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ORTHOGONAL POLYNOMIALS ON ELLIPSES
AND THEIR RECURRENCE RELATIONS

Abstract. In this note we study the connection between orthogonal polynomials on an
ellipse and orthogonal Laurent polynomials on the unit circle relative to some multiplicative
measures and then establish the recurrence relations for orthogonal polynomials on an
ellipse. The matrix representation of the operator of multiplication by coordinate function
is obtained.

1. Introduction
Orthogonal polynomials on ellipses have been studied to a much less ex-

tent than their counterparts on the real line or even those on the unit circle.
In recent decades there has been some work concerning orthogonal polyno-
mials on ellipses. In a study of the invariant subspaces of a three-diagonal
Toeplitz operator T , Duren [3, 4] used a sequence tpnpλqu of orthogonal poly-
nomials with respect to a measure ωpλq| dλ|, where ωpλq ≥ 0 and | dλ| is the
arc-length measure on some ellipse ET , to describe the lattice of invariant
subspaces of the three-diagonal operator T. Such polynomials were obtained
as part of the computation of the point spectrum of the operator T and they
turn out to satisfy the three-term recurrence equation

(1) pn`1pλq “ λ pnpλq ´ b pn´1pλq.

In [5], Duren proved that, relative to a measure ωpλq | dλ| on an ana-
lytic curve C in which ωpλq is a non-negative function, if the corresponding
orthogonal polynomials satisfy a tree-term recurrence equation of the form

(2) pn`1pλq “ pαnλ` βnqpnpλq ` γnpn´1pλq,

then the curve C is an ellipse.
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The orthogonal polynomials with respect to the harmonic measure along
the boundary of a Caratheodory domain were studied by Dovgoshei [2] and
were proved to satisfy the three-term recurrence equation (2) if and only if
the curve is an ellipse.

More recently, Putinar and Stylianopoulos proved in [7] that, under
some natural hypothesis, ellipses are the most general curves associated with
a finite-term recurrence. We need to recall some terminology. A sequence
of orthogonal polynomials with respect to a measure µ satisfies a finite-term
recurrence if for every k ≥ 0, there exists an Npkq ≥ 0 such that

ak,n :“ xλpnpλq, pkpλqyµ “ 0, n ≥ Npkq,
while the sequence satisfies an pN ` 1q-term recurrence if

λpnpλq “
N
ÿ

k“0

an`1´k,npn`1´kpλq, n ≥ N ´ 1.

Obviously, polynomials satisfying an pN ` 1q-term recurrence also satisfy
a finite-term recurrence.

Thus Putinar and Stylianopoulos proved that for certain domains Ω, the
corresponding Bergman orthogonal polynomials (that is, orthogonal poly-
nomials with respect to the area measure), as well as Szegö polynomials
(orthogonal polynomials with respect to the arc-length measure on BΩ), sat-
isfy a finite-term recurrence if and only if Dirichlet’s problem for Ω with
polynomial data on BΩ has a polynomial solution. As a consequence, they
proved that if Bergman orthogonal polynomials on a Caratheodory domain
Ω satisfy a three-term recurrence relation, then Ω must be an ellipsoid (that
is a domain whose boundary is an ellipse), as well as: if BΩ is a subset of
tpx, yq P R2 : ψpx, yq “ 0u, where ψ is a polynomial with bounded zero set
and if the Bergman orthogonal polynomials satisfy a finite-term recurrence,
then the domain is an ellipsoid. A result along the same line was obtained by
Khavinson and Stylianopoulos in [6], namely if Bergman orthogonal polyno-
mials on a domain Ω with “nice" boundary satisfy an pN`1q-term recurrence
with N ≥ 2, then that the domain is an ellipsoid and N “ 2.

In the present note, we begin a study of orthogonal polynomials with
respect to a measure supported by an ellipse, which satisfies a certain multi-
plicativity property. The main goal of this note is to obtain the recurrence
equations of such polynomials with respect to a finite positive definite Borel
measure by studying their connection with the Laurent polynomials on the
unit circle with respect to a corresponding measure via a certain transforma-
tion.

It is well known that orthogonal polynomials on the real line with re-
spect to a non-negative measure µ satisfy a three-term recurrence equation
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and the matrix representation of the operator of multiplication by coordinate
function gives rise to a symmetric three-diagonal matrix (traditionally called
a Jacobi matrix), which is a bounded self-adjoint operator. In the case of
the unit circle, the polynomials are dense in L2pµq if the measure µ satisfies
a certain property (Szegö condition), and thus the multiplication operator
by coordinate function restricted to P 2pµq (the closure of the polynomials in
L2pµq-norm) is a subnormal operator whose matrix representation is a Hes-
senberg (a matrix whose only nonzero sub-diagonal is the one right below
main diagonal and all entries of that sub-diagonal are equal to 1). During
last decade it has been proven that the sequence of monic Laurent polyno-
mials obtained by applying the Gramm–Schmidt procedure to the sequence
1, 1z , z,

1
z2
, z2, . . . satisfies a five-term recurrence equation and the operator

of multiplication by coordinate function has a “staircase" matrix representa-
tion, called CMV matrix, (e.g., cf. [1], [8], [10]). Our goal here is to obtain
the equivalent of the CMV matrix for orthogonal polynomials on ellipses.

2. Recurrence equations and matrix representation
For r ą 0, let φrpzq :“ z ` r

z , T “ tz : |z| “ 1u and let Er :“ φrpTq be
an ellipse of foci ˘2

?
r and x-intercepts ˘p1` rq. For a finite non-negative

Borel measure ξ with infinite support on Er, let Pnpλq, n P N be the sequence
of unique monic polynomials such that the degree of Pnpλq is n and

xPnpλq, Pmpλqyξ “ µ´2n δnm, µn ą 0,

where xfpλq, gpλqyξ “
ş

Er fpλq ¨ gpλq dξpλq. We can assume that ξpErq “ 1
since monic orthogonal polynomials will be the same with respect to the
normalized measure. Substituting λ P Er with z ` r

z , z P T, there exists
a finite non-negative Borel measure µξ on T (it will be denoted in what
follows by µ) such that

xPnpλq, Pmpλqyξ “ xΦ2npzq,Φ2mpzqyµ,

where

Φ2npzq :“ Pn

ˆ

z `
r

z

˙

,

and of course xhpzq, kpzqyµ :“
ş

T hpzq ¨ kpzq dµpzq. Thus, Φ2npzq is a Laurent
polynomial in which the exponents of z vary between ´n and n. We define
for n ≥ 1

Φ2n´1pzq :“ Φ2n

ˆ

1

z

˙

,

where Φ2np¨q is the Laurent polynomial Φ2np¨q in which the complex conju-
gate is applied only to its coefficients; thus for z P T, Φ2n´1pzq “ Φ2npzq
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and consequently,

xΦ2npzq,Φ2mpzqyµ “ xΦ2n´1pzq,Φ2m´1pzqyµ “ µ´2n δnm.

We will be interested in measures µ that will give rise to a sequence
tΦkpzqu

8
k“0 of orthogonal Laurent polynomials.

Proposition 1. The sequence tΦkpzqu
8
k“0 is orthogonal with respect to

the measure µ if and only if the measure µ is multiplicative on the sequence
tΦ2npzqu

8
n“0, that is,

ż

T
Φ2npzq ¨ Φ2mpzq dµpzq “ 0, n, m ≥ 1.

Proof. Assume first that the measure µ is multiplicative on the sequence
tΦ2npzqu

8
n“0. This is equivalent to xΦ2npzq,Φ2m´1pzqyµ “ 0, for n ≥ 0,

m ≥ 1. Since the sequence tΦ2npzqu
8
n“0 is orthogonal (by construction) and

the measure µ is non-negative, it implies the entire sequence tΦkpzqu
8
k“0 is

orthogonal.
Conversely, if the sequence tΦkpzqu

8
k“0 is orthogonal, then

0 “ xΦ2npzq,Φ2m´1pzqyµ “

ż

T
Φ2npzq ¨ Φ2m´1pzq dµpzq

“

ż

T
Φ2npzq ¨ Φ2mpzq dµpzq, n,m ≥ 1.

A question that arises naturally is whether such measures exist. Obvi-
ously, Dirac measures δz, z P T are multiplicative measures. On the other
hand, since the conversion between the measure ξ on the ellipse and the
corresponding measure µ on the unit circle preserves the multiplicativity
property, then the measure, say µ0, that arises from the harmonic measure
ξ0, is another example of such measure.

An interesting and useful question is to describe all measures that satisfy
such multiplicative property, but it is not the purpose of the note.

The remainder of this note will be a narrative construction in which we
obtain the recurrence equations and a CMV-type of matrix representation of
the operator of multiplication by coordinate function and will be concluded
with a formal statement.

The assumption that we will make in the remainder of the note is that
the measure µ is multiplicative in the sense stated in Proposition 1.

We define a sequence of standard Laurent polynomials that will be used
to construct some subspaces, as follows:

lkpzq “ zk `

ˆ

r

z

˙k

, and l˚kpzq “ przq
k `

ˆ

1

z

˙k

, k ≥ 0.
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Let

H0 :“ _tl0u “ _tΦ0u, H1 :“ _tl0, l
˚
1u “ _tΦ0,Φ1u,

H2 :“ _tl0, l
˚
1 , l1u “ _tΦ0,Φ1,Φ2u,

and in general

H2k´1 :“ _tl0, l
˚
1 , l1, . . . , l

˚
ku “ _tΦ0,Φ1,Φ2, . . . ,Φ2k´1u, k ≥ 1,

and

H2k :“ _tl0, l
˚
1 , l1, . . . , l

˚
k , lku “ _tΦ0,Φ1,Φ2, . . . ,Φ2k´1,Φ2ku, k ≥ 0,

where the symbol _ denotes the linear span generated by finitely many
vectors. Since Φ2npzq arises from a monic polynomial of degree n in variable
λ, one can write

(3) Φ2npzq “ lnpzq `
n
ÿ

k“1

αn´k,n ln´kpzq.

We will prove that

(4) l1pzqΦ2npzq “ Φ2n`2pzq ´
2n
ÿ

k“2n´2

βk,n Φkpzq.

The following relations, easily verifiable, will be used in what follows:

(5) l1pzq lkpzq “ lk`1pzq ` r lk´1pzq, k ≥ 1,

and

l˚1 pzq lkpzq “ c1pr, kq lk`1pzq ` c2pr, kq l
˚
k`1pzq(6)

` c3pr, kq lk´1pzq ` c4pr, kq l
˚
k´1pzq, k ≥ 1,

with cipr, kq ‰ 0, i “ 1, . . . , 4.
To prove (4), denote Φ2n`2pzq´ l1pzqΦ2npzq by Ψnpzq and, according to

(3) and (5), we have

Ψnpzq P _tl0, l1, . . . , lnu Ă H2n.

We prove next

xΨnpzq,Φkpzqyµ “ 0, for k ≤ 2n´ 3.

First we prove that for k “ 2s ≤ 2n´ 4, xΨnpzq,Φ2syµ “ 0. Indeed,

xΦ2n`2pzq,Φ2spzqyµ “ 0,

and
xl1pzqΦ2npzq,Φ2spzqyµ “ xΦ2npzq, l

˚
1 pzqΦ2spzqyµ.

According to (6), l˚1 pzqΦ2spzq P H
2s`2 and consequently,

xΦ2npzq, l
˚
1 pzqΦ2spzqyµ “ 0, for 2s` 2 ă 2n,
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and therefore

xΨnpzq,Φ2spzqyµ “ 0, for 2s ≤ 2n´ 4.

Next, we prove xΨnpzq,Φ2s´1yµ “ 0, for 2s´ 1 ≤ 2n´ 3. Indeed,

xΦ2n`2pzq,Φ2s´1pzqyµ “ 0,

and
xl1pzqΦ2npzq,Φ2s´1pzqyµ “ xΦ2npzq, l

˚
1 pzqΦ2s´1pzqyµ.

According to (6), l˚1 pzqΦ2s´1pzq P _tl
˚
1 , l

˚
2 , . . . , l

˚
s`1u Ă H2s`1, and therefore

xΦ2npzq, l
˚
1 pzqΦ2s´1pzqyµ “ 0

as long as 2n ą 2s` 1, which implies that

xΨnpzq,Φ2s´1yµ “ 0, for 2s´ 1 ≤ 2n´ 3,

and consequently Ψnpzq P H
2n aH2n´3, i.e. relation (4) is proved.

Since eventually we will be interested in the matrix representation, with
respect to an orthonormal basis, of the operator of multiplication by variable
λ on L2pξq, that is, Mλ : L2pξq Ñ L2pξq defined by pMλfqpλq “ λ fpλq, we
prove also that

(7) l˚1 pzqΦ2npzq “ Φ2n`2pzq ´
2n`2
ÿ

k“2n´3

γk,n Φkpzq.

The proof of relation (7) follows the same circle of ideas, and for sake of
completeness, we include it here. Denote Φ2n`2pzq ´ l

˚
1 pzqΦ2npzq by Λnpzq,

and observe that Λnpzq P H
2n`2. We note that since Λnpzq belongs to larger

subspace than Ψnpzq belongs to, the recurrence relation will contain more
terms. We prove that Λnpzq P H

2n`2 aH2n´4, that is

xΛnpzq,Φkpzqyµ “ 0, for k ≤ 2n´ 4.

If k “ 2s ≤ 2n´ 4, then obviously xΦ2n`2pzq,Φ2spzqyµ “ 0. Furthermore,

xl˚1 pzqΦ2npzq,Φ2spzqyµ “ xΦ2npzq, l1pzqΦ2spzqyµ,

and according to (5), we have l1pzqΦ2spzq P H
2s`2, which implies

xΦ2npzq, l1pzqΦ2spzqyµ “ 0.

On the other hand,
xΦ2n`2pzq,Φ2s´1pzqyµ “ 0,

and
xl˚1 pzqΦ2npzq,Φ2s´1pzqyµ “ xΦ2npzq, l1pzqΦ2s´1pzqyµ.

According to (6), we have l1pzqΦ2s´1pzq P H
2s`2,

xΦ2npzq, l1pzqΦ2s´1pzqyµ “ 0,

as long as 2s` 2 ă 2n, or equivalently, for 2s´ 1 ≤ 2n´ 5.
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Re-denoting the coefficients in equation (4), that equation can be rewrit-
ten as follows,

l1pzqΦ2npzq “ Φ2n`2pzq ` α2n,2n Φ2npzq ` α2n´1,2n Φ2n´1pzq(8a)
` α2n´2,2n Φ2n´2pzq,

and after applying the operator “*” and then re-denoting the coefficients in
equation (7), the equation can be rewritten as follows,

l1pzqΦ2n´1pzq “ α2n`2,2n´1 Φ2n`2pzq ` α2n`1,2n´1 Φ2n`1pzq(8b)
` α2n,2n´1 Φ2npzq ` α2n´1,2n´1 Φ2n´1pzq

` α2n´2,2n´1 Φ2n´2pzq ` α2n´3,2n´1 Φ2n´3pzq.

The normalized sequence tφkpzqu8k“0, that is

φ2npzq “ µn Φ2npzq and φ2n´1pzq “ µn Φ2n´1pzq,

forms an orthonormal basis for L2pµq that satisfies the following relations:

l1pzqφ2npzq “
µn
µn`1

φ2n`2pzq(9a)

` α2n,2n φ2npzq ` α2n´1,2n φ2n´1pzq

`
µn
µn´1

α2n´2,2n φ2n´2pzq,

and

(9b) l1pzqφ2n´1pzq

“
µn
µn`1

α2n`2,2n´1 φ2n`2pzq `
µn
µn`1

α2n`1,2n´1 φ2n`1pzq

` α2n,2n´1 φ2npzq ` α2n´1,2n´1 φ2n´1pzq

`
µn
µn´1

α2n´2,2n´1 φ2n´2pzq `
µn
µn´1

α2n´3,2n´1 φ2n´3pzq.

If we denote by pnpλq :“ µn Pnpλq and p˚npλq :“ pnpλq, then the above
relations become

λ pnpλq “
µn
µn`1

pn`1pλq ` α2n,2n pnpλq ` α2n´1,2n p
˚
npλq(10a)

`
µn
µn´1

α2n´2,2n pn´1pλq,

and

λ p˚npλq “
µn
µn`1

α2n`2,2n´1 pn`1pλq `
µn
µn`1

α2n`1,2n´1 p
˚
n`1pλq(10b)

` α2n,2n´1 pnpλq ` α2n´1,2n´1 p
˚
npλq

`
µn
µn´1

α2n´2,2n´1 pn´1pλq `
µn
µn´1

α2n´3,2n´1 p
˚
n´1pλq.
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Since the sequence φ :“ tφkpzqu
8
k“0 is uniformly dense in the Banach

algebra of the continuous functions on the unit circle, and this is dense in
L2pµq, the sequence φ forms an orthonormal basis for L2pµq. Similarly, the
sequence p :“ tp0pλq, p

˚
1pλq, p1pλq, . . . u forms an orthonormal basis for L2pξq.

Remark. With some standard arguments, the multipicativity property of
a measure µ on the sequence of the orthogonal Laurent polynomials gener-
ated by µ can be extended to the entire space L2pµq.

With the notation used above, we summarize this note with the following.

Theorem. The matrix representation of the operator Ml1 : L2pµq Ñ
L2pµq defined by pMl1hqpzq “ l1pzqhpzq with respect to the orthonormal basis
tφkpzquk≥0 that arises from a multiplicative measure µ on on L2pµq, has the
following form:
¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

α0,0
µ1
µ0
α0,1

µ1
µ0
α0,2 0 0 0 0 0 0 ¨ ¨ ¨

0 α1,1 α1,2
µ2
µ1
α1,3 0 0 0 0 0 ¨ ¨ ¨

µ0
µ1

α2,1 α2,2
µ2
µ1
α2,3

µ2
µ1
α2,4 0 0 0 0 ¨ ¨ ¨

0 µ1
µ2
α3,1 0 α3,3 α3,4

µ3
µ2
α3,5 0 0 0 ¨ ¨ ¨

0 µ1
µ2
α4,1

µ1
µ2

α4,3 α4,4
µ3
µ2
α4,5

µ3
µ2
α4,6 0 0 ¨ ¨ ¨

0 0 0 µ2
µ3
α5,3 0 α5,5 α5,6

µ4
µ3
α5,7 0 ¨ ¨ ¨

0 0 0 µ2
µ3
α6,3

µ2
µ3

α6,5 α6,6
µ4
µ3
α6,7

µ4
µ3
α6,8 ¨ ¨ ¨

0 0 0 0 0 µ3
µ4
α7,5 0 α7,7 α7,8

. . .

0 0 0 0 0 µ3
µ4
α8,5

µ3
µ4

α8,7 α8,8
. . .

0 0 0 0 0 0 0 µ4
µ5
α9,7 0

. . .

0 0 0 0 0 0 0 µ4
µ5
α10,7

µ4
µ5

. . .
...

...
...

...
...

...
...

. . . . . . . . .

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Of course, the same representation is valid for the operatorMλ : L2pξq Ñ
L2pξq with respect to the orthonormal basis p that arises from a multiplica-
tive measure ξ on Er.
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