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GRADIENT TRAJECTORIES FOR PLANE SINGULAR
METRICS I: OSCILLATING TRAJECTORIES

Abstract. In this short note, we construct an example of a real plane analytic singular
metric, degenerating only at the origin, such that any gradient trajectory (respectively to
this singular metric) of some well chosen function spirals around the origin. The inversion
mapping carries this example into an example of a gradient spiraling dynamics at infinity.

1. Introduction
In the early 60s, Thom asked about the behaviour of the (Euclidean)

gradient flow of a given real analytic function nearby the critical locus of
the function. He conjectured that any gradient trajectory with limit point
a critical point 0 (the origin) should have a limit of secants at the origin. It
took around thirty years to eventually prove that Thom Gradient Conjecture
was true. This was achieved by Kurdyka, Mostowski and Parusiński [7], using
intensively Łojasiewicz’s result on the finiteness of the length of gradient
trajectories in a neighbourhood of a limit point [8]. Nowadays questions
around the dynamics of a gradient trajectory or of a pencil of trajectories
nearby a limit point have switched to asking whether they are analytically
oscillating or not. A gradient trajectory is analytically non-oscillating if for
any semi-analytic subset, the intersection with the given gradient trajectory
has finitely many connected components. Given any real analytic gradient
differential equation, Moussu Theorem [10] ensures that there are always
regular analytic curves through a singular point such that each open half-
branch of the curve is a gradient trajectory. Such trajectories are obviously
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non-oscillating. In a few other particular cases [11, 2, 3, 6] the presence of
other non-oscillating trajectories is not known.

Assume that pRn,0q is equipped with any given real analytic Riemannian
metric g. Given a real analytic isolated surface singularity germ pS,0q of
pRn,0q, the regular part Sreg of S is equipped with gS the restriction of the
ambient Riemannian metric to the surface. For any real analytic function
f : pRn,0q Ñ pR, 0q, possibly singular at 0, we can consider its restriction fS
to the surface S, and consider the gradient vector field ∇fS of the function
fS (relative to the metric gS). It is a real analytic vector field, defined
only on Sreg. A trajectory of the restricted gradient ∇fS will be called a
restricted gradient trajectory. The presence of the singular point 0, at which
the metric gS cannot be extended, may à-priori considerably influence the
dynamics of the restricted trajectories nearby 0. Nevertheless, this problem
is completely understood in the joint work of the author and F. Sanz [6]. Our
result states that restricted gradient trajectories do not oscillate at their limit
point 0.

Since Łojasiewicz [9], we know that the germ pS,0q is topologically a
finite union of the closure of positive cones over a circle with vertex 0 and
so the germ ppSz0q,0q has finitely many connected components, each of
which is a positive cone. In particular, close enough to the singular point
0 any restricted gradient trajectory of ∇fS must stay in a single positive
cone. Such a positive cone is just a punctured plane. From a purely topo-
logical dynamical point of view, the problem of the local behaviour of a
restricted gradient trajectory nearby the singular point looks like a partic-
ular case of the local behaviour of the trajectories of a vector field which
outside the point 0 is the gradient vector field of a real analytic Rieman-
nian metric h, outside the origin 0. If the metric h cannot be extended
through 0 into a Riemannian metric, then the metric h is not positive
definite at 0 and we will call 0 the degeneracy locus of h. (The prob-
lem of having the 2-symmetric tensor h defined at the origin 0 is not of
such importance for the corresponding gradient trajectories.) A trajectory
of such a vector field is a singular gradient trajectory. Although, there
are similarities with the result of the author’s joint work [6], the local be-
haviour of trajectories of singular gradient differential equations at a point
of the degeneracy locus of the singular metric is far wilder than that of
restricted gradient trajectories, as we will see through a simple example
below.

Note that the related work of Dinh, Kurdyka and Orro, about the dy-
namics of horizontal sub-Riemannian gradient at their singular points of
polynomial functions [1], guarantees, for generic polynomials, some asymp-
totic behaviours similar to the Riemannian case.
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The question of the oscillation of singular gradient trajectories was simul-
taneously presented to us by Prof. K. Bekka and Prof. L. Paunescu.

The paper is organized as follows:
Section 2 introduces in a wider context, the problem of the (singular) gra-

dient trajectories of a function relative to a singular metric near the degener-
acy locus of the metric, namely, the locus of points, where the corresponding
2-symmetric tensor is not positive definite, is not empty.

Sections 3 and 4 are devoted to building an example of singular gradient
of a function relative to a singular metric degenerating only at the origin,
such that the corresponding (singular) gradient trajectories spiral, thus os-
cillate, in a neighbourhood of a point of the degeneracy locus. We proceed
along the following lines:

We will build a real analytic Riemannian metric h onto the punctured
unit ball B˚1 :“ B1z0 which extends into a real analytic 2-symmetric tensor
through the origin. To achieve that, we first build a real analytic 2-symmetric
tensor g on the spherical blowing-up rB1,0s of the disk B1 such that it is
a Riemannian metric onto the pull-back of the punctured disk and is only
positive semi-definite along the boundary circle, exceptional locus of the
blowing-up. Thus, we find a real analytic function on rB1,0s whose gradient
trajectory accumulates along the whole boundary circle. Up to a rescaling of
the singular metric g by a non-negative function vanishing only on the bound-
ary circle, we blow-down this singular metric to find the singular metric h,
and then we blow-down the function. Both are real analytic. Since (singular)
gradient differential equation are only sensitive to the conformal structure of
the (singular) metric, we are guaranteed that the singular gradient trajectory
of the blown-down function spiral around the origin (Proposition 4.1).

Section 5, although short, exploits the previous counter-example using
the inversion mapping, to exhibit a plane smooth semi-algebraic metric in
a neighborhood of infinity for which there exists a smooth semi-algebraic
function with a spiraling gradient dynamics at infinity (Proposition 5.1).

In the last section, we speculate about which properties of the metric at
the singular point could cause the oscillating phenomenon, when the geom-
etry of the function is too special in regards of that of the singular metric.

2. On singular gradient differential equations
LetM be a real analytic connected manifold. A real analytic 2-symmetric

tensor h defined on M is called a singular metric on M , if there exists a real
analytic subset Y ofM of codimension larger than or equal to 1, such that h
is positive definite on MzY , and degenerates along Y , that is at each point
y P Y , the quadratic form hpyq is only semi-positive definite. The subset Y
is called the degeneracy locus of the singular metric h.
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Given a real analytic function f : M Ñ R, we consider the vector field
∇hf defined on MzY as dual of the differential df , for a given singular
metric h|MzY . By definition, we obtain

(2.1) dxf ¨ u “ x∇hfpxq, uyh, @x PMzY, @u P TxM,

where x , yh denotes the scalar product coming from h. Once are given some
coordinates x nearby a point x0 of M , the quadratic form hpxq is given by
a matrix Hpxq. The vector field ∇hf is given in the local coordinates by
H´1pxqBfpxq, where Bf is the vector fields of the partial derivative of f in
the local coordinates. Let H˚ be the adjoint matrix of the matrix H. We
recall that Hpxq ¨ Hpxq˚ “ Hpxq˚ ¨ Hpxq “ detHpxqId “ dethpxqId. In
local coordinates we can define the vector field

(2.2) ξhfpxq :“ H˚pxq ¨ Bfpxq “ dethpxq∇hfpxq.

The vector field ξhf is independent of the coordinates chosen. It is a real
analytic vector field on the whole of M , co-linear to ∇hf and vanishing on
the subset Y .

With an obvious abuse of language we call the next differential equation
the singular gradient differential equation of the function f relative to the
singular metric h:

(2.3) ẋptq “ ξhfpxptqq, xp0q “ x0 R Y.

We would like to inquire about the behaviour of the singular gradient
trajectories in a neighbourhood of a point y of Y .

In the present paper, we are going to provide a simple example of such
a situation where the degeneracy locus Y is the origin of M , the real plane,
and such that all the trajectories accumulate at this point in spiraling.

3. Plane counter-example: how to make it
We provide an example of a singular metric h on the real plane whose

degeneracy locus consists just of the origin, and we find a function for which
all singular gradient trajectories spiral around the origin.

In order to do so, we will work on a spherical blowing-up of the plane.
We will produce there a singular metric g degenerating only on the boundary
circle, that is the pre-image of the degeneracy locus of h under the spher-
ical blowing-up. The singular metric g, we will choose, will be, up to the
multiplication by a function vanishing only along the boundary circle, the
pull-back under the spherical blowing-up of the singular metric h we want
to produce. The rescaling factor of the lifting of our singular metric h is of
no importance since what the foliation induced by a (singular) gradient dif-
ferential equation uses from the (singular) metric is its conformal structure.
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Such a gradient foliation is insensitive to the sole change of the measure of
the length.

Let us consider the spherical blowing up of the real plane:

β : S1 ˆ R≥0 Ñ R2, defined as pu, rq Ñ ru.

The pre-image β´1p0q of the origin 0 is thus the boundary circle S1 ˆ 0.
Instead of working exactly on S1 ˆR≥0, we are going to work on its univer-
sal covering R ˆ R≥0 to exhibit the metric and see very well the spiraling
behaviour around the boundary circle of the singular gradient trajectories,
relatively to the singular metric we will consider. Thus the boundary circle
S1 ˆ 0 is replaced by the boundary line Rˆ 0.

We consider the following 2-symmetric tensor on Rˆ r0, 1r:
(3.1) g “ dr2 ` 2r3drdϕ` r4dϕ2,

in the coordinates pϕ, rq in Rˆ r0, 1r.
Given any pu, vq P R2z0, we check easily that for any r P s0, 1r, the real

number u2 ` 2r3uv ` r4v2 is positive.
The determinant of this metric is r4p1´ r2q and thus vanishes on r “ 0.

Thus g is a Riemannian metric on t0 ă r ă 1u and degenerates along the
boundary line.

Given any smooth function pϕ, rq Ñ fpϕ, rq defined over R ˆ R≥0, the
gradient vector field ∇gf of f for the degenerate metric g is

r4p1´ r2q∇gf “ rr
4Brf ´ r

3Bϕf sBr ` r´r
3Brf ` Bϕf sBϕ.

Thus, the gradient differential equation associated with f , up to multiplica-
tion by r4 reads

(3.2)

#

ṙ “ r4Brf ´ r
3Bϕf,

ϕ̇ “ ´r3Brf ` Bϕf.

Let us see how the solution of this differential equation does behave
nearby tr “ 0u in the very simple case of fpϕ, rq “ ´r.
Namely it reduces to

(3.3)

#

ṙ “ ´r,

ϕ̇ “ 1.

We deduce that any trajectory from a point pϕ0, r0q with r0 ą 0 never
ends-up on a point pϕ1, 0q since r “ 0 is a trajectory of the above differential
equation.

We can check that for r ą 0 this differential equation reads

(3.4)
dϕ

dr
“ ´

1

r
.



74 V. Grandjean

Thus, any trajectory from a point pϕ0, r0q is a graph in r of a function
ϕprq “ C0 ´ lnprq and thus, ϕprq tends to `8 as r tends to 0.

Remark 3.1. In the present case, we observe that any function g of the
form g :“ f ` r4h, for any real analytic function h defined in a neighbour-
hood of the boundary circle, will provide singular gradient trajectories which
accumulate at a point of Rˆ 0 only at infinity.

4. Plane singular gradient trajectories spiraling around the origin
The beginning of Section 3 explained how to provide the singular met-

ric on the plane. We will use the spherical blowing-down mapping β, in
polar coordinates, in order to find the singular metric that will give the
spiraling-around-the-origin behaviour of the whole phase portrait of the sin-
gular gradient trajectories of the function Euclidean distance to the origin
for the singular metric h.

Let px, yq be coordinates in R2, and let us write x “ r cosϕ and y “
r sinϕ, for pr, ϕq P R≥0 ˆ r0, 2πs.

We thus find
rdr “ xdx` ydy,

r2dϕ “ xdy ´ ydx.

Defining hpx, yq as r2gpr, ϕq, we find

h “ pxdx` ydyq2 ` 2r2pxdx` ydyqpxdy ´ ydxq ` r2pxdy ´ ydxq2

“ rx2 ` r2p´2xy ` y2qsdx2 ` 2rxy ` r2px2 ´ y2 ´ 2xyqsdxdy`

ry2 ` r2p2xy ` x2qsdy2.

Thus h defines a real analytic 2-symmetric tensor on R2 whose degeneracy
locus is the origin at which it is the null quadratic form. Note that h is
positive definite on R2Xt0 ă r ă 1u. Consequently, we restrict our attention
to the open unit ball B1 of R2, which we equip with the singular Riemannian
metric h just defined above.

Let us consider the universal covering of the spherical blowing-up of B1,
namely, rβ : r0, 1rˆRÑ B1, defined as pr, ϕq Ñ pr cosϕ, r sinϕq.

Thus, for any interval I “ ra, a ` 2πs Ă R, for any real number a,
the restriction of rβ to r0, 1rˆI induces a diffeomorphism s0, 1rˆI onto the
punctured ball B˚1 .

We obviously check that rβ˚phq “ r2g. We want to understand the
asymptotic behaviour of the gradient differential equation ṗ “ ∇hδppq, de-
fined on B˚1 , nearby the boundary of this domain, namely the origin 0. In
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the coordinates px, yq, this differential equation reads as
#

ẋ “ ´2xry2 ` r2p2xy ` x2qs ` 2yrxy ` r2px2 ´ y2 ´ 2xyqs,

ẏ “ 2xrxy ` r2px2 ´ y2 ´ 2xyqs ´ 2yrx2 ` r2p´2xy ` y2qs.

When pulled back by rβ, this differential equation transforms into the
differential equation of the gradient of pr, ϕq Ñ r2, that is the differential
equation given by the vector field 2r∇gr. Thus its trajectories are the same
as that of ∇gr in tr ą 0u.

Moreover, any non stationary trajectory of ∇hδ is lifted by rβ in a unique
trajectory of ∇gr lying in tr ą 0u, the converse is also true.

But as we have already checked in the third section, any trajectory of
∇gr with initial data lying in r ą 0 is a curve of the form r Ñ pC0 ´ ln r, rq.
Thus, the image of such gradient trajectory will be mapped by rβ on a gradient
trajectory of ∇hδ lying in B˚1 and parameterized as r Ñ pr cospC0 ´ ln rq,
r sinpC0 ´ ln rqq which spirals around the origin as r goes to 0. Thus, we
have proved the following

Proposition 4.1. Any singular gradient trajectory (respectively to the
singular Riemannian metric h) of the function

δ : B1 Ñ R defined as px, yq Ñ δpx, yq :“ ´px2 ` y2q “ ´r2,

with initial data px0, y0q ‰ 0, spirals around the origin as the “time” goes to
`8.

Remark 4.2. To echo Remark 3.1, any function g, analytic or not, of the
form ´r2 ` r5h, for h a C1 function in a neighbourhood of 0, will provide
singular gradient trajectories, relative to the singular metric g above, which
spiral around the origin 0.

5. Example of a spiraling gradient dynamics at infinity
Let f : Rn Ñ R be a C2 semi-algebraic function. The main result of

[5] is that any Euclidean gradient trajectory of the function f leaving any
compact subset of Rn, has a limit of secants at infinity.

If the space Rn is equipped with a Riemannian analytic metric, the be-
haviour of a half-gradient curve is either to accumulate on a point in Rn or
to leave any compact subset of Rn. The image of Rn under the smooth semi-
algebraic diffeomorphism p Ñ p?

1`|p|2
is the open Euclidean unit ball B1.

The sphere bounding this unit ball will be referred to as the sphere at infinity.
The behaviour of the given Riemannian metric nearby the sphere at infinity
is of great importance for the respective gradient curve leaving any compact
subset.
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If we restrict our attention to the plane, intuition and reason command
that there should exist many metrics in the neighbourhood of the circle
at infinity for which we should find globally subanalytic analytic functions
whose gradient trajectories leave any compact and spiral, in other words
accumulates at each point of the boundary circle at infinity. We are going
to give such an example below.

Let h be the singular metric of Section 4 defined on B1. The smooth
semi-algebraic function ´f : R2 Ñ R, where fppq :“ |p|2

1`|p|2
, has all its

singular gradient trajectories respectively to h which accumulate onto the
origin in spiraling. In other words given any singular gradient trajectory γ,
for any unit vector u P S1, there exists a sequence ppkqk of points of γ such
that pk Ñ 0 and pk

|pk|
Ñ u as k Ñ8.

Let us consider the plane inversion mapping:

I : R2z0Ñ R2z0 defined as pÑ p
|p|2

.

We find that I˚h is a smooth semi-algebraic Riemannian metric on the
pre-image I´1pB1q “ R2zclospB1q. We find that I˚f “ f and also observe
that the origin, seen as the boundary circle of the punctured unit disk, is
“mapped” onto the boundary circle at infinity. Thus we deduce the following

Proposition 5.1. Any gradient curve γ of the function I˚f for the metric
I˚h, leaves any compact subset of R2 and acccumulates on the whole bound-
ary circle at infinity, in other words for any unit vector u P S1, there exists
a sequence ppkqk of points of γ such that |pk| Ñ 8 and pk

|pk|
Ñ u as k Ñ8.

6. Remarks and speculations
1) Given a plane real analytic singular metric, there will be nevertheless

uncountably many functions whose singular gradient trajectories will not
spiral, for instance those taking positive and negative values close to the
origin. Now, given a real analytic function vanishing only at the origin,
finding necessary and sufficient conditions so that the pair singular metric
and function does not rise a singular gradient differential equation with a
spiraling dynamics around 0 seems, at the moment, complicated. If we are
concerned only with the properties of the metric, this problem is partially
solved in [5].

2) The topological description of the author’s joint work [6] of restricted
gradient on isolated surface singularity suggested that a singular metric de-
generating only at a single point might have produced non-oscillating sin-
gular gradient trajectories. As we show here it is generally not true. In
particular, this naive point of view is forgetting that in this description the
degeneracy of the metric is forced by the space, since the restricted metric
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can extend to the whole ambient space as a standard Riemannian metric.
Consequently, the singular metric of [6] comes from the restriction of a Rie-
mannian metric to a singular “cone”. Note that the asymptotic behaviour
at the singular point of this restricted metric is just the restriction of the
ambient metric to the asymptotic behaviour of the singular “cone” at its tip,
namely the limits at the tip of the tangent spaces to the surface.

3) The singular metric, we have exhibited here, presents two asymptotic
behaviours at 0 which may play some role in the spiraling example presented.
First, any limit at 0 of the normalized quadratic forms associated with the
metric are of rank 1. Consequently to the remark of point 2), the example
presented here clearly forbids the embedding of B1 in Rn, so that the metric
h is the restriction of an ambient metric. Moreover, in the projective space
of quadratic forms, the sets of these limits are an embedded projective line.
In other words, the “conformal” structure carried by the singular metric h,
which is the quality that matters for (singular) gradient trajectories, cannot
be defined uniquely at the origin since there is an embedded projective line
of such possible limits. Then some geometric properties of the function are
such that its singular gradient trajectories spiral around the origin. Which
are they relatively to the singular metric, we just do not know yet.
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