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SLICE THEOREM FOR DIFFERENTIAL SPACES AND
REDUCTION BY STAGES

Abstract. We show that the space P {G of orbits of a proper action of a Lie group
G on a locally compact differential space P is a locally compact differential space with
quotient topology. Applying this result to reduction of symmetries of Hamiltonian systems,
we prove the reduction by stages theorem.

1. Introduction
A symplectic manifold is a pair pM,ωq, where M is a manifold and ω

is a closed non-degenerate 2-form on M . We denote by C8pMq the ring of
smooth functions on M . Since ω is non-degenerate, for each h P C8pMq,
there exists a unique vector field Xh on M , called the Hamiltonian vector
field of Xh, such that

(1) Xh ω “ ´dh,

where denotes the left interior product (contraction) of vector fields and
forms. If M is the phase space of a Hamiltonian system with Hamiltonian
h P C8pMq, then integral curves of the Hamiltonian vector field Xh of h
are trajectories of the system. In this case, equation (1) is equivalent to the
Hamiltonian equations of motion of the system.

Let G be a locally compact, connected Lie group with a Lie algebra g and
its dual g˚. The group G is a symmetry group of the Hamiltonian system
pM,ω, hq if there is a smooth action

Φ : GˆM ÑM : pg, xq ÞÑ Φgpxq “ gx

of G on pM,ωq that preserves the symplectic form ω and preserves the Hamil-
tonian h. In other words, we assume that for every g P G,

Φ˚gω “ ω and Φ˚gh “ h.
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Definition 1. The action of G on M is proper if for every convergent
sequence pxnq inM , and a sequence pgnq in G such that the sequence pgnxnq
is convergent, there exists a convergent subsequence, pgnk

q of pgnq and

lim
nÑ8

pgnxnq “ p lim
kÑ8

gnk
qp lim
nÑ8

xnq.

For each x P M , the isotropy group of x is Gx “ tg P G | gx “ xu. If
the action of G on M is proper, then all isotropy groups are compact. For
every compact subgroup K of G, the set of points of symmetry type K is
MK “ tx P M | Gx “ Ku. Similarly, the set of points of orbit type K is
MpKq “ tx PM | Gx is conjugate to Ku. The properness of the action of G
implies that connected components of MK and of MpKq are submanifolds of
M . We denote by M the family of all connected components of sets MpKq

of orbit type K, for all compact subgroups K of G.
In order to describe the geometric structure of the space of G-orbits

in M , we have to define what we mean by a stratified space. Let T be
a topological space and let N be a locally finite family of locally closed
manifolds N contained in T that cover T . In other words, we assume that
each N P N is a locally closed connected subset of T carrying the structure
of a smooth manifold such that the manifold topology of N is induced by
the inclusion map N ↪Ñ T . Moreover, we assume that T “ YNPNN , and for
each x P T , there exists an open neighbourhood U of x that intersects only a
finite number of manifolds N in N. We say that T is stratified by the family
N if the following condition is satisfied1.

Condition 2. For N,N 1 P N, if N 1 X N ‰ H, then either N 1 “ N or
N 1 Ă NzN .

Manifolds N P N are called strata of the stratification of T defined by N.
Let R “ M{G be the space of orbits of a proper action of G on M and

let ρ : M Ñ R be the orbit map. Consider the family N consisting of the
projections to R of manifolds in M. In other words, elements of N are of
the form N “ ρpCq, where C is a connected component of MpKq for some
compact subgroup K of G.

Theorem 3. For a proper action of a connected Lie group G on a manifold
M , the family N is locally finite, consists of locally closed manifolds, and it
defines a stratification of the orbit space R “M{G.

Proof. Bierstone [2].
1In the literature, there are a variety of definitions of the notion of “stratification”. For

example, Mather defines stratification of a topological space S as a map from S to the
sheaf of germs of manifolds satisfying certain conditions, [12]. Our definition is equivalent
to Mather’s in the case when S is a differential space. It is more convenient because it
does not require the introduction of sheaves.
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The stratification of R defined by N is called the orbit type stratification
of the orbit space.

Theorem 4. If the proper action of G on M preserves the symplectic form
ω, then each stratum of the orbit space R “ M{G is a Poisson manifold
singularly foliated by symplectic manifolds.

Proof. See Cushman and Bates [5], and Libermann and Marle [9].

The existence of symmetries of a Hamiltonian system usually simplifies
solving equations of motion. Since the Hamiltonian h is G-invariant, it
pushes forward to a function h on the orbit space R. In other words, h “ ρ˚h.
Suppose that c : I Ñ M is an integral curve of Xh. Then, the projection
c “ ρ ˝ c is contained in a symplectic leaf of a stratum of R and it is an
integral curve of the Hamiltonian vector field of h defined in terms of the
symplectic form on that leaf. In other words, if L is a symplectic leaf of
R containing c, and ωL is the symplectic form on L, then c : I Ñ L is an
integral curve of a vector field XL

h
on L such that

(2) XL
h

ωL “ ´dh|L,

where h|L is the restriction of h to L. Usually, dimL is smaller than dimM ,
and the differential equation satisfied by c has a smaller number of dependent
variables than the equation satisfied by c.

In mechanics, the passage from M to the space R “M{G of G-orbits in
M is called reduction of symmetries. In applications, the symmetry group
G has often a normal subgroup H. It may be convenient to reduce first the
symmetries of the system given by H, and to pass to the space P “ M{H
of H-orbits in M . Let π : M Ñ P “ M{H denote the orbit map. Since
the action of G on M is proper, the action of H on M is proper, and by
the theorems above, P is a stratified space, each stratum of P is a Poisson
manifold singularly foliated by symplectic manifolds.

The quotient group G{H acts on P . Let Q “ P {pG{Hq be the space of
pG{Hq-orbits in P and η : P Ñ Q be the orbit map. We have the following
identifications R “ M{G “ pM{Hq{pG{Hq “ P {pG{Hq “ Q, which means
that there is a bijection β : RÑ Q such that

(3) β ˝ ρ “ η ˝ π.

Equation (3) is an equality of maps in the category of sets. However, our
sets have structures and individual maps may preserve these structures. For
example, if we consider the orbit type stratifications of M corresponding to
the action of G and H, respectively, then ρ and π are morphisms of stratified
spaces. On the other hand, β and η are continuous maps. It would be nice if
all maps involved here, were morphisms in a category such that equation (3)



Slice theorem for differential spaces and reduction by stages 195

guarantees that reduction by stages gives the same structure as the reduction
of all symmetries at once.

The category of differential spaces and its subcategory of subcartesian
differential spaces provide the required setting. We assume that the reader
is familiar with the techniques of the theory of differential spaces. A compre-
hensive bibliography of the literature on differential spaces during the period
1965–1992 is given in [3].

Theorem 5. The space R “ M{G of G-orbits of a proper action of a
connected Lie group on a manifoldM, endowed with the differential structure

C8pRq “ tf : RÑ R | ρ˚f P C8pMqu,

is a subcartesian space.

Proof. Cushman and Śniatycki [7], and Śniatycki [18]. See also Cushman,
Duistermaat and Śniatycki [6].

Theorem 6. Strata of the orbit type stratification of the orbits space R “
M{G of a proper action of G on M are orbits of the family of all vector
fields on R.

Proof. Lusala and Śniatycki [10], and Śniatycki [19]. See also Cushman,
Duistermaat and Śniatycki [6].

Theorems 5 and 6 show that the stratification structure of the orbit space
R of a proper action of a connected Lie group G on a manifoldM is encoded
in the differential structure C8pRq. Hence, the stratification structure is
invariant under diffeomorphisms of differential spaces.

The orbit maps ρ : M Ñ R “ M{G and π : M Ñ P “ M{G are
smooth in the category of differential spaces. Our aim in this paper is to
show that the orbit map η : P Ñ Q “ P {G is smooth and that β : R Ñ Q
is a diffeomorphism. This will justify reduction by stages.

2. Properness of the action of G{H
Since H is a normal Lie subgroup of G, the quotient K “ G{H is a Lie

group. The action of K on P “M{H, induced by the action of G on M, is
given by pG{Hq ˆ pM{Hq ÑM{H : pHg,Hxq ÞÑ Hgx. With this notation,
we can rewrite the expression for the action. Our aim in this section is to
prove that the properness of the action of G on M implies that the action
of G{H on M , given above, is proper. Our main tool for this task is Palais’
Slice Theorem [14], which we shall state presently. Here, we need the Slice
Theorem for the action of H on M , and we formulate the definition of the
slice accordingly.
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For each x PM , the isotropy group Hx of x is given by

(4) Hx “ tg P H | gx “ xu.

Since H is a closed subgroup of G, the assumed properness of the action of
G on M implies that the action of H on M is proper. Therefore, for every
x PM , the isotropy group Hx of x is compact.

Definition 7. A slice through x P M , for an action of a Lie group H on
M , is a submanifold Sx of M containing x such that

1. Sx is transverse and complementary to the orbit Hx of H through x. In
other words,

TxM “ TxSx ‘ TxpHxq.

2. For every x1 P Sx, the manifold Sx is transverse to the orbit Hx1, that is

Tx1M “ Tx1Sx ` Tx1pHx
1q.

3. Sx is Hx-invariant.
4. For any the following holds: If gx1 P Sx then g P Hx.

Theorem 8. Let H ˆM Ñ M : pg, xq ÞÑ gx be a proper action of a Lie
group H on a manifold M . For every x P M , there exists a slice Sx for the
action of H on M .

Proof. Palais [14].

Remark 9. Let Sx be a slice at x for the action of H. Shrinking Sx, if
necessary, we may assume that HSx is an H-invariant open neighborhood of
x in M . Moreover, for any x1 P Sx, the orbit Hx1 of H through x1 intersects
Sx along the orbit Hxx

1 of Hx through x1. For details, see [14].

Consider a convergent sequence ppnq of orbits in P “ M{H. Let x be
a point in M contained in the limit orbit p “ limnÑ8 pn. We can write
p “ Hx “ πpxq. Let Hx “ tg P H | gx “ xu be the isotropy group of x. By
Theorem 8, there exists a slice Sx through x for the action of H on M such
that HSx is an H-invariant neighbourhood of x in M . Since the sequence
of H-orbits pn converges to p, it follows that there exists N ą 0 such that
for every n ą N , the orbit pn intersects HSx. Without loss of generality,
for each n P N, we can choose a point xn contained in the orbit pn and such
that xn P Sx whenever n ą N . Note that for n ą N , the point xn P Sx is
determined up to the action of g P Hx. Property 1 of Definition 7 implies
that Sx XHx “ txu. Since p “ limnÑ8 pn, for every neighbourhood U of x
in Sx, there exists NU ą 0 such that pn P HU for all n ą NU . Therefore,
xn P U for all n ą NU . This implies that x “ limnÑ8 xn.

Suppose now that pknq is a sequence in G{H such that the sequence
pknpnq converges. As before, let y be a point in the orbit q “ limnÑ8 knpn,
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and let Sy be a slice at y for the action of H on M . We may construct a
sequence pynq in M such that yn is in the intersection of the orbit knpn and
Sy for all n greater than some constant N 1. The same argument as before
proves that y “ limnÑ8 yn.

Elements of G{H are H-orbits in G. Hence, there exists a sequence
gn P G such that kn “ gnH, and

Hyn “ knpn “ gnHpn “ gnHHxn “ Hgnxn,

where the last equality follows from the fact that H is a normal subgroup
of G. In other words, there exist elements g̃n P H such that yn “ g̃ngnxn.
We have shown above that the sequences xn and yn converge in M . Since
the action of G on M is proper, it implies that there exists a convergent
subsequence g̃nk

gnk
of g̃ngn such that

(5) y “ lim
nÑ8

yn “ p lim
kÑ8

g̃nk
gnk
qp lim
nÑ8

xnq “ gx,

where g “ plimkÑ8 g̃nk
gnk
q. Hence, the sequence pg̃nk

gnk
Hq converges in

G{H to gH. Since H is a normal subgroup of G, and g̃nk
P H, it follows

that g̃nk
gnk

“ gnk
g̃1nk

for some g̃1nk
P H. Hence,

g̃nk
gnk

H “ gnk
g̃1nk

H “ gnk
H “ knk

,

and the sequence knk
converges to gH in G{H. Let κ : G Ñ K “ G{H de-

note the quotient map. Then gH “ limkÑ8 knk
, and equation (5) projected

to P gives

lim
nÑ8

knk
pn “ q “ πpyq “ πpgxq “ κpgqπpxq “ p lim

kÑ8
knk
qp

“ p lim
kÑ8

knk
qp lim
nÑ8

pnq.

Thus, we have proved the following result

Proposition 10. Let H be a normal Lie subgroup of a Lie group G. If
G has a smooth proper action on a manifold M , then the induced action of
G{H on M{H is proper.

3. The Slice Theorem of Palais
In the preceding section, we used Palais’ Slice Theorem in the formulation

adapted for a proper action of a Lie group on a manifold. The original result
of Palais is also valid for locally compact topological spaces [14]. In this
section, we review the original formulation of Palais’ results. Definitions
and Theorems are quoted from reference [14]. Remarks are added by the
authors.

We consider a continuous action Φ : G ˆ P Ñ P : pg, pq ÞÑ Φgppq “ gp
of a Lie group G on a locally compact topological space P .
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Definition 11. P is a proper G-space if each point p P P has a neigh-
bourhood U such that for every q P P , there exists a neighbourhood V of q
for which the closure of the set tg P K | gU X V ‰ Hu is compact.

In the following we assume that P is a proper G-space.
Definition 12. Let H be a closed subgroup of G. A subset Σ of P is
an H-kernel if there exists an equivariant map ϕ : GΣ Ñ G{H such that
ϕ´1pHq “ Σ.

Remark 13. The map ϕ is uniquely determined by Σ.
Proof. Let y P GΣ. Then y “ gs for some g P G and s P Σ. Moreover,
ϕpyq “ ϕpgsq “ gϕpsq “ gH since ϕpsq “ H for every s P Σ. If h P H, then
for each s P Σ, ϕphsq “ hϕpsq “ hH “ H. Since, Σ “ ϕ´1pHq, it follows
that Σ is H-invariant.

Suppose now that g1s1 “ g2s2 for g1, g2 P G and s1, s2 P S. Then, g1H “

ϕpg1s1q “ ϕpg2s2q “ g2ϕps2q “ g2H. Hence, ϕ : GΣ Ñ G{H : gs ÞÑ gH is
well defined and uniquely determined by Σ.
Theorem 14. Let H be a closed subgroup of G. If Σ is an H-kernel in P ,
then
1. Σ is closed in GΣ.
2. Σ is invariant under H.
3. gΣX Σ ‰ H implies that g P H.
If H is compact, then in addition
4. Σ has a neighbourhood U in P such that the set tg P G | gU X U ‰ Hu

has compact closure.
Conversely, if the above conditions hold then H is compact and Σ is an
H-kernel in P .

Proof. See Theorem 2.14 in [14].
Definition 15. Let a subset Σ of P be an H-kernel. If GΣ is open in P ,
the set Σ is called an H-slice in P . If in addition GΣ “ P then Σ is a global
H-slice in P .

Since P is a proper G-space, for each p P P , the isotropy group Gp “
tg P G | gp “ pu of p is compact.
Definition 16. A subset Σ of P is a slice at p if Σ is a Gp-slice contain-
ing p.

In the following, we shall denote a slice at p P P by Σp or Σ.
Theorem 17. If P is a proper G-space, then for every point p P P there
exists a slice at p.

Proof. See Proposition 2.3.1 in [14].
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Next, we show that the notions of a “proper action”, given in Definition 1,
and of a “proper G-space”, given in Definition 11, are equivalent.

Remark 18. A locally compact topological space P is a proper G-space if
and only if the action of G on P is proper.

Proof. Given p0 P P , let U be a neighbourhood of p0 in P with compact
closure. Take any q0 P P and let V be a neighbourhood of q0 with compact
closure. We want to show that the set W “ tg P G | gU X V ‰ Hu has
compact closure. In other words, if gn is a sequence of points in W then
there exists a convergent subsequence. Each gn P W is the limit point of
a sequence gn,m P W . That is, for each n,m, there exists pn,m P U such
that gn,mpn,m P V . Since V has compact closure, there exists a subsequence
gn,mjpn,mj convergent to some qn P V . Similarly, since U has compact
closure, there exists a subsequence of pn,mk

convergent to pn P U in the limit
as k Ñ 8. Without loss of generality, we may assume that gn,mpn,m Ñ qn
and pn,m Ñ pn as m Ñ 8. By construction gn,m Ñ gn as m Ñ 8. The
assumption that the action is proper implies qn “ gnpn for every n P N.

Let us now consider sequences gn P W, pn P U and qn P V such that
qn “ gnpn for all n P N. Since U and V are compact, without loss of
generality, we may assume that these sequences are convergent to p P U and
q P V , respectively. Properness of the action of G on P implies that there is
a subsequence convergent to g P G such that q “ gp. However, W is closed
which implies that g PW . Hence, W is compact.

Conversely, suppose that P is a proper G-space. Let pn be a sequence
of points in P convergent to p and gn be a sequence in G such that the
sequence gnpn converges to q P P . Let U and V be a neighbourhoods of p
and q, respectively, such that U , V and W are compact, where W “ tg P
G | gU XV ‰ Hu. Since pn Ñ p and gnpn Ñ q, there exists N ą 0 such that
gn P W Ď W for all n ą N . Compactness of W ensures that the sequence
gn has a convergent subsequence gnm with limit g P W . Since the action of
G on P is continuous, it follows that q “ limnÑ8 gnpn “ limmÑ8 gnmpnm “

plimmÑ8 gnmqplimmÑ8 pnmq “ gp. This implies that the action Φ of G on
P is proper.

4. Proper actions on subcartesian spaces
In this section, we assume that P is a locally compact, subcartesian

differential space, and that the action of G on P is smooth. Let H be a
compact subgroup of G. We begin with a lemma, which will be needed in
the following.

Lemma 19. Consider an action Φ : H ˆ P Ñ P : pg, pq ÞÑ Φgppq “ gp of
a compact Lie group H on a subcartesian differential space P . Let dµ be a
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Haar measure on H, normalized so that the total volume of H is 1. For each
f P C8pP q, the H-average

f̃ “

ż

H
Φ˚gf dµpgq

is a smooth function on P.

Proof. The pull-back Φ˚f of f P C8pP q by the action Φ is a smooth function
on H ˆ P such that Φ˚fpg, pq “ fpgpq “ Φ˚gfppq. For each p P P , the
function g ÞÑ Φ˚gfppq on H is smooth. Hence, the integral

f̃ppq “

ż

H
Φ˚gfppqdµpgq “

ż

H
Φ˚fpg, pqdµpgq

exists and f̃ is a function on P . We need to show that f̃ is smooth.
Since P is subcartesian, for each p P P , there exists a neighbourhood Vp

of p and a diffeomorphism ϕp of Vp onto a subset of Rnp . Hence,

idˆ ϕp : H ˆ Vp Ñ H ˆ ϕppVpq : pg, qq ÞÑ pg, ϕpqqq P H ˆ Rnp

is a diffeomorphism. This implies that there exists a function Fp P C8pH ˆ
Rnpq such that ppidˆϕpq´1q˚pΦ˚f|HˆVpq “ Fp|HˆϕppVpq. Therefore, for every
pg, qq P H ˆ Vp, Φ˚fpg, qq “ Fppg, ϕppqqq. Integrating this equation over H,
we get for each q P Vp,

f̃|Vppqq “

ż

H
Φ˚fpg, qqdµpgq “

ż

H
Fppg, ϕppqqqdµpgq.

Since Fp P C8pH ˆ Rnpq and H is compact, it follows that f̃|Vp is smooth.
This means that there exists a function hp P C8pP q such that f̃|Vp “ hp|Vp .
This holds for every p P P , which ensures that f̃ P C8pP q.

Let Σ be an H-slice at p for the action of G on P . By definition of the
slice, Σ is invariant under the action of H on P . Hence, we have an action
of H on Σ

(6) H ˆ Σ Ñ Σ : pg, sq ÞÑ gs “ Φgs.

Let Σ{H be the space ofH orbits in Σ and let ρΣ : Σ Ñ Σ{H denote the orbit
map. The differential structure C8pΣq of Σ is generated by restrictions to Σ
of smooth functions on P . We consider the orbit space Σ{H as a differential
space with the differential structure C8pΣ{Hq “ tf : Σ Ñ R | ρ˚Σf P
C8pΣqu.

By definition of the slice, the space GΣ “ tgs P P | g P G and s P Σu
is an open G-invariant neighbourhood of p P P . Its differential structure is
generated by the restrictions to GΣ of smooth functions on P . We denote
the space of G-orbits in GΣ by GΣ{G and the orbit map by ρGΣ : GΣ Ñ
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GΣ{G. The differential structure C8pGΣ{Gq of GΣ{G consists of functions
f : GΣ{GÑ R such that ρ˚GΣf P C

8pGΣq.
Let ιΣ : Σ ↪Ñ GΣ be the inclusion map. For each s P Σ, the H-orbit Hs

extends to the unique G-orbits through s. Thus, we have a one-to-one map
β : Σ{H Ñ GΣ{G : Hs ÞÑ Gs. Moreover, every G-orbit in GΣ intersects
Σ along a unique H-orbit, which implies that β is invertible. We have the
following commutative diagram

ιΣ

Σ ÝÑ GΣ

ρΣ

§

§

đ

§

§

đ

ρGΣ

Σ{H ÝÑ GΣ{G
β

.

Theorem 20. The bijection β : Σ{H Ñ GΣ{G : Hs ÞÑ Gs is a diffeomor-
phism.

Proof. For every G-invariant function f P C8pGΣq, the restriction of f to
Σ is H-invariant. It implies that β : Σ{H Ñ GΣ{G is smooth.

In order to demonstrate that β´1 : GΣ{G Ñ Σ{H is smooth, we have
to show that every H-invariant function h on Σ extends to a G-invariant
function on GΣ. Since each point q P GΣ can be presented as q “ gs for
some g P G and s P Σ, we can define a function f on GΣ by

(7) fpgsq “ hpsq.

If pg1, s1q and pg2, s2q P GˆΣ are such that g1s1 “ g2s2, then s2 “ g´1
2 g1s1,

which implies that g´1
2 g1 P H. The H-invariance of h implies that hps2q “

hpg´1
2 g1s1q “ hps1q. Hence, f is well defined by equation (7).
Next, we need to show that f is smooth. For each ξ in the Lie algebra g

of G, let Xξ be the vector field on P corresponding to the action of exp tξ
on P . Since GΣ is G-invariant, the restriction Xξ

|GΣ of Xξ to GΣ is a vector
field on GΣ. By assumption, P is subcartesian, which implies that GΣ Ď P
is subcartesian. Hence, for each q P GΣ, there exists an open neighbourhood
Uq of q in GΣ and a diffeomorphism ϕq of Uq onto a subset of Rnq . For each
ξ P g, ϕq˚X

ξ
|Uq

is a vector field on ϕpUqq. Consider the following system of
differential equations on ϕpUqq for functions Fq P C8pRnqq :

ϕq˚X
ξ
|Uq
pFqq “ 0 @ ξ P g, and Fq|ϕqpUqXΣq “ pϕ

´1
q q

˚pf|UqXΣq.

Since every G-orbit in GΣ intersects Σ, there exists a unique solution of
this system, and it satisfies the condition ϕ˚q pFqq|UqXUq1

“ ϕ˚q1pFq1q|UqXUq1
for

every q, q1 P GΣ. Hence, there exists a unique smooth function on GΣ which



202 T. Lusala, J. Śniatycki

coincides with ϕ˚q pFqq|Uq
for every q P GΣ. It is easy to see that this function

is the function f defined above.

Next we show that the quotient and differential space topologies of our
orbit spaces coincide.

Proposition 21. The differential space topology of C8pΣ{Hq coincides
with the quotient topology.

Proof. Taking into account reference [15], in order to prove that the topology
of the orbit space Σ{H induced by C8pΣ{Hq coincides with the quotient
topology, it suffices to show that for each set V in Σ{H, which is open in
the quotient topology, and each y P V , there exists h P C8pΣ{Hq such that
hpyq ‰ 0 and h|pΣ{HqzV “ 0.

For y P Σ{H, choose q P Σ such that ρΣpqq “ y. Since GΣ is open in
P , and P is locally compact and Hausdorff, it follows that there exists an
open neighbourhood W of q in GΣ with closure W contained in ρ´1pV q,
where ρ : P Ñ P {G is the orbit map. Moreover, there exists a non-negative
function f P C8pGΣq such that fpqq ą 0, and f

|GΣzW “ 0, where GΣzW

denotes the complement of W in GΣ; see [17], p. 78.
By Lemma 19, the H-average

f̃ “

ż

H
Φ˚gf dµpgq

of f over H is in C8pGΣq. The assumption that f is non-negative and
fpqq ą 0 implies that f̃pqq ą 0. Since f

|GΣzW “ 0, it follows that f̃
|GΣzHW “

0. The compactness of W and H imply that the union HW of all H-orbits
through W is compact, and HW “ HW , where HW is the union of all
H-orbits through W . Moreover, the assumption that W Ď ρ´1pV q and the
H-invarance of ρ´1pV q, ensure that HW “ HW Ď ρ´1pV q. Thus, f̃ is an
H-invariant smooth function on GΣ such that f̃ppq ą 0 and f̃ vanishes on
GΣzρ´1pV q.

Let f̃|Σ be the restriction of f̃ to Σ. Since the differential structure C8pΣq
is induced by the restrictions to Σ of smooth functions on P , it follows that
f̃|Σ is smooth. Moreover, f̃|Σpqq “ f̃(qq ą 0, because q P Σ. On the other
hand, f̃ vanishes on GΣzρ´1pV q. Hence, f̃|Σ vanishes on

pGΣzρ´1pV qq X Σ “ Σzpρ´1pV q X Σq “ Σzρ´1
Σ pV q.

Further, f̃|Σ is H-invariant because f̃ and Σ are H-invariant. By the defini-
tion of the differential structure C8pΣ{Hq of the orbit space, there exists a
function h P C8pΣ{Hq such that f̃|Σ “ ρ˚Σh. Clearly,

hpyq “ hpρpqqq “ ρ˚Σhpqq “ f̃pqq ą 0,
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and

0 “ pf̃|Σq|Σzρ´1
Σ pV q “ pρ

˚
Σhq|Σzρ´1

Σ pV q “ h|ρΣpΣqzV “ h|pΣ{HqzV ,

which ensures that the quotient topology and the differential space topology
of Σ{H coincide.

Proposition 22. For a proper action Φ : G ˆ P Ñ P of a Lie group G
on a locally compact, subcartesian differential space P , the differential space
topology of C8pP {Gq coincides with the quotient topology.

Proof. Let V be a neighbourhood of y P P {G that is open in the quotient
topology. Choose p P P such that ρppq “ y. The set ρ´1pV q is an open
G-invariant neighbourhood of p in P .

Let Σ be a slice through p for the action of G on P . Then GΣ is an open
G-invariant neighbourhood of p in P . We denote the isotropy group of p by
H, and the orbit map by ρΣ : Σ Ñ Σ{H.

Since P is locally compact and Hausdorff, there exists an open neigh-
bourhood W of p in P with compact closure W contained in ρ´1pV q XGΣ.
Without loss of generality, we may assume that W is H-invariant; see the
proof of Proposition 21. Then, the set ρ´1pρpW qqXρ´1pV qXGΣ is an open
G-invariant neighbourhood of p in G. Hence,

ρ´1pρpW q X V q X Σ “ ρ´1pρpW qq X pρ´1pV q XGΣq X Σ

is an H-invariant open neighbourhood of p in Σ. Thus, ρΣpρ
´1pW q X

ρ´1pV q X Σq is an open neighbourhood of ρΣppq in the quotient topology
of Σ{H. By Proposition 21, the differential space topology of C8pΣ{Hq co-
incides with the quotient topology. Therefore, there exists a smooth function
h P C8pΣ{Hq that vanishes in the complement of ρΣpρ

´1pρpW qXV qXΣq in
Σ{H and such that hpρΣppqq “ 1. Since G-orbits in GΣ intersect Σ along or-
bits of H in Σ, andW is H-invariant, it follows that ρ´1pρpW qqXΣ “WXΣ.
Therefore, our function h vanishes on the complement of ρΣpρ

´1pV qXWXΣq.
By Theorem 20, the map β : Σ{H Ñ GΣ{G : Hs ÞÑ Gs is a diffeomor-

phism. Therefore, pβ´1q˚h P C8pGΣ{Gq, and ρ˚pβ´1q˚h is a G-invariant
smooth function on GΣ. By construction,

ρ˚pβ´1q˚hppq “ pβ´1q˚hpρppqq “ hpβ´1pρppqqq “ hpρΣppqq “ 1,

because ρ|GΣ ˝ ιΣ “ β ˝ ρΣ, where ιΣ : Σ ↪Ñ P is the inclusion map. On the
other hand, suppose that q P GΣ is in the complement of ρ´1pρpW qXV qXGΣ.
Hence, ρpqq is in the complement of

ρpW q X V X ρpGΣq “ ρpW q X V X pGΣ{Gq “ ρpW X ρ´1pV q X Σq

in GΣ{G. Since β´1 : GΣ{G Ñ Σ{H is a diffeomorphism, β´1pρpqqq is in
the complement of
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β´1 ˝ ρpW X ρ´1pV q X Σq “ ρΣpW X ρ´1pV q X Σq

in Σ{H. But h vanishes in the complement of ρΣpρ
´1pV q X W X Σq in

Σ{H. Therefore, ρ˚pβ´1q˚h “ h ˝ β´1 ˝ ρ vanishes on the complement of
ρ´1pρpW q X V q X GΣ in GΣ. Hence, the support of ρ˚pβ´1q˚h is a closed
set contained in ρ´1pρpW q X V q XGΣ, which is open in P .

Consider now a point q in the boundary BpGΣq of GΣ in P . Since GΣ
is open in P , it follows that BpGΣq “ GΣzGΣ. We want to show that there
exists an open neighbourhood U of q in P such that U XGΣ is contained in
the complement of ρ´1pρpW qXV qXGΣ. Suppose that there is a sequence Un
of neighbourhoods of q such that X8n“1Un “ tqu and UnXGΣXρ´1pρpW qX
V q ‰ H. Then, for each n there is a point qn P Un XGΣX ρ´1pρpW q X V q,
and the sequence qn converges to q. Moreover, there exists gn P G such that
gnqn PW . SinceW is compact, there exists a subsequence gnk

qnk
convergent

to q̄ “ limkÑ8 gnk
qnk

P W . By the properness of the action, without loss
of generality, we may assume that the sequence gnk

is convergent to ḡ P G
and q̄ “ ḡq. This implies that W X BpGΣq ‰ H. But, by assumption,
W Ď GΣ, and GΣ is open in P so that GΣ X BpGΣq “ H. Hence, we get
a contradiction. This implies that there exists a function f P C8pP q such
that f|GΣ “ ρ˚pβ´1q˚h and f|P zGΣ “ 0. Clearly, f is G-invariant and it
pushes forward to a function ρ˚f P C8pP {Gq. By construction ρ˚fpyq “ 1
and pρ˚fq|pP {GqzV “ 0.

The argument above is valid for each point y P P {G and each neigh-
bourhood V of y in P {G that is open in the quotient topology. Hence, the
differential space topology of P {G coincides with its quotient topology [15].

We show now that the orbit space P {G is Hausdorff. Observe first, that
the orbit map ρ : P Ñ P {G is open. It can be seen as follows. Let U be an
open subset of P . For each g P G, gU “ tgp P P | p P P u is open, which
implies that GU “ YgPGgU is open. Hence, ρpUq “ ρpGUq is open in P {G.
Next, consider the relation

R “ tpp, qq P P ˆ P | q “ gp for some g P Gu

on P defined by the partition of P by orbits of G. Consider a conver-
gent sequence of points in R. It can be written as ppn, qnq “ ppn, gnpnq,
where the sequences ppnq and pgnpnq converge in P . Since the action of
G on P is proper, there exists a convergent subsequence pgnk

q in G and
limnÑ8pgnpnq “ plimkÑ8 gnk

qplimnÑ8 pnq. Therefore, limnÑ8ppn, gnpnq
P R, which implies that R is closed in P ˆ P . This ensures that P {G is
Hausdorff; see Theorem 11 in Chapter 3 of reference [8].

In Theorem 20, we showed that the bijection β : Σ{H Ñ GΣ{G : Hs ÞÑ
Gs is a diffeomorphism. If W is an H-invariant open subset of Σ, ρΣpW q
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is an open subset of Σ{H that consists of H-orbits contained in W . On
the other hand, since GΣ is an open subset of P , the set GW , consisting of
G-orbits intersecting W, is a G-invariant open subset of G, and ρpGW q is an
open subset of P {G. Moreover, ρpW q “ ρpGW q “ βpρΣpW qq. We shall use
these equalities in the arguments below.

Proposition 23. Let G ˆ P Ñ P be a proper action of a Lie group G
on a locally compact subcartesian differential space P . The space P {G of
G-orbits in P is locally compact.

Proof. Proposition 22 ensures that P {G is a differential space with quotient
topology. For p P P , let H be the isotropy group of p and let V be an open
neighbourhood of ρppq P P {G. We want to show that there exists an open
neighbourhood of ρppq in P {G that has compact closure contained in V .

Let Σ be the slice at p for the action of G on P . By definition, GΣ is
an open G-invariant neighbourhood of p in P . Without loss of generality,
we may assume that ρ´1pV q Ď GΣ. Hence, we may consider V as an open
subset of GΣ{G. By Theorem 20, β : Σ{H Ñ GΣ{G : Hs ÞÑ Gs is a
diffeomorphism. Hence, β´1pV q is open in Σ{H.

Since P is Hausdorff and locally compact, there exists a neighbourhood
U of p with compact closure U contained in ρ´1pV q. Let

W “ tgs P Σ | g P H and s P U X Σu “
ď

gPH

gpU X Σq “ HpU X Σq.

Since U XΣ is open in Σ and the action of H on Σ is continuous, it follows
that gpU XΣq is open in Σ for each g P H. Hence, W is an open H-invariant
neighbourhood of p in Σ. Therefore, ρΣpW q is an open neighbourhood of
ρΣppq contained in β´1pV q. This implies that ρpW q “ βpρΣpW qq is an open
neigbourhood of ρppq in GΣ{G contained in V .

The closureW ofW is the set of limit points of sequences inW . Suppose
a sequence pgnsnq in W converges to q P W . Since the sequence psnq is
contained in U X Σ Ď U X Σ and U is compact, there exists a subsequence
of psnmq convergent to q̄ in U X Σ. Compactness of H implies that there is
a subsequence pgnmk

q of pgnmq convergent to ḡ P H, and q “ ḡq̄ P HpU XΣq.
Conversely, every point of HpUXΣq can be presented as a limit of a sequence
gnsn for gn P H and sn P UXΣ. Hence,W “ HpUXΣq. Since U Ď ρ´1pV q Ď
GΣ, it follows that W “ HpU X Σq Ď ρ´1pV q X Σ.

The action Φ : GˆP Ñ P is continuous. Its restriction ΦH : HˆP Ñ P
to an action of H on P is also continuous. Moreover, the set HpU X Σq “
ΦHpHˆ pUXΣqq. Further, UXΣ is compact as a closed subset of a compact
set U . Since the product of compact sets is compact and the image of
a compact set under a continuous map is compact, it follows that W is
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compact. Thus, W is an H-invariant neighbourhood of p in Σ such that its
closure W is compact and contained in ρ´1pV q X Σ.

We have shown above that orbit maps of a proper action are open. Hence,
ρΣpW q is an open neighbourhood of ρΣppq in Σ{H. Moreover, ρΣpW q is a
compact subset of Σ{H contained in β´1pV q. Hence, ρΣpW q is closed in Σ{H
and it contains the closure of ρΣpW q. Since every point s P W is the limit
of a convergent sequence sn in W . Hence, ρΣpsq “ limnÑ8 ρΣpsnq P ρΣpW q.
Therefore, ρΣpW q “ ρΣpW q, which implies that the closure of ρΣpW q is
compact.

Since β : Σ{H Ñ GΣ{G : Hs ÞÑ Gs is a diffeomorphism, βpρΣpW qq is an
open neighbourhood of ρGΣppq in GΣ{G with compact closure contained in
V Ď GΣ{G. But, GΣ is open in P , so that GΣ{G “ ρpGΣq Ď P {G. Thus,
βpρΣpW qq is an open neighbourhood of ρppq with compact closure contained
in V Ď P . This implies that P {G is locally compact.

We have shown that the space of orbits of a proper action of a Lie group
G on a locally compact subcartesian space P is a locally compact differential
space P {G with the quotient topology. This result is somewhat disappointing
if one compares it to the wealth of information we have about spaces of orbits
of proper actions of Lie groups on manifolds. In both cases (manifolds and
differential spaces) the starting point in an application of the Slice Theorem,
which we have discussed here. In the case of smooth manifolds, the next step
is Bochner’s Linearization Lemma, see [6]. It would be of interest to find
a class of subcartesian spaces for which there is an analogue of Bochner’s
Linearization Lemma.

5. Symplectic reduction by stages
We return to symmetries of Hamiltonian systems discussed in the intro-

duction. We have a symplectic manifold pM,ωq, and a proper symplectic
action Φ : G ˆM Ñ M : pg, xq ÞÑ gx of G on M . The symplectic form
ω defines on C8pMq the structure of a Poisson algebra as follows. For
each f P C8pMq, the Hamiltonian vector field of f is the unique vec-
tor field Xf on M such that Xf ω “ df , where denotes the left in-
terior product (contraction). The Poisson bracket of f1, f2 P C8pMq is
given by tf1, f2u “ Xf1f2. It is antisymmetric, satisfies the Jacobi iden-
tity tf1, tf2, f3uu ` tf2, tf3, f1uu ` tf3, tf1, f2uu “ 0 and the Leibniz rule
ttf1, f2f3u “ tf1, f2uf3 ` f2tf1, f3u, for every f1, f2, f3 P C

8pMq.

By Theorem 5 and Proposition 21, the orbit space P “ M{G with the
quotient topology is a subcartesian differential space with the differential
structure C8pP q “ th : P Ñ R | π˚h P C8pMqu, where π : M Ñ P is
the orbit map. The ring C8pP q is isomorphic to the ring C8pMqG of G-



Slice theorem for differential spaces and reduction by stages 207

invariant smooth functions onM . Since the action Φ ofG onM preserves the
symplectic form ω, the induced action of G on C8pMq preserves the Poisson
bracket. Hence, the space C8pMqG is a Poisson sub-algebra of C8pMq.
Using the ring isomorphism π˚ : C8pP q Ñ C8pMqG, we can pull-back the
Poisson algebra structure of C8pMqG to C8pP q. For each h1, h2 P C

8pP q,
the Poisson bracket th1, h2u is given by π˚th1, h2u “ tπ

˚h1, π
˚h2u. Since the

differential structure C8pP q is a Poisson algebra, we refer to P as a Poisson
differential space.

For h P C8pP q, the Poisson derivation Yh corresponding to h is given
by Yhh

1 “ th, h1u for every h1 P C8pP q. Each Poisson derivation Yh is a
vector fields on P in the sense that translations along integral curves of Yh
give a local one-parameter local group of local diffeomorphisms of P . We
denote by PpP q the family of all Poisson derivations of C8pP q. In other
words, PpP q “ tYh | h P C8pP qu Ă XpP q, where XpP q is the family of all
vector fields on P .

By Theorem 3 and Theorem 6, P is a locally compact Hausdorff stratified
space, and for each p P P, the stratum S of P through p is a manifold and it
is an orbit of the family XpP q of all vector fields on P . The space C8pSq of
smooth functions on S is generated by restrictions to S of functions in C8pP q.
The restrictions to S of vector fields on P are tangent to S, because S is
an orbit of the family of all vector fields on P . Hence, C8pSq inherits from
C8pP q the structure of a Poisson algebra. Thus, S is a Poisson manifolds.
Moreover, since restrictions to S of vector fields on P are tangent to S, the
space of restrictions to S of Poisson vector fields on P coincides with the
space PpSq of Poisson vector fields on S.

Poisson manifolds are foliated by symplectic leaves. The orbit through
p P S of the family PpSq of Poisson vector fields on S is the symplectic leaf
pL, ωLq through P . The symplectic form ωL on L is given by the Poisson
structure of C8pP q as follows. For every h1, h2 P C

8pP q and each p P L,
we have ωLpYh1ppq, Yh2ppqq “ th1, h2uppq; see [19]. It should be noted that,
for each p P P , the symplectic form ωL of the symplectic leaf L through p is
completely determined by the Poisson algebra structure of C8pP q.

We have described here the process of singular symplectic reduction; that
is, the symplectic reduction in the case when the action of the symmetry
group G on pM,ωq is proper following reference [19], for more details see [20].
If G has a normal subgroup H, then we may first reduce by the action of
H obtaining the space Q “ M{H of H-orbits in M . As before, Q is a
stratified subcartesian differential space with differential structure C8pQq “
thQ : Q Ñ R | ρ˚hQ P C

8pMqu, where ρ : M Ñ Q is the orbit map. As
before, C8pQq has the structure of a Poisson algebra and, for each q P Q, the
stratum S̃ through q is a Poisson manifold singularly foliated by symplectic
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leaves. Symplectic leaves L̃ of S̃ are orbits of the family of Poisson vector
fields on S̃, and the symplectic form ωL̃ on L̃ is uniquely determined by the
Poisson structure of C8pQq.

Next, we consider the action of the quotient group G{H on Q “ M{H.
In Section 2, we have shown that the action of G{H on Q is proper. By
the results of Section 4, the space R “ Q{pG{Hq of pG{Hq-orbits on Q is a
locally compact differential space and its differential structure

C8pRq “ thR : RÑ R | σ˚hR P C8pQqu,
where σ : QÑ R is the orbit map, is compatible with the quotient topology.

But the definition of C8pRq implies that

(8) C8pRq “ thR : RÑ R | pσ ˝ ρq˚hR P C8pMqu,
so that pσ ˝ ρq˚ : C8pRq Ñ C8pMqG is a ring isomorphism. Hence, we can
use it to pull-back to C8pRq the Poisson algebra structure of C8pMqG.

Lemma 24. There is a unique differential space isomorphism ϕ : P Ñ R
such that ϕ ˝ π “ σ ˝ ρ. Moreover, ϕ˚ : C8pRq Ñ C8pP q is a Poisson
algebra isomorphism.

Proof. Both π : M Ñ P and pσ ˝ ρq : M Ñ R are epimorphisms. Given
x0 PM , let p0 “ πpx0q, q0 “ ρpx0q and r0 “ σpq0q. The fibre π´1pp0q is the
orbit Gx0 of G through x0. The action of G{H on R associates to each class
rgs P G{H and q P Q the point rgsq “ ρpgxq for any x P ρ´1pqq. Hence,

pσ ˝ ρq´1pr0q“ρ
´1pσ´1pr0qq“ρ

´1ppG{Hqq0q“ρ
´1ptρpgx0q | gPGuq“Gx0.

This implies that π´1pπpx0qq “ pσ ˝ ρq
´1pσpρpx0qq for every x0 PM . Hence,

there is a unique bijection ϕ : P Ñ R such that, ϕpπpxqq “ σpρpxqq for every
x PM .

To prove that ϕ is smooth observe that equation (8) implies that, pσ ˝
ρq˚hR P C8pMqG for every hR P C8pRq. Therefore, there is a unique
hP P C8pP q such that pσ ˝ ρq˚hR “ π˚hP . But ϕ ˝ π “ σ ˝ ρ implies
that hP “ ϕ˚hR. Moreover, every hP P C8pP q of the form hP “ π˚f for
f P C8pMqG. On the other hand, f “ pσ ˝ ρq˚hR for some hR P C8pSq.
Hence, ϕ˚ maps C8pRq onto C8pP q which implies that ϕ : P Ñ R is a
diffeomorphism.

The Poisson algebra structures on C8pP q and C8pRq are induced by the
Poisson algebra structure on C8pMqG by ring homomorphisms
π˚ : C8pP q Ñ C8pMqG and pσ ˝ ρq˚ : C8pRq Ñ C8pMqG, respectively.
This implies that ϕ˚ : C8pRq Ñ C8pP q is also a Poisson algebra isomor-
phism.

Note that the result that ϕ : P Ñ R is an isomorphism in the category of
differential spaces implies that, if one of these spaces has special properties
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that can be described within the category of differential spaces, so has the
other. We have seen it already in the Poisson algebra structure of both
C8pP q and C8pRq.
Theorem 25. The space R of G{H orbits in Q “ M{H is subcartesian.
For every x PM , the restriction of ϕ to the symplectic leaf Mπpxq of the stra-
tum Sπpxq of P is a symplectomorphism of pMπpxq, ωπpxqq onto the symplectic
leaf through r “ ϕpπpxqq “ σpρpxqq of the orbit through r of the the family
XpRq of all vector fields on R.
Proof. (i) Both P and R are locally compact Hausdorff differential spaces
that are diffeomorphic to each other. Since the subcartesian property of
P is defined within the category of differential spaces, it follows that R is
subcartesian.

(ii) The orbit type stratification of P “ M{G is given by orbits of the
family of all vector fields XpP q on P , which is a notion in the category of sub-
cartesian differential spaces. By the argument above, both P and R are sub-
cartesian. Hence the isomorphism ϕ : P Ñ R in the category of differential
spaces implies that P and R are isomorphic in the subcategory of subcarte-
sian differential spaces. Hence, R is a stratified subcartesian space and strata
of R are orbits of the family XpRq of all vector fields on R. Since C8pRq is
a Poisson algebra, each stratum of R is a Poisson manifold and it is foliated
by symplectic leaves. Moreover, ϕ˚ : C8pRq Ñ C8pP q is a Poisson algebra
isomorphism. This implies that ϕ maps symplectic leaves of strata of P sym-
plectomorphically onto the corresponding symplectic leaves of strata of R.

Results of this section can be paraphrased by saying that for a proper
action of a Lie group on a symplectic manifold, reduction and reduction by
stages are equivalent. Note, that we have not required the stages hypothesis
that is needed in the usual approach to Poisson reduction by stages; see
Section 15.3 of reference [11].
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