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COCENTRALIZING GENERALIZED DERIVATIONS
ON MULTILINEAR POLYNOMIAL ON RIGHT IDEALS

OF PRIME RINGS

Abstract. Let R be a prime ring with Utumi quotient ring U and with extended
centroid C, I a non-zero right ideal of R, fpx1, . . . , xnq a multilinear polynomial over C
which is not central valued on R and G, H two generalized derivations of R. Suppose that
Gpfprqqfprq ´ fprqHpfprqq P C, for all r “ pr1, . . . , rnq P In. Then one of the following
holds:

1. there exist a, b, p P U and α P C such that Gpxq “ ax ` rp, xs and Hpxq “ bx, for all
x P R, and pa´ bqI “ p0q “ pa` p´ αqI;

2. R satisfies s4, the standard identity of degree 4, and there exist a, a1 P U , α, β P C such
that Gpxq “ ax` xa1 ` αx and Hpxq “ a1x´ xa` βx, for all x P R;

3. R satisfies s4 and there exist a, a1 P U , and d : R Ñ R, a derivation of R, such that
Gpxq “ ax` dpxq and Hpxq “ xa1 ´ dpxq, for all x P R, with a` a1 P C;

4. R satisfies s4 and there exist a, a1 P U , and d : R Ñ R, a derivation of R, such that
Gpxq “ xa` dpxq and Hpxq “ ax1 ´ dpxq, for all x P R, with a´ a1 P C;

5. there exists e2 “ e P SocpRCq such that I “ eR and one of the following holds:
(a) rfpx1, . . . , xnq, xn`1sxn`2 is an identity for I;
(b) charpRq “ 2 and s4px1, x2, x3, x4qx5 is an identity for I;
(c) rfpx1, . . . , xnq2, xn`1sxn`2 is an identity for I and there exist a, a1, b, b1 P U , α P C

and d : R Ñ R, a derivation of R, such that Gpxq “ ax ` xa1 ` dpxq, Hpxq “
bx` xb1 ´ dpxq, for all x P R, with pa´ b1 ´ αqI “ p0q “ pb´ a1 ´ αqI.

1. Introduction
Throughout this article R always denotes an associative prime ring with

center ZpRq, extended centroid C and U its Utumi quotient ring. The
commutator of x and y is denoted by rx, ys and defined by rx, ys “ xy ´ yx,
for x, y P R. An additive mapping d : R Ñ R is called a derivation if
dpxyq “ dpxqy`xdpyq holds, for all x, y P R. A derivation d is inner if there
exists a P R such that dpxq “ ra, xs holds, for all x P R. If the derivation d is
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not inner, then it is said to be outer derivation in R. An additive mapping
F : R Ñ R is called a generalized derivation if there exists a derivation
d : R Ñ R such that F pxyq “ F pxqy ` xdpyq holds for all x, y P R. If
for some a, b P R, F pxq “ ax ` xb holds for all x P R, then F is called as
inner generalized derivation of R. Evidently, any derivation is a generalized
derivation. We denote by s4, the standard identity in four variables.

A well known result of Posner [26] states that if d is a derivation of R
such that dpxqx ´ xdpxq P ZpRq for all x P R, then either d “ 0 or R is
commutative. Several authors generalized Posner’s theorem. For instance,
Brešar proved in [3] that if d and δ are two derivations of R such that
dpxqx´xδpxq P ZpRq for all x P R, then either d “ δ “ 0 orR is commutative.
Later Lee and Wong [23] consider the situation dpxqx´xδpxq P ZpRq, for all
x in some noncentral Lie ideal L of R and obtained the result that either d “
δ “ 0 or R satisfies s4. In [22], Lee and Shiue consider the situation dpxqx´
xδpxq P C, for all x P tfpx1, . . . , xnq|x1, . . . , xn P Ru, where fpx1, . . . , xnq
is any polynomial over C and obtained that either d “ δ “ 0, or δ “ ´d
and fpx1, . . . , xnq2 is central valued on RC, except when char pRq “ 2 and
dimCRC “ 4.

In [2], the first author and Argac studied the same situation of Lee and
Shiue, replacing derivations d and δ with two generalized derivations G and
H in prime ring R. More precisely in [2] it is proved the following:

Theorem A. Let R be a prime ring, U its Utumi quotient ring, C “ ZpUq
its extended centroid, I a non-zero two-sided ideal of R, H and G non-zero
generalized derivations of R. Suppose that fpx1, . . . , xnq is a non-central val-
ued multilinear polynomial over C such that HpfpXqqfpXq ´ fpXqGpfpXqq
“ 0, for all X “ px1, . . . , xnq P I

n, then one of the following holds:

1. there exists a P U such that, Hpxq “ xa and Gpxq “ ax, for all x P R;
2. fpx1, . . . , xnq2 is central valued on R and there exist a, b P U such that
Hpxq “ ax` xb, Gpxq “ bx` xa, for all x P R;

3. charpRq “ 2 and R satisfies s4, the standard identity of degree 4.

In the present paper, our aim is to extend the previous cited result to
the one-sided case, more precisely our main result will be:

Theorem. Let R be a prime ring with Utumi quotient ring U and with
extended centroid C, I a non-zero right ideal of R, fpx1, . . . , xnq a multilinear
polynomial over C which is not central valued on R and G, H two generalized
derivations of R. Suppose that Gpfprqqfprq ´ fprqHpfprqq P C, for all
r “ pr1, . . . , rnq P I

n. Then one of the following holds:

1. there exist a, b, p P U and α P C such that Gpxq “ ax`rp, xs and Hpxq “
bx, for all x P R, and pa´ bqI “ p0q “ pa` p´ αqI;
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2. R satisfies s4, the standard identity of degree 4, and there exist a, a1 P U ,
α, β P C such that Gpxq “ ax` xa1 ` αx and Hpxq “ a1x´ xa` βx, for
all x P R;

3. R satisfies s4 and there exist a, a1 P U , and d : RÑ R, a derivation of R
such that Gpxq “ ax ` dpxq and Hpxq “ xa1 ´ dpxq, for all x P R, with
a` a1 P C;

4. R satisfies s4 and there exist a, a1 P U , and d : RÑ R, a derivation of R
such that Gpxq “ xa ` dpxq and Hpxq “ ax1 ´ dpxq, for all x P R, with
a´ a1 P C;

5. there exists e2 “ e P SocpRCq such that I “ eR and one of the following
holds:
(a) rfpx1, . . . , xnq, xn`1sxn`2 is an identity for I;
(b) charpRq “ 2 and s4px1, x2, x3, x4qx5 is an identity for I;
(c) rfpx1, . . . , xnq2, xn`1sxn`2 is an identity for I and there exist

a, a1, b, b1 P U , α P C and d : R Ñ R, a derivation of R such that
Gpxq “ ax` xa1 ` dpxq, Hpxq “ bx` xb1 ´ dpxq, for all x P R, with
pa´ b1 ´ αqI “ p0q “ pb´ a1 ´ αqI.

In order to prove our result, in the next sections we will make use of the
following well known facts:

Fact 1. Let R be a prime ring and L a non-central Lie ideal of R. Then
either charpRq “ 2 and R satisfies s4, the standard identity of degree 4, or
there exists a non-central ideal I of R such that 0 ‰ rI,Rs Ď L.

Proof. See [12] (pages 4–5), Lemma 2 and Proposition 1 in [9], Theorem 4
in [16].

Fact 2. In [21, Theorem 3], Lee proved that every generalized derivation
H on a dense right ideal of R can be uniquely extended to a generalized
derivation of U and assume the form Hpxq “ ax ` dpxq, for all x P U , for
some a P U and a derivation d of U .

2. The result for Inner Generalized Derivations
We begin with some lemmas:

Lemma 3. Let R be a non-commutative prime ring, a, b P U , ppx1, . . . , xnq
be any polynomial over C, which is of nonzero value on R. If apprq ´ pprqb
P C, for all r “ pr1, . . . , rnq P Rn then one of the following holds:

1. a “ b P C;
2. a´ b P C and ppx1, . . . , xnq is central valued on R;
3. charpRq “ 2 and R satisfies s4;
4. charpRq ‰ 2, R satisfies s4 and a` b P C.
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Proof. If ppx1, . . . , xnq is central valued on R then our assumption apprq ´
pprqb P C yields pa ´ bqpprq P C, for all r “ pr1, . . . , rnq P Rn. Since
ppx1, . . . , xnq is nonzero valued on R, a ´ b P C and hence we obtain our
conclusion (b).

Next assume that ppx1, . . . , xnq is not central valued on R. Let G be the
additive subgroup of R generated by the set S “ tppx1, . . . , xnq|x1, . . . , xn
P Ru. Then S ‰ t0u, since ppx1, . . . , xnq is nonzero valued on R. By our
assumption we get ax ´ xb P C, for any x P G. By [5], either G Ď ZpRq or
char pRq “ 2 and R satisfies s4, except when G contains a noncentral Lie
ideal L of R. Since ppx1, . . . , xnq is not central valued on R, the first case can
not occur. If char pRq “ 2 and R satisfies s4 then we obtain our conclusion
(c). So, let either char pRq ‰ 2 or R does not satisfy s4. Then G contains a
noncentral Lie ideal L of R. By Fact 1, there exists a noncentral two sided
ideal I of R such that rI,Rs Ď L. In particular, arx1, x2s ´ rx1, x2sb P C,
for all x1, x2 P I. As a reduction of Theorem 1 in [1], we have that either R
satisfies s4 and a` b P C or a, b P C. In this last case pa´ bqrx1, x2s P C, for
all x1, x2 P I implies either a “ b (and we are done) or rI, Is Ď C, i.e. R is
commutative. In any case we obtain one of Lemma’s conclusions.

Fact 4. Let R be a prime ring with Utumi quotient ring U and extended
centroid C, I be a non-zero ideal of R and fpx1, . . . , xnq be a multilinear
polynomial over C which is not central valued on R. If for some a, b, w P U ,
afprq2 ` fprqwfprq ` fprq2b “ 0, for all r “ pr1, . . . , rnq P In, then one of
the following holds:

1. a, b, w P C with a` w ` b “ 0;
2. w “ ´a´ b P C and fpx1, . . . , xnq2 is central valued on R;
3. char pRq “ 2 and R satisfies s4.

Proof. Since by [6], R and I satisfies the same generalized polynomial iden-
tities with coefficients in U , the result follows directly from Lemma 3 in [2].

Lemma 5. Let R “MkpF q be the set of all kˆk matrices over a field F and
fpx1, . . . , xnq be a multilinear polynomial over F with noncentral value on
R. If for some a, b, w P R, afpx1, . . . , xnq2 ` fpx1, . . . , xnqwfpx1, . . . , xnq `
fpx1, . . . , xnq

2b P F ¨ Ik, for all x1, . . . , xn P R, then one of the following
holds:

1. a, b, w P F ¨ Ik with a` w ` b “ 0;
2. w, a` b P F ¨ Ik and fpx1, . . . , xnq2 is central valued on R;
3. charpRq “ 2 and k “ 2;
4. k “ 2, a´ b P F ¨ Ik and w P F ¨ Ik.
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Proof. Let a “ paijqkˆk, b “ pbijqkˆk and w “ pwijqkˆk. Since fpx1, . . . , xnq
is not central on R, by [24, Lemma 2, Proof of Lemma 3] there exists a
sequence of matrices r “ pr1, . . . , rnq in R such that fpr1, . . . , rnq “ γeij
with 0 ‰ γ P F and i ‰ j. Since the set fpRq “ tfpx1, . . . , xnq, xi P Ru
is invariant under the action of all inner automorphisms of R, for all i ‰ j
there exists a sequence of matrices r “ pr1, . . . , rnq such that fprq “ γeij .
Thus

afpr1, . . . , rnq
2 ` fpr1, . . . , rnqwfpr1, . . . , rnq ` fpr1, . . . , rnq

2b

“ γeijwγeij “ γ2wjieij P F ¨ Ik

implying wji “ 0, for any i ‰ j. Thus w is a diagonal matrix. Now for any
F -automorphism θ of R, wθ satisfies the same property as w does, namely,

aθfpr1, . . . , rnq
2 ` fpr1, . . . , rnqw

θfpr1, . . . , rnq ` fpr1, . . . , rnq
2bθ P F ¨ Ik,

for all r1, . . . , rn P R. Hence, wθ must be diagonal. Write, w “
k
ř

i“0
wiieii;

then for s ‰ t, we have that

(2.1) p1` etsqwp1´ etsq “
k
ÿ

i“0

wiieii ` pwss ´ wttqets

is diagonal. Hence, wss “ wtt and so w P F ¨ Ik. Therefore, R satisfies
afpx1, . . . , xnq

2 ` fpx1, . . . , xnq
2pb` wq P F ¨ Ik. Then by Lemma 3, one of

the following holds:

• a “ ´pb` wq P F ¨ Ik, that is a, b, w P F ¨ Ik with a` w ` b “ 0.
• a`b`w P F ¨Ik and fpx1, . . . , xnq2 is central valued on R. Since w P F ¨Ik,
a` b` w P F ¨ Ik implies w, a` b P F ¨ Ik.

• char pRq “ 2 and k “ 2.
• k “ 2, a´ b´ w P F ¨ Ik, that is both a´ b P F ¨ Ik and w P F ¨ Ik.

Thus the lemma is proved.

Lemma 6. Let R be a prime ring with Utumi quotient ring U and extended
centroid C, and fpr1, . . . , rnq be a multilinear polynomial over C which is not
central valued on R. If for some a, b, w P U , afprq2`fprqwfprq`fprq2b P C,
for all r “ pr1, . . . , rnq P Rn, then one of the following holds:

1. a, b, w P C with a` w ` b “ 0;
2. w, a` b P C and fpx1, . . . , xnq2 is central valued on R;
3. charpRq “ 2 and R satisfies s4;
4. R satisfies s4, a´ b P C and w P C.

Proof. Since R and U satisfy same generalized polynomial identity (see [6]),
U satisfies
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gpx1, . . . , xn`1q

“ rafpx1, . . . , xnq
2 ` fpx1, . . . , xnqwfpx1, . . . , xnq ` fpx1, . . . , xnq

2b, xn`1s.

Suppose first that gpx1 . . . , xn`1q is a trivial generalized polynomial iden-
tity for R. Let T “ U ˚C Ctx1, . . . , xn`1u be the free product of U
and Ctx1, . . . , xn`1u, the free C-algebra in non-commuting indeterminates
x1, . . . , xn`1.

Then,

rafpx1, . . . , xnq
2 ` fpx1, . . . , xnqwfpx1, . . . , xnq ` fpx1, . . . , xnq

2b, xn`1s

is zero element in T . If a R C then a and 1 are linearly independent over C.
Thus afpx1, . . . , xnq2xn`1 “ 0 implying a “ 0, a contradiction. Therefore,
a P C. Similarly, we can show that w, b P C. Then the GPI becomes
pa ` b ` wqfpx1, . . . , xnq

2 P C. Since a ` b ` w P C, a ` b ` w ‰ 0 implies
that fpx1, . . . , xnq2 P C contradicting the fact that R does not satisfy any
nontrivial GPI. Thus, a` b` w “ 0. The conclusion (a) is obtained.

Thus we assume that gpx1 . . . , xn`1q is a non-trivial generalized polyno-
mial identity for R and so also for U . Let I be a two-sided ideal of U . In
case

afpx1, . . . , xnq
2 ` fpx1, . . . , xnqwfpx1, . . . , xnq ` fpx1, . . . , xnq

2b

is satisfied by I, the conclusion follows from Fact 4.
Hence we assume that there exist r1, . . . , rn P I such that

afpr1, . . . , rnq
2 ` fpr1, . . . , rnqwfpr1, . . . , rnq ` fpr1, . . . , rnq

2b ‰ 0

so that

afpx1, . . . , xnq
2 ` fpx1, . . . , xnqwfpx1, . . . , xnq ` fpx1, . . . , xnq

2b P C

is a non-zero central generalized identity for I. As in Theorem 1 in [4], it
follows that R is a PI-ring, therefore RC “ Q “ U is a non-trivial GPI-ring
simple with 1. By Lemma 2 in [15] and Theorem 2.3.29 in [27], there exists
a field E such that U Ď MkpEq, the ring of all k ˆ k matrices over E;
moreover U and MkpEq satisfy the same generalized identities. Therefore
MkpEq satisfies gpx1, . . . , xn`1q and the result follows from Lemma 5.

Proposition 7. Let R be a non-commutative prime ring, I be a non-zero
right ideal of R and fpx1, . . . , xnq be a multilinear polynomial over C. If for
some a, b, w P U , afprq2 ` fprqwfprq ` fprq2b P C, for all r “ pr1, . . . , rnq
P In, then one of the following holds:

1. rfpx1, . . . , xnq, xn`1sxn`2 is an identity for I;
2. b P C and there exist α, β P C such that pa´ αqI “ 0, pw ´ βqI “ 0 and
pb` α` βq “ 0;

3. charpRq “ 2 and I satisfies s4px1, . . . , x4qx5;
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4. rfpx1, . . . , xnq2, xn`1sxn`2 is an identity for I and there exists γ P C such
that pw ´ γqI “ 0 and pa` b` γqI “ 0;

5. R satisfies s4, a´ b P C and w P C.

Proof. Let 0 ‰ u P I, then

(2.2)
”

afpux1, . . . , uxnq
2 ` fpux1, . . . , uxnqwfpux1, . . . , uxnq

` fpux1, . . . , uxnq
2b,X

ı

is a generalized polynomial identity for R. Our first aim is to show that R
satisfies some non-trivial generalized polynomial identity, unless when the
conclusion (b) occurs. To do this, we suppose R does not satisfy any non-
trivial generalized polynomial identities. Then (2.2) is a trivial GPI for R.
This happens when tb, 1u are linearly C-depending (see [6]), that is, b P C.
Thus (2.2) becomes

(2.3)
”

afpux1, . . . , uxnq
2 ` fpux1, . . . , uxnqpw ` bqfpux1, . . . , uxnq, X

ı

,

which is a trivial GPI for R. Once again by [6], it follows that tau, uu are
linearly C-depending, for all 0 ‰ u P I, that is, there exists α P C such that
pa´ αqI “ 0. In light of this, (2.3) becomes

(2.4)
”

fpux1, . . . , uxnqpα` w ` bqfpux1, . . . , uxnq, X
ı

,

which must be trivial for R. This happens when:

• either pα ` w ` bqu “ 0, for all 0 ‰ u P I, that is, pw ´ βqI “ 0, where
β “ ´α´ b P C (which is the conclusion (b) of the Proposition);

• or there exists γ P C such that 0 ‰ pα`w`bqu “ γu and fpux1, . . . , uxnq2
is central valued in R, that is, rfpux1, . . . , uxnq2, xn`1s is a non-trivial
generalized polynomial identity for R, a contradiction.

Thus in all that follows, we assume that R is a non-trivial GPI-ring.
Notice that if I “ R then by Lemma 6 we are done. Thus we assume

that I ‰ R. Moreover, by contradiction suppose that the conclusions (a) to
(d) don’t hold, that is, we assume the following hold simultaneously:

• there exist t1, . . . , tn`2 P I such that rfpt1, . . . , tnq, tn`1stn`2 ‰ 0;
• if charpRq “ 2, there exist v1, . . . , v5 P I such that s4pv1, . . . , v4qv5 ‰ 0;
• if b P C then there exist c1, c2 P I such that, for all λ, µ P C, either
pa´ λqc1 ‰ 0, or pw ´ µqc2 ‰ 0;

• either there exist u1, . . . , un`2 P I such that rfpu1, . . . , unq2, uu`1suu`2 ‰
0 or there exists c3 P I such that pw ´ λqc3 ‰ 0, for all λ P C;

• either there exist u1, . . . , un`2 P I such that rfpu1, . . . , unq2, uu`1suu`2 ‰
0 or there exists c4 P I such that pa` b` µqc4 ‰ 0, for all µ P C.
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We will prove that the previous assumptions lead to a number of contra-
dictions.

Without loss of generality, R is simple and equals to its own socle, IR “ I.
In fact, R is GPI and so RC has non-zero socle S “ SocpRCq with non-zero
right ideal J “ IS (Theorem 3 in [25]). Note that S is simple, J “ JS and
J satisfies the same basic conditions as I. Now just replace R by S, I by J
and we are done.

Since R “ S is a regular ring then for any a1, . . . , an P I there exists
h “ h2 P R such that

řn
i“1 aiR “ hR. Then h P IR “ I and ai “ hai,

for each i “ 1, . . . , n. In particular, there exists e “ e2 P R such that
eR “

ř4
i“1 ciR`

řn`2
j“1 ujR`

řn`2
k“1 tkR`

ř5
l“1 vlR, and ci “ eci, uj “ euj ,

tk “ etk, vl “ evl, for each i “ 1, . . . , 4, l “ 1, . . . , 5 and j, k “ 1, . . . , n ` 2.
Then we have fpeReq “ fpeRqe ‰ 0.

Since

(2.5) afpex1, . . . , exnq
2 ` fpex1, . . . , exnqwfpex1, . . . , exnq

` fpex1, . . . , exnq
2b P C

is satisfied by R, then commuting (2.5) with xp1 ´ eq P Rp1 ´ eq and right
multiplying by e, we obtain that p1´ eqafpex1, . . . , exnq2e is an identity for
R. By [7], it follows that p1 ´ eqae “ 0, that is, ae “ eae P eR, since
fpeReq ‰ p0q. This implies that

afper1, . . . , ernq
2 ` fper1, . . . , ernqwfper1, . . . , ernq

` fper1, . . . , ernq
2b P I X C,

for all r1, . . . , rn P R. In case there exist t1, . . . , tn P eR such that

0 ‰ afpt1, . . . , tnq
2 ` fpt1, . . . , tnqwfpt1, . . . , tnq ` fpt1, . . . , tnq

2b P eRX C

then eR possesses a central generalized polynomial identity and from Theo-
rem 1 in [4], R is a PI-ring and RC is a finite-dimensional simple C-algebra
by Posner’s Theorem. By the Wedderburn-Artin Theorem, there exists a
division ring D such that RC – MkpDq where D is a finite-dimensional C-
algebra. Replacing R with RC, we may assume that R “MkpDq. Choose a
maximal subfield K of D. Then MkpKq bC K –MlpKq and

afpx1, . . . , xnq
2`fpx1, . . . , xnqwfpx1, . . . , xnq`fpx1, . . . , xnq

2b P ZpMlpKqq

is satisfied by eR bC K (Lemma 2 in [18] and Proposition in [23]). Thus
without loss of generality, we may assume R “ MlpKq and I “ eR bC K.
So I X ZpMlpKqq ‰ 0, that is I contains some invertible element of R and
I “ R, a contradiction.
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Therefore in the following, we assume that for all x1, . . . , xn P R
(2.6)
afpex1, . . . , exnq

2`fpex1, . . . , exnqwfpex1, . . . , exnq`fpex1, . . . , exnq
2b “ 0

with ae “ eae and also

(2.7) afpex1e, . . . , exneq
2 ` fpex1e, . . . , exneqwfpex1e, . . . , exneq

` fpex1e, . . . , exneq
2b “ 0.

Right multiplying by p1´ eq in (2.7), we have that fpex1, . . . , exnq2ebp1´ eq
“ 0, for all x1, . . . , xn P R, which implies by [7] that ebp1 ´ eq “ 0, that is,
eb “ ebe, since fpeRqe ‰ p0q.

Here we write

fpxi, . . . , xnq “
ÿ

i

tipx1, . . . , xi´1, xi`1, . . . , xnqxi,

where each tipy1, . . . , yn´1q is a multilinear polynomial in n´1 variables and
xi never appears in any monomial of tipy1, . . . , yn´1q. In particular, there
exists at least one tipx1, . . . , xi´1, xi`1, . . . , xnq, which is not an identity for
eRe, if not fpx1, . . . , xnq should be an identity for eRe, which is a contra-
diction. Assume that tnpx1, . . . , xn´1q is not an identity for eRe. Then
tnpeReq ‰ 0. Now let x P R. We replace xn with xp1´ eq in (2.7) and then
obtain that

tnpex1, . . . , exn´1qexp1´ eqqwtnpex1, . . . , exn´1qexp1´ eqq “ 0,

which implies pp1 ´ eqwetnpex1, . . . , exn´1qexq
3 “ 0, for all x P R. By

Levitzki’s Lemma [12, Lemma 1.1], p1 ´ eqwetnpex1e, . . . , exn´1eq “ 0, for
all x1, . . . , xn´1 P R. Since tnpeReq ‰ 0, it follows that p1´ eqwe “ 0, that
is, we “ ewe.

Now, left and right multiplying by e in (2.7), we have that eRe satisfies

(2.8) eaefpx1, . . . , xnq
2 ` fpx1, . . . , xnqewefpx1, . . . , xnq

` fpx1, . . . , xnq
2ebe “ 0.

Now, we may apply the result contained in Theorem A to the prime ring
eRe. Thus either charpRq “ 2 and eRe satisfies s4 (which contradicts with
the choices of v1, . . . , v5) or one of the following cases occurs:

1. There exist α, β, γ P C such that pa ´ αqe “ 0, pw ´ βqe “ 0 and
eb “ eγ. Hence, since by (2.6) R satisfies

afpex1, . . . , exnq
2 ` fpex1, . . . , exnqwfpex1, . . . , exnq ` fpex1, . . . , exnq

2b,

it follows that fpeRq2pα`β` bq “ p0q. Since fpeRqe ‰ p0q, by [7] it follows
α` β ` b “ 0, that is, b P C and pa´αqc1 “ pw´ βqc2 “ 0, a contradiction.
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2. fpx1, . . . , xnq2 is central valued on eRe and there exists γ P C such
that we “ ´ae ´ eb “ γe. In this case, right multiplying (2.6) by e and
using rfpeRq2, eRse “ p0q, we have that fpeRq2pa ` γ ` bqe “ p0q, that
is pa ` γ ` bqe “ 0 (see again [7]), which contradicts with the choices of
u1, . . . , un`2, c3 and c4.

Finally we are ready to prove our main result:

3. The Proof of Main Theorem
By Fact 2, we may assume that for all x P U , Gpxq “ ax ` dpxq and

Hpxq “ bx ` δpxq, where a, b P U and d, δ are derivations of U . By the
hypothesis I satisfies

(3.1) pafpx1, . . . , xnq
2 ` dpfpx1, . . . , xnqqfpx1, . . . , xnq

´ fpx1, . . . , xnqpbfpx1, . . . , xnq ` δpfpx1, . . . , xnqqq P C.

Since I and IU satisfy the same generalized polynomial identities (see [6])
as well as the same differential identities (see [17]), we may assume, for
u1, . . . , un P I, that U satisfies

(3.2) pafpu1x1, . . . , unxnq
2 ` dpfpu1x1, . . . , unxnqqfpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnqpbfpu1x1, . . . , unxnq ` δpfpu1x1, . . . , unxnqqq P C.

Now, we divide the proof into two cases:

3.1. CASE 1: Let dpxq “ rp, xs for all x P U and δpxq “ rq, xs for all x P U
i.e., d and δ are both inner derivations of U . Then from (3.1), we obtain
that I satisfies

(3.3) ppa` pqfpx1, . . . , xnq
2 ´ fpx1, . . . , xnqpb` p` qqfpx1, . . . , xnq

` fpx1, . . . , xnq
2qq P C.

By Proposition 7, one of the following holds:

1. rfpx1, . . . , xnq, xn`1sxn`2 is an identity for I;
2. q P C, pa` p´ αqI “ 0, pb` p` q ` βqI “ 0, pq ` α` βqI “ 0, for some
α, β P C. So that pa ´ bqI “ 0, pa ` pqI “ αI and Gpxq “ ax ` rp, xs,
Hpxq “ bx, for all x P R. This is the conclusion of the Theorem in the
case I is not PI.

3. charpRq “ 2 and s4px1, x2, x3, x4qx5 is an identity for I;
4. rfpx1, . . . , xnq2, xn`1sxn`2 is an identity for I, pb ` p ` q ` γqI “ 0,
pa ` p ` q ` γqI “ 0 for some γ P C and Gpxq “ pa ` pqx ` xp´pq,
Hpxq “ pb` qqx´ xq “ pb` q ` γqx` xp´q ´ γq, for all x P R (which is
a particular case of conclusion (5c) when d “ 0 and α “ 0).

5. R satisfies s4, a ` p ´ q “ α P C, b ` p ` q “ β P C, that is Gpxq “
qx´ xp` αx and Hpxq “ ´px´ xq ` βx, for all x P R.
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3.2. CASE 2: Let d and δ are not both inner derivations of U .
Assume that d and δ are C-dependent modulo inner derivations of U , say

δ “ λd` adp, where λ P C, p P U and adppxq “ rp, xs, for all x P U . Then d
can not be inner derivation of U . From (3.1), we obtain that I satisfies

(3.4) pafpx1, . . . , xnq ` dpfpx1, . . . , xnqqfpx1, . . . , xnq

´ fpx1, . . . , xnqpbfpx1, . . . , xnq`λdpfpx1, . . . , xnqq` rp, fpx1, . . . , xnqsq P C.

that is, as in (3.2), for u1, . . . , un P I, U satisfies

(3.5)
´

afpu1x1, . . . , unxnq ` f
dpu1x1, . . . , unxnq

¯

fpu1x1, . . . , unxnq

`

´

ÿ

i

fpu1x1, . . . , dpuiqxi ` uidpxiq, . . . , unxnq
¯

fpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnq
´

bfpu1x1, . . . , unxnq ` λf
dpu1x1, . . . , unxnq

`λ
ÿ

i

fpu1x1, . . . , dpuiqxi`uidpxiq, . . . , unxnq`rp, fpu1x1, . . . , unxnqs
¯

P C.

Then by Kharchenko’s theorem [14], we have that U satisfies

(3.6)
´

afpu1x1, . . . , unxnq ` f
dpu1x1, . . . , unxnq

¯

fpu1x1, . . . , unxnq

`

´

ÿ

i

fpu1x1, . . . , dpuiqxi ` uiyi, . . . , unxnq
¯

fpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnq
´

bfpu1x1, . . . , unxnq ` λf
dpu1x1, . . . , unxnq

¯

´ fpu1x1, . . . , unxnq
´

λ
ÿ

i

fpu1x1, . . . , dpuiqxi ` uiyi, . . . , unxnq

` rp, fpu1x1, . . . , unxnqs
¯

P C.

In particular, U satisfies the blended component

(3.7)
´

ÿ

i

fpu1x1, . . . , uiyi, . . . , unxnq
¯

fpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnq
´

λ
ÿ

i

fpu1x1, . . . , uiyi, . . . , unxnq
¯

P C.

Since I and IU satisfy the same polynomial identities, we have that I satisfies

(3.8)
´

ÿ

i

fpx1, . . . , yi, . . . , xnq
¯

fpx1, . . . , xnq

´ fpx1, . . . , xnq
´

λ
ÿ

i

fpx1, . . . , yi, . . . , xnq
¯

P C.

Thus I is a PI-right ideal of R, then by Proposition in [19], there exists an
idempotent element e2 “ e P SocpRCq such that I “ eR. Hence
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(3.9)
´

ÿ

i

fpex1, . . . , eyi, . . . , exnq
¯

fpex1, . . . , exnq

´ fpex1, . . . , exnq
´

λ
ÿ

i

fpex1, . . . , eyi, . . . , exnq
¯

P C

is satisfied by U . If rI, IsI “ p0q, then a fortiori rfpx1, . . . , xnq, xn`1sxn`2
is an identity for I and we are done. So, let rI, IsI ‰ p0q. Therefore, there
exists v P R such that ev P I “ eR and rev, IsI ‰ p0q. This implies
pev ´ µqI ‰ p0q for all µ P C. Then ev R C, otherwise for µ “ ev P C,
pev ´ µqI “ p0q, a contradiction.

Now replacing in (3.9) each eyi with rev, exis, we get

(3.10) rev, fpex1, . . . , exnqsfpex1, . . . , exnq

´ λfpex1, . . . , exnqrev, fpex1, . . . , exnqs P C

is satisfied by U , that is,

(3.11) evfpex1, . . . , exnq
2 ` fpex1, . . . , exnqp´ev ´ λevqfpex1, . . . , exnq

` fpex1, . . . , exnq
2pλevq P C.

Now we may apply Proposition 7. Since pev ´ µqI ‰ p0q for all µ P C, we
conclude that either I satisfies rfpx1, . . . , xnq, xn`1sxn`2 or charpRq “ 2 and
I satisfies s4px1, . . . , x4qx5, unless rfpx1, . . . , xnq2, xn`1sxn`2 is an identity
for I and pp1`λqev`µqI “ p0q for some µ P C. In the following, we consider
just the last case (if not we are done).

In this case, if 1`λ ‰ 0, then pev`µp1`λq´1qI “ p0q, contradicting the
fact pev ´ γqI ‰ p0q for all γ P C. Hence, λ “ ´1. Thus Gpxq “ ax ` dpxq
and Hpxq “ bx´ dpxq ` rp, xs for all x P U . Moreover, starting by (3.6) for
λ “ ´1, we have that U satisfies the blended component

afpu1x1, . . . , unxnq
2 ´ fpu1x1, . . . , uiyi, . . . , unxnqpb` pqfpu1x1, . . . , unxnq

` fpu1x1, . . . , unxnq
2p P C

and in particular U satisfies

afpex1, . . . , exnq
2 ´ fpex1, . . . , exnqpb` pqfpex1, . . . , exnq

` fpex1, . . . , exnq
2p P C.

Applying again Proposition 7, it follows that either rfpx1, . . . , xnq, xn`1sxn`2
is a polynomial identity for I or charpRq “ 2 and I satisfies s4px1, . . . , x4qx5
unless when one of the following holds:

(i) p P C and there exist α, β P C such that pa´αqI “ p0q, pb`p`βqI “
p0q, pp` α` βq “ p0q, that is, Gpxq “ ax` dpxq, Hpxq “ bx´ dpxq, for all
x P R, with pa´ αqI “ pb´ αqI “ p0q (a particular case of conclusion (5c)).
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(ii) There exists γ P C such that pb`p`γqI “ p0q and pa`p`γqI “ p0q,
that is, Gpxq “ ax ` dpxq and Hpxq “ b1x ´ xp ´ dpxq, with b1 “ b ` p,
pb1 ` γqI “ p0q “ pa` p` γqI (again a particular case of conclusion (5c)).

(iii) R satisfies s4, a´ p P c and b` p P C, that is Gpxq “ ax` dpxq and
Hpxq “ xb´ dpxq, for all x P R, with a` b P C.

Similarly, from the symmetry of the expression d ` δ “ adp, we can say
that d “ µδ ` adp, and by similar above argument, it follows that either
rfpx1, . . . , xnq, xn`1sxn`2 is a polynomial identity for I or charpRq “ 2 and
I satisfies s4px1, . . . , x4qx5 unless when µ “ ´1, rfpx1, . . . , xnq2, xn`1sxn`2
is an identity for I and one of the following holds:

(i) There exist a1 P U and α P C such that Gpxq “ a1x ´ δpxq and
Hpxq “ bx` δpxq, for all x P R, with pa1 ´ αqI “ p0q “ pb´ αqI.

(ii) There exist a1, a2 P U and α P C such that Gpxq “ a1x` xa2 ´ δpxq
and Hpxq “ bx` δpxq, for all x P R, with pa1 ´ αqI “ p0q “ pb´ a2 ´ αqI.

(iii) R satisfies s4, Gpxq “ xa´ δpxq and Hpxq “ bx` δpxq, for all x P R,
with a´ b P C.

Here also we get particular cases of conclusion (c).
Next assume that d and δ are C-independent modulo inner derivations

of U . As in (3.2), for u1, . . . , un P I, we have that U satisfies

(3.12)
´

afpu1x1, . . . , unxnq ` f
dpu1x1, . . . , unxnq

¯

fpu1x1, . . . , unxnq

`

´

ÿ

i

fpu1x1, . . . , dpuiqxi ` uidpxiq, . . . , unxnq
¯

fpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnq
´

bfpu1x1, . . . , unxnq ` f
δpu1x1, . . . , unxnq

¯

´ fpu1x1, . . . , unxnq
´

λ
ÿ

i

fpu1x1, . . . , δpuiqxi ` uiδpxiq, . . . , unxnq
¯

P C.

Then by Kharchenko’s theorem [14], we have that U satisfies

(3.13)
´

afpu1x1, . . . , unxnq ` f
dpu1x1, . . . , unxnq

¯

fpu1x1, . . . , unxnq
´

ÿ

i

fpu1x1, . . . , dpuiqxi ` uiyi, . . . , unxnq
¯

fpu1x1, . . . , unxnq

´ fpu1x1, . . . , unxnq
´

bfpu1x1, . . . , unxnq ` f
δpu1x1, . . . , unxnq

¯

´ fpu1x1, . . . , unxnq
´

λ
ÿ

i

fpu1x1, . . . , δpuiqxi ` uizi, . . . , unxnq
¯

P C.
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In particular, U satisfies the blended component

(3.14)
´

ÿ

i

fpu1x1, . . . , uiyi, . . . , unxnq
¯

fpu1x1, . . . , unxnq P C.

Since I and IU satisfy the same polynomial identities, we have that I satisfies

(3.15)
´

ÿ

i

fpx1, . . . , yi, . . . , xnq
¯

fpx1, . . . , xnq P C.

Thus I is a PI-right ideal of R, then as above I “ eR for some idem-
potent element e2 “ e P socpRCq. Also, here we replace any yi with
rev, exis with v P R such that rev, IsI ‰ p0q. Thus I “ eR satisfies
rv, fpx1, . . . , xnqsfpx1, . . . , xnq P C. In this case, since ev R C, by Proposition
7 we conclude that either I satisfies rfpx1, . . . , xnq, xn`1sxn`2 or charpRq “ 2
and I satisfies s4px1, . . . , x4qx5.
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