Hausdorff, there exists an open neigh-
bourhood W of p in P with compact closure W contained in p=*(V) n GX.
Without loss of generality, we may assume that W is H-invariant; see the
proof of Proposition . Then, the set p~ (p(W)) np~ (V) A GX is an open
G-invariant neighbourhood of p in G. Hence,

p W) A V) aZ=p (pW))n (p ' (V) nGE) N X

is an H-invariant open neighbourhood of p in ¥. Thus, ps(p~™ (W) N
p~Y(V) n X) is an open neighbourhood of px(p) in the quotient topology
of ¥/H. By Proposition 21} the differential space topology of C*(X/H) co-
incides with the quotient topology. Therefore, there exists a smooth function
h € C*°(X/H) that vanishes in the complement of ps(p~ ! (p(W)nV)NX) in
¥/H and such that h(px(p)) = 1. Since G-orbits in G¥ intersect ¥ along or-
bits of H in ¥, and W is H-invariant, it follows that p~1(p(W))n X = WX,
Therefore, our function h vanishes on the complement of px(p~1(V)nWNX).

By Theorem the map 5 : ¥/H — GX/G : Hs — Gs is a diffeomor-
phism. Therefore, (3~1)*h € C*(GY/G), and p*(B71)*h is a G-invariant

smooth function on G¥. By construction,

p* (871 h(p) = (B71)h(p(p)) = h(B™ (p(p))) = hlps(p)) = 1,
because pigx, © ts; = B 0 py, where ¢y : 3 < P is the inclusion map. On the
other hand, suppose that g € G is in the complement of p~(p(W)nV)nGX.
Hence, p(q) is in the complement of

(W) AV 0 p(GE) = p(W) AV A (GS/G) = p(W n p~ (V) 0 %)

in GX/G. Since 871 : GL/G — L/H is a diffeomorphism, 871(p(q)) is in
the complement of



204 T. Lusala, J. Sniatycki

BHopWnp (V) n %) = ps(Wnp (V) n )

in ¥/H. But h vanishes in the complement of px(p™ (V) n W A X) in
Y/H. Therefore, p*(371)*h = h o 7! o p vanishes on the complement of
o Hp(W) V) GY in GX. Hence, the support of p*(371)*h is a closed
set contained in p~!(p(W) n V) n G, which is open in P.

Consider now a point ¢ in the boundary 0(GX) of GX in P. Since GX
is open in P, it follows that 0(GY) = GX\GX. We want to show that there
exists an open neighbourhood U of g in P such that U n GX is contained in
the complement of p~1(p(W)nV)nGX. Suppose that there is a sequence U,
of neighbourhoods of ¢ such that n%°_,U,, = {q} and U, nGZ n p~ L (p(W) n
V) # &. Then, for each n there is a point ¢, € U, n GX n p~L(p(W) n V),
and the sequence g,, converges to g. Moreover, there exists g, € G such that
gngn € W. Since W is compact, there exists a subsequence 9ny, In,, convergent
to ¢ = limg_,00 GnyGny, € W. By the properness of the action, without loss
of generality, we may assume that the sequence g, is convergent to g € G
and ¢ = gg. This implies that W n 0(GX) # . But, by assumption,
W < GX, and GX is open in P so that GX n d(GX) = . Hence, we get
a contradiction. This implies that there exists a function f € C*(P) such
that fiox = p*(B~1)*h and firgs = 0. Clearly, f is G-invariant and it
pushes forward to a function p,f € C*(P/G). By construction p.f(y) = 1
and (p«f)|(p/a)\v = 0.

The argument above is valid for each point y € P/G and each neigh-
bourhood V of y in P/G that is open in the quotient topology. Hence, the
differential space topology of P/G coincides with its quotient topology [15]. =

We show now that the orbit space P/G is Hausdorff. Observe first, that
the orbit map p : P — P/G is open. It can be seen as follows. Let U be an
open subset of P. For each g € G, gU = {gp € P | p € P} is open, which
implies that GU = UgeqgU is open. Hence, p(U) = p(GU) is open in P/G.
Next, consider the relation

R ={(p,q) € P x P| q= gp for some g € G}

on P defined by the partition of P by orbits of G. Consider a conver-
gent sequence of points in R. It can be written as (pn,qn) = (Pn,gnPn)s
where the sequences (p,) and (gnpn) converge in P. Since the action of
G on P is proper, there exists a convergent subsequence (g,,) in G and
limy, o0 (gnpn) = (iMoo gn,, ) (limy oo pr).  Therefore, limy, o0 (P, Gnpn)
€ R, which implies that R is closed in P x P. This ensures that P/G is
Hausdorff; see Theorem 11 in Chapter 3 of reference [§].

In Theorem we showed that the bijection f: ¥/H — GX/G : Hs —
Gs is a diffeomorphism. If W is an H-invariant open subset of 3, ps (W)
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is an open subset of ¥/H that consists of H-orbits contained in W. On
the other hand, since G¥ is an open subset of P, the set GW, consisting of
G-orbits intersecting W, is a G-invariant open subset of G, and p(GW) is an
open subset of P/G. Moreover, p(W) = p(GW) = B(ps(W)). We shall use
these equalities in the arguments below.

PROPOSITION 23. Let G x P — P be a proper action of a Lie group G
on a locally compact subcartesian differential space P. The space P/G of
G-orbits in P s locally compact.

Proof. Proposition [22| ensures that P/G is a differential space with quotient
topology. For p € P, let H be the isotropy group of p and let V' be an open
neighbourhood of p(p) € P/G. We want to show that there exists an open
neighbourhood of p(p) in P/G that has compact closure contained in V.

Let X be the slice at p for the action of G on P. By definition, G¥ is
an open G-invariant neighbourhood of p in P. Without loss of generality,
we may assume that p~1(V) € GX. Hence, we may consider V as an open
subset of GX/G. By Theorem 20, 8 : ¥/H — GX/G : Hs — Gs is a
diffeomorphism. Hence, 3~1(V) is open in ¥/H.

Since P is Hausdorff and locally compact, there exists a neighbourhood
U of p with compact closure U contained in p~1(V). Let

W={gseS|geHandseUnS}=|]JgUn%)=HU ).
geH
Since U n X is open in ¥ and the action of H on ¥ is continuous, it follows
that g(U nX) is open in ¥ for each g € H. Hence, W is an open H-invariant
neighbourhood of p in X. Therefore, py,(W) is an open neighbourhood of
ps(p) contained in S~1(V). This implies that p(W) = B(px(W)) is an open
neigbourhood of p(p) in GX/G contained in V.

The closure W of W is the set of limit points of sequences in W. Suppose
a sequence (g,s,) in W converges to ¢ € W. Since the sequence (s,) is
contained in U n ¥ € U n ¥ and U is compact, there exists a subsequence
of (sp,,) convergent to g in U n X. Compactness of H implies that there is
a subsequence (gn,,, ) of (gn,,) convergent to g € H, and ¢ = gq € HUNY).
Conversely, every point of H(U nY) can be presented as a limit of a sequence
Gnsn for g, € H and s,, € UnX. Hence, W = H(UNY). SinceU < p~ (V) <
GY, it follows that W = H{U nX) < p~Y(V) n X.

The action ® : G x P — P is continuous. Its restriction &y : Hx P — P
to an action of H on P is also continuous. Moreover, the set H(U n %) =
Oy (Hx (UNY)). Further, U nY is compact as a closed subset of a compact
set U. Since the product of compact sets is compact and the image of
a compact set under a continuous map is compact, it follows that W is
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compact. Thus, W is an H-invariant neighbourhood of p in ¥ such that its
closure W is compact and contained in p~1(V) n X.

We have shown above that orbit maps of a proper action are open. Hence,
ps(W) is an open neighbourhood of px(p) in ¥/H. Moreover, ps(W) is a
compact subset of ¥/H contained in 3~(V'). Hence, ps(W) is closed in ¥/ H
and it contains the closure of px(W). Since every point s € W is the limit
of a convergent sequence s, in W. Hence, px(s) = lim,—q px(sy) € ps(W).
Therefore, ps;(W) = ps(W), which implies that the closure of ps (W) is
compact.

Since 5 : ¥/H — GX/G : Hs — Gs is a diffeomorphism, S(px(W)) is an
open neighbourhood of pgx(p) in GX/G with compact closure contained in
V € G¥/G. But, GX is open in P, so that GX/G = p(G¥) < P/G. Thus,
B(ps(W)) is an open neighbourhood of p(p) with compact closure contained
in V' € P. This implies that P/G is locally compact. =

We have shown that the space of orbits of a proper action of a Lie group
G on a locally compact subcartesian space P is a locally compact differential
space P/G with the quotient topology. This result is somewhat disappointing
if one compares it to the wealth of information we have about spaces of orbits
of proper actions of Lie groups on manifolds. In both cases (manifolds and
differential spaces) the starting point in an application of the Slice Theorem,
which we have discussed here. In the case of smooth manifolds, the next step
is Bochner’s Linearization Lemma, see [6]. It would be of interest to find
a class of subcartesian spaces for which there is an analogue of Bochner’s
Linearization Lemma.

5. Symplectic reduction by stages

We return to symmetries of Hamiltonian systems discussed in the intro-
duction. We have a symplectic manifold (M,w), and a proper symplectic
action ® : G x M — M : (g,z) — gz of G on M. The symplectic form
w defines on C®(M) the structure of a Poisson algebra as follows. For
each f € C®(M), the Hamiltonian vector field of f is the unique vec-
tor field Xy on M such that Xylw = df, where 1 denotes the left in-
terior product (contraction). The Poisson bracket of fi, fo € C®(M) is
given by {fi, fo} = Xy, fo. It is antisymmetric, satisfies the Jacobi iden-
tlty {fla{f27f3}} + {f2a{f3>f1}} + {f37{f17f2}} = 0 and the Leibniz rule
{{f1, fafs} = {f1, fo} 3 + folf1, f3}, for every fi, fo, f3 € C(M).

By Theorem [5( and Proposition the orbit space P = M /G with the
quotient topology is a subcartesian differential space with the differential
structure C*(P) = {h: P > R | n*h € C*(M)}, where 7 : M — P is
the orbit map. The ring C®(P) is isomorphic to the ring C®(M)% of G-
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invariant smooth functions on M. Since the action ® of G on M preserves the
symplectic form w, the induced action of G on C* (M) preserves the Poisson
bracket. Hence, the space C®(M)% is a Poisson sub-algebra of C®(M).
Using the ring isomorphism 7* : C®(P) — C*(M)%, we can pull-back the
Poisson algebra structure of C*(M)% to C*(P). For each hy, hy € CP(P),
the Poisson bracket {h1, ho} is given by 7*{h1, ha} = {m*hi,m*ha}. Since the
differential structure C*(P) is a Poisson algebra, we refer to P as a Poisson
differential space.

For h € C®(P), the Poisson derivation Y} corresponding to h is given
by Y h' = {h,h'} for every b/ € C*(P). Each Poisson derivation Y}, is a
vector fields on P in the sense that translations along integral curves of Y}
give a local one-parameter local group of local diffeomorphisms of P. We
denote by B(P) the family of all Poisson derivations of C*(P). In other
words, PB(P) = {Y, | h e C*(P)} < X(P), where X(P) is the family of all
vector fields on P.

By Theorem [3]and Theorem[6] P is a locally compact Hausdorff stratified
space, and for each p € P, the stratum S of P through p is a manifold and it
is an orbit of the family X(P) of all vector fields on P. The space C*(S) of
smooth functions on S is generated by restrictions to .S of functions in C*(P).
The restrictions to S of vector fields on P are tangent to S, because S is
an orbit of the family of all vector fields on P. Hence, C*(S) inherits from
C®(P) the structure of a Poisson algebra. Thus, S is a Poisson manifolds.
Moreover, since restrictions to S of vector fields on P are tangent to S, the
space of restrictions to S of Poisson vector fields on P coincides with the
space PB(5) of Poisson vector fields on S.

Poisson manifolds are foliated by symplectic leaves. The orbit through
p € S of the family J(S) of Poisson vector fields on S is the symplectic leaf
(L,wr,) through P. The symplectic form wy, on L is given by the Poisson
structure of C°(P) as follows. For every hq,hy € C*(P) and each p € L,
we have wr, (Y, (p), Ya,(p)) = {h1, h2}(p); see [19]. It should be noted that,
for each p € P, the symplectic form wy, of the symplectic leaf L through p is
completely determined by the Poisson algebra structure of C*(P).

We have described here the process of singular symplectic reduction; that
is, the symplectic reduction in the case when the action of the symmetry
group G on (M,w) is proper following reference [19], for more details see [20)].
If G has a normal subgroup H, then we may first reduce by the action of
H obtaining the space Q = M/H of H-orbits in M. As before, @ is a
stratified subcartesian differential space with differential structure C*(Q) =
{hg : Q@ = R | p*hg € C*(M)}, where p : M — (@ is the orbit map. As
before, C*(Q) has the structure of a Poisson algebra and, for each ¢ € @, the
stratum S through ¢ is a Poisson manifold singularly foliated by symplectic
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leaves. Symplectic leaves L of S are orbits of the family of Poisson vector
fields on S, and the symplectic form w 7 on L is uniquely determined by the
Poisson structure of C*°(Q).

Next, we consider the action of the quotient group G/H on Q = M/H.
In Section 2, we have shown that the action of G/H on @ is proper. By
the results of Section 4, the space R = Q/(G/H) of (G/H)-orbits on @ is a
locally compact differential space and its differential structure

C*(R)=1{hr:R—R|c*hre C*Q)},

where ¢ : Q — R is the orbit map, is compatible with the quotient topology.
But the definition of C*(R) implies that

(8) C*(R) = {hr: R—>R|(00p)*hre C*(M)},

so that (o 0 p)* : C®(R) — C*®(M)Y is a ring isomorphism. Hence, we can
use it to pull-back to C*(R) the Poisson algebra structure of C®(M)%.

LEMMA 24. There is a unique differential space isomorphism ¢ : P — R
such that ¢ o = o o p. Moreover, p* : C®(R) — C®(P) is a Poisson
algebra isomorphism.

Proof. Both m: M — P and (6 0p) : M — R are epimorphisms. Given
xo € M, let po = m(x0), go = p(x0) and 79 = o(qo). The fibre 771 (po) is the
orbit Gz of G through zy. The action of G/H on R associates to each class
[g] € G/H and q € Q the point [g]q = p(gz) for any = € p~1(g). Hence,

(00p) 7 (ro)=p~ (0 (r0) =p~ ' ((G/H)q0) =p~ ' ({p(g20) | g€ G}) =Guo.
This implies that 7~ (7(29)) = (o 0 p) " (o (p(x0)) for every xg € M. Hence,
there is a unique bijection ¢ : P — R such that, ¢(m(z)) = o(p(z)) for every
ze M.

To prove that ¢ is smooth observe that equation implies that, (o o
p)*hr € CP(M)C for every hp € C®(R). Therefore, there is a unique
hp € C®(P) such that (o o p)*hg = 7*hp. But p o™ = o o p implies
that hp = ¢*hg. Moreover, every hp € C®(P) of the form hp = 7*f for
f e C*(M)%. On the other hand, f = (¢ o p)*hg for some hr € C®(S).
Hence, ¢* maps C*(R) onto C*(P) which implies that ¢ : P — R is a
diffeomorphism.

The Poisson algebra structures on C*°(P) and C*(R) are induced by the
Poisson algebra structure on C®(M)® by ring homomorphisms
7% CP(P) — C*(M)% and (0 0 p)* : C*(R) — C®(M)%, respectively.
This implies that ¢* : C*(R) — C®™(P) is also a Poisson algebra isomor-
phism. =

Note that the result that ¢ : P — R is an isomorphism in the category of
differential spaces implies that, if one of these spaces has special properties
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that can be described within the category of differential spaces, so has the
other. We have seen it already in the Poisson algebra structure of both
C*®(P) and C*(R).

THEOREM 25. The space R of G/H orbits in Q = M/H is subcartesian.
For every x € M, the restriction of ¢ to the symplectic leaf My () of the stra-
tum Sy of P is a symplectomorphism of (My(y),Wr(z)) onto the symplectic
leaf through r = @(mw(z)) = o(p(x)) of the orbit through r of the the family
X(R) of all vector fields on R.

Proof. (i) Both P and R are locally compact Hausdorff differential spaces
that are diffeomorphic to each other. Since the subcartesian property of
P is defined within the category of differential spaces, it follows that R is
subcartesian.

(ii) The orbit type stratification of P = M /G is given by orbits of the
family of all vector fields X(P) on P, which is a notion in the category of sub-
cartesian differential spaces. By the argument above, both P and R are sub-
cartesian. Hence the isomorphism ¢ : P — R in the category of differential
spaces implies that P and R are isomorphic in the subcategory of subcarte-
sian differential spaces. Hence, R is a stratified subcartesian space and strata
of R are orbits of the family X(R) of all vector fields on R. Since C*(R) is
a Poisson algebra, each stratum of R is a Poisson manifold and it is foliated
by symplectic leaves. Moreover, ¢* : C*(R) — C*™(P) is a Poisson algebra
isomorphism. This implies that ¢ maps symplectic leaves of strata of P sym-
plectomorphically onto the corresponding symplectic leaves of strata of R. =

Results of this section can be paraphrased by saying that for a proper
action of a Lie group on a symplectic manifold, reduction and reduction by
stages are equivalent. Note, that we have not required the stages hypothesis
that is needed in the usual approach to Poisson reduction by stages; see
Section 15.3 of reference [I1].
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