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COCENTRALIZING GENERALIZED DERIVATIONS
ON MULTILINEAR POLYNOMIAL ON RIGHT IDEALS
OF PRIME RINGS

Abstract. Let R be a prime ring with Utumi quotient ring U and with extended
centroid C, I a non-zero right ideal of R, f(z1,...,,) a multilinear polynomial over C
which is not central valued on R and G, H two generalized derivations of R. Suppose that
G(fr)f(r) = f(r)H(f(r)) € C, for all r = (r1,...,75) € I". Then one of the following
holds:

1. there exist a,b,p € U and a € C such that G(z) = az + [p, z] and H(z) = bz, for all
z€R,and (a—b)I = (0) =(a+p—a)l;

2. R satisfies s4, the standard identity of degree 4, and there exist a,a’ € U, o, 8 € C such
that G(z) = az + za’ + az and H(z) = o'z — xa + Bz, for all z € R;

3. R satisfies s4 and there exist a,a’ € U, and d : R — R, a derivation of R, such that
G(z) = ax + d(z) and H(x) = za' — d(z), for all z € R, with a +a’ € C;

4. R satisfies s4 and there exist a,a’ € U, and d : R — R, a derivation of R, such that
G(z) = za + d(z) and H(z) = az’ — d(z), for all z € R, with a —a’ € C;

5. there exists e? = e € Soc(RC) such that I = eR and one of the following holds:

(a) [f(z1,...,%n), Tnt1]Tnt2 is an identity for [;
(b) char(R) = 2 and sa(x1, 2, T3, x4)xs5 is an identity for I;
(¢) [f(z1,...,%n)% Tnt1]Tni2 is an identity for I and there exist a,a’,b,b' € U, a € C

and d : R — R, a derivation of R, such that G(z) = az + za' + d(z), H(z) =
bz + xb’ — d(x), for all x € R, with (a — b —a)l = (0) = (b—a’ — a)l.

1. Introduction

Throughout this article R always denotes an associative prime ring with
center Z(R), extended centroid C and U its Utumi quotient ring. The
commutator of z and y is denoted by [z, y] and defined by [z,y] = xy — yz,
for z,y € R. An additive mapping d : R — R is called a derivation if
d(xy) = d(z)y + xd(y) holds, for all z,y € R. A derivation d is inner if there
exists a € R such that d(x) = [a, ] holds, for all z € R. If the derivation d is
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not inner, then it is said to be outer derivation in R. An additive mapping
F : R — R is called a generalized derivation if there exists a derivation
d : R — R such that F(zy) = F(z)y + zd(y) holds for all z,y € R. If
for some a,b € R, F(z) = ax + xb holds for all x € R, then F is called as
inner generalized derivation of R. Evidently, any derivation is a generalized
derivation. We denote by s4, the standard identity in four variables.

A well known result of Posner [26] states that if d is a derivation of R
such that d(z)x — zd(z) € Z(R) for all x € R, then either d = 0 or R is
commutative. Several authors generalized Posner’s theorem. For instance,
Bresar proved in [3] that if d and § are two derivations of R such that
d(z)x—x0(x) € Z(R) for all z € R, then either d = § = 0 or R is commutative.
Later Lee and Wong [23] consider the situation d(x)z —zd(z) € Z(R), for all
x in some noncentral Lie ideal L of R and obtained the result that either d =
d = 0 or R satisfies s4. In [22], Lee and Shiue consider the situation d(x)z —
xd(z) € C, for all x € {f(z1,...,2n)|x1,...,2n € R}, where f(x1,...,2,)
is any polynomial over C' and obtained that either d = § = 0, or § = —d
and f(x1,...,2,)? is central valued on RC, except when char (R) = 2 and
dimcRC = 4.

In [2], the first author and Argac studied the same situation of Lee and
Shiue, replacing derivations d and ¢ with two generalized derivations G and
H in prime ring R. More precisely in [2] it is proved the following:

THEOREM A. Let R be a prime ring, U its Utumi quotient ring, C = Z(U)
its extended centroid, I a non-zero two-sided ideal of R, H and G non-zero
generalized derivations of R. Suppose that f(x1,...,x,) is a non-central val-
ued multilinear polynomial over C such that H(f(X))f(X)— f(X)G(f(X))
=0, for all X = (x1,...,2y) € I", then one of the following holds:

1. there exists a € U such that, H(x) = xa and G(x) = ax, for all x € R;

2. f(z1,...,2,)% is central valued on R and there exist a,b € U such that
H(z) = ax + zb, G(x) = bx + za, for all x € R;

3. char(R) = 2 and R satisfies s4, the standard identity of degree 4.

In the present paper, our aim is to extend the previous cited result to
the one-sided case, more precisely our main result will be:

THEOREM. Let R be a prime ring with Utumi quotient ring U and with
extended centroid C, I a non-zero right ideal of R, f(x1,...,2y) a multilinear
polynomial over C which is not central valued on R and G, H two generalized
deriwations of R. Suppose that G(f(r))f(r) — f(r)H(f(r)) € C, for all
r=(r1,...,m) € I"". Then one of the following holds:

1. there exist a,b,p € U and o € C such that G(z) = ax + [p,z] and H(z) =
bx, for allx € R, and (a —b)I = (0) = (a +p —a)I;
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2. R satisfies sy, the standard identity of degree 4, and there exist a,a’ € U,
a, B € C such that G(z) = ax + za' + ax and H(x) = d'z — za + Bz, for
all x € R;

3. R satisfies s4 and there exist a,a’ € U, and d : R — R, a deriwation of R
such that G(z) = ax + d(x) and H(z) = zd’ — d(z), for all x € R, with
a+adeC;

4. R satisfies s4 and there exist a,a’ € U, and d : R — R, a derivation of R
such that G(z) = za + d(x) and H(z) = ax’ — d(z), for all x € R, with
a—ad eC;

5. there exists €2 = e € Soc(RC) such that I = eR and one of the following
holds:

(a) [f(x1,... %), Tnt1]Tnta i an identity for I;
(b) char(R) =2 and s4(x1, x2, 3, T4)x5 is an identity for I;
() [f(x1,...,20)% 2pi1]Tnso is an identity for I and there exist

a,a’ bt/ € U, « € C and d : R — R, a deriation of R such that
G(z) = ax + zd' + d(x), H(x) = bz + xb' — d(x), for all x € R, with
(a=V—-a)l=(0)=(b—d —a)l.

In order to prove our result, in the next sections we will make use of the
following well known facts:

FAcT 1. Let R be a prime ring and L a non-central Lie ideal of R. Then
either char(R) = 2 and R satisfies s4, the standard identity of degree 4, or
there exists a non-central ideal I of R such that 0 # [I,R] < L.

Proof. See [12] (pages 4-5), Lemma 2 and Proposition 1 in [9], Theorem 4
in [16]. =

Fact 2. In |21, Theorem 3|, Lee proved that every generalized derivation
H on a dense right ideal of R can be uniquely extended to a generalized
deriwation of U and assume the form H(x) = ax + d(x), for all x € U, for
some a € U and a derivation d of U.

2. The result for Inner Generalized Derivations
We begin with some lemmas:

LEMMA 3. Let R be a non-commutative prime ring, a,be€ U, p(x1,...,2y)
be any polynomial over C, which is of nonzero value on R. If ap(r) — p(r)b
e C, for allr = (r1,...,m,) € R™ then one of the following holds:

l.a=be(C;

2. a—beC and p(xy,...,xy,) is central valued on R;
3. char(R) = 2 and R satisfies s4;

4. char(R) # 2, R satisfies s4 and a +be C.



Cocentralizing generalized derivations on multilinear polynomial 25

Proof. If p(z1,...,x,) is central valued on R then our assumption ap(r) —
p(r)b € C yields (a — b)p(r) € C, for all r = (ry,...,r,) € R™ Since
p(z1,...,x,) is nonzero valued on R, a — b € C and hence we obtain our
conclusion (b).

Next assume that p(x1,...,z,) is not central valued on R. Let G be the
additive subgroup of R generated by the set S = {p(x1,...,25)|x1,..., 2y
€ R}. Then S # {0}, since p(x1,...,zy) is nonzero valued on R. By our
assumption we get ax — xb € C, for any x € G. By [5], either G < Z(R) or
char (R) = 2 and R satisfies s4, except when G contains a noncentral Lie
ideal L of R. Since p(z1,...,%y,) is not central valued on R, the first case can
not occur. If char (R) = 2 and R satisfies s4 then we obtain our conclusion
(c). So, let either char (R) # 2 or R does not satisfy s4. Then G contains a
noncentral Lie ideal L of R. By Fact 1, there exists a noncentral two sided
ideal I of R such that [I,R] < L. In particular, a[xy, z2] — [21,22]b € C,
for all z1,x9 € I. As a reduction of Theorem 1 in [I], we have that either R
satisfies s4 and a+be C or a,b e C. In this last case (a — b)[z1,z2] € C, for
all z1,x9 € I implies either a = b (and we are done) or [I,I] < C, i.e. R is
commutative. In any case we obtain one of Lemma’s conclusions. =

FAcT 4. Let R be a prime ring with Utumi quotient ring U and extended
centroid C, I be a non-zero ideal of R and f(x1,...,2,) be a multilinear
polynomial over C' which is not central valued on R. If for some a,b,w € U,
af(r)? + f(rwf(r) + f(r)2b =0, for all v = (r1,...,7,) € I", then one of
the following holds:

1. a,b,we C witha+w+b=0;
2. w=—a—beC and f(x1,...,2,)? is central valued on R;
3. char (R) = 2 and R salisfies sy.

Proof. Since by [6], R and I satisfies the same generalized polynomial iden-
tities with coefficients in U, the result follows directly from Lemma 3 in [2]. =

LEMMA 5. Let R = My (F) be the set of all k x k matrices over a field F' and
flx1,...,xp) be a multilinear polynomial over F with noncentral value on
R. If for some a,b,w € R, af(x1,...,20)% + f(21,...,2p)wf(z1,...,2,) +
f(x1,...,2,)%b € F - Iy, for all x1,...,2, € R, then one of the following
holds:

a,byweF I witha+w+b=0;

w,a+be F-Iy and f(x1,...,2,)? is central valued on R;
char(R) =2 and k = 2;

k=2,a—beF I andwe F - Ij.

W=
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Proof. Let a = (aj)kxk, b = (bij)uxk and w = (wij)gxk. Since f(z1,...,xy)
is not central on R, by [24, Lemma 2, Proof of Lemma 3| there exists a
sequence of matrices 7 = (r1,...,7,) in R such that f(ri,...,m) = ve;;

with 0 # v € F and ¢ # j. Since the set f(R) = {f(z1,...,2n),z; € R}
is invariant under the action of all inner automorphisms of R, for all i # j

there exists a sequence of matrices r = (r1,...,7,) such that f(r) = ve;;.
Thus

af(riy.omn)® + fOrsra)wf(rn, ) + f(r,.m)?h
= yeijwyei; = Y wjieij € F - Iy
implying wj; = 0, for any ¢ # j. Thus w is a diagonal matrix. Now for any
F-automorphism 6 of R, w? satisfies the same property as w does, namely,

aef(rl,...,rn)2 +f(r1,...,rn)w9f(r1,...,Tn) —|—f(7“1,...,rn)2be€F'Ik,
k

for all r1,...,7, € R. Hence, w? must be diagonal. Write, w = >} wj;es;
i=0
then for s # t, we have that
k
(2.1) (1 +ews)w(l —ess) = Z wii€ii + (Wss — Wt )ets
i=0

is diagonal. Hence, wss = wy and so w € F - I,. Therefore, R satisfies
af(xy,...,z0)% + f(21,...,20)%(b+w) € F - I},. Then by Lemma one of
the following holds:

a=—(b+w)eF I, that is a,b,w € F - I;, with a + w + b = 0.

e atbtwe F-I and f(x1,...,2,)? is central valued on R. Since w € F- I,
a+b+weF - I implies w,a+be F - I.

e char (R) =2 and k = 2.

ek=2a—b—wekF I thatisbotha—be F-I; and we F - I}.

Thus the lemma is proved. =

LEMMA 6. Let R be a prime ring with Utumi quotient ring U and extended
centroid C, and f(r1,...,ry) be a multilinear polynomial over C' which is not
central valued on R. If for some a,b,w € U, af(r)?+ f(r)wf(r)+ f(r)?be C,
forallr = (ry,...,r,) € R", then one of the following holds:

1. a,b,we C witha+w+b=0;

2. w,a+beC and f(xq,...,1,)% is central valued on R;
3. char(R) = 2 and R satisfies s4;

4. R satisfies s4, a —be C and we C.

Proof. Since R and U satisfy same generalized polynomial identity (see [6]),
U satisfies
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g(x1,. . Tpt1)

=[af(z1,...,22)* + f(z1,...,20)wf(x1,. .. 20) + flx1, ..., 20)%b, Tng1].
Suppose first that g(x1...,zp4+1) is a trivial generalized polynomial iden-
tity for R. Let T = U %¢ C{x1,...,zp+1} be the free product of U
and C{x1,...,2n41}, the free C-algebra in non-commuting indeterminates

L1555 Tn+1-
Then,

[af(x1,...,20) + flz1, ..., xp)wf(x1, .. xn) + F(@1, .. 20)2b, g1

is zero element in T'. If a ¢ C then a and 1 are linearly independent over C.
Thus af(z1,...,2n)%Tns1 = 0 implying a = 0, a contradiction. Therefore,
a € C. Similarly, we can show that w,b € C. Then the GPI becomes
(a+b+w)f(z1,...,2,)2 € C. Sincea+b+weC, a+b+w # 0 implies
that f(z1,...,2,)% € C contradicting the fact that R does not satisfy any
nontrivial GPI. Thus, a + b + w = 0. The conclusion (a) is obtained.

Thus we assume that g(z1...,z,41) is a non-trivial generalized polyno-
mial identity for R and so also for U. Let I be a two-sided ideal of U. In
case

af(xi,... ,xn)2 + f(z1,. . xn)wf(zr, .. xn) + f(21,. .. ,a:n)zb
is satisfied by I, the conclusion follows from Fact [4]
Hence we assume that there exist rq,...,7, € I such that

af(rl,...,rn)Q + f(riy . rp)wf(re, ... ) +f(7’1,...,rn)2b #0
so that

af(zy,...,x0)? + f(21,. ..,z )wf(z1, ..., 20) + f(z1,...,2,)%be C
is a non-zero central generalized identity for I. As in Theorem 1 in [4], it
follows that R is a Pl-ring, therefore RC = @Q = U is a non-trivial GPI-ring
simple with 1. By Lemma 2 in [I5] and Theorem 2.3.29 in [27], there exists
a field F such that U < My (F), the ring of all k& x k matrices over E;
moreover U and My (E) satisfy the same generalized identities. Therefore
M. (E) satisfies g(x1,...,Zn+1) and the result follows from Lemma 5| =

PROPOSITION 7. Let R be a non-commutative prime ring, I be a non-zero
right ideal of R and f(x1,...,x,) be a multilinear polynomial over C. If for
some a,b,w € U, af(r)? + f(r)wf(r) + f(r)?be C, for all v = (r1,...,m)
e I™, then one of the following holds:

1 [f(z1,. . 2n), Tpi1]Tnse is an identity for I;

2. be C and there ezist o, B € C such that (a — )l =0, (w— B)] =0 and
(b+a+pB)=0;

3. char(R) =2 and I satisfies sq(x1,...,24)Ts5;
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4. [f(21,. s 20)2, Tng1]Tnre is an identity for I and there exists v € C such
that (w —~)I =0 and (a + b+ ~)I = 0;
5. R satisfies s4, a —be C and w € C.

Proof. Let 0 # uw € I, then
(2.2) [af(u:cl, coouzn)? + fluxy, .. uzy)wf(ux, ... uzy,)

+ f(uxy,... ,uxn)2b,X]

is a generalized polynomial identity for R. Our first aim is to show that R
satisfies some non-trivial generalized polynomial identity, unless when the
conclusion (b) occurs. To do this, we suppose R does not satisfy any non-
trivial generalized polynomial identities. Then is a trivial GPI for R.
This happens when {b, 1} are linearly C-depending (see [6]), that is, b € C.

Thus becomes
(2.3) [af(uxl, .. ,uacn)2 + fluxy, ... uxy)(w+0) f(uxy, ..., uxn),X],

which is a trivial GPI for R. Once again by [0], it follows that {au,u} are
linearly C-depending, for all 0 # w € I, that is, there exists « € C such that
(a —a)I = 0. In light of this, (2.3]) becomes

(2.4) [f(uq:l, coouxy)(a+w+b) f(uxy, ..., uxn),X],
which must be trivial for R. This happens when:

o either (o + w + b)u = 0, for all 0 # w € I, that is, (w — 8)I = 0, where
f = —a —be C (which is the conclusion (b) of the Proposition);

e or there exists v € C such that 0 # (a+w+b)u = yu and f(uxy,...,uz,)?
is central valued in R, that is, [f(ux1,...,uz,)?, Tpy1] is @ non-trivial
generalized polynomial identity for R, a contradiction.

Thus in all that follows, we assume that R is a non-trivial GPI-ring.

Notice that if I = R then by Lemma [6] we are done. Thus we assume
that I # R. Moreover, by contradiction suppose that the conclusions (a) to
(d) don’t hold, that is, we assume the following hold simultaneously:

e there exist ¢1,...,t,4+2 € I such that [f(t1,...,tn), tnt1]tn+e # 0;

e if char(R) = 2, there exist vy, ...,vs5 € I such that s4(vy,...,v4)v5 # 0;

e if b € C then there exist ¢1,co € I such that, for all \,u € C, either
(@ —A)ep # 0, or (w— p)cg # 0;

e cither there exist uy,...,uny2 € I such that [f(u1,...,un)? Uy |tus2 #
0 or there exists c3 € I such that (w — X)es # 0, for all A € C
e cither there exist uy, ..., up4o € I such that [f(u1,...,un)? Uy tur2 #

0 or there exists ¢4 € I such that (a + b+ p)cq # 0, for all pe C.
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We will prove that the previous assumptions lead to a number of contra-
dictions.

Without loss of generality, R is simple and equals to its own socle, IR = I.
In fact, R is GPI and so RC' has non-zero socle S = Soc(RC') with non-zero
right ideal J = IS (Theorem 3 in [25]). Note that S is simple, J = JS and
J satisfies the same basic conditions as I. Now just replace R by S, I by J
and we are done.

Since R = S is a regular ring then for any aq,...,a, € I there exists
h = h? € R such that Z?Zl a;R = hR. Then h € IR = I and a; = ha;,
for each i = 1,...,n. In particular, there exists ¢ = €2 € R such that

eR = Z?Zl ciR + 2?212 u; R+ Z,:L:f trR + 215=1 R, and ¢; = ec;, u; = euy,
ty = ety, vy = ey, foreachi=1,...,4,l=1,...,5and j,k=1,...,n+ 2.
Then we have f(eRe) = f(eR)e # 0.

Since

(2.5)  af(exy,...,exn) + flexy,... exy)wf(exy,. .., exy,)
+ flexy,...,exy)’be C

is satisfied by R, then commuting with (1 —e) € R(1 — e) and right
multiplying by e, we obtain that (1 —e)af(ex, ..., ex,)%e is an identity for
R. By [7], it follows that (1 — e)ae = 0, that is, ae = eae € eR, since
f(eRe) # (0). This implies that

af(ert,... ern)* + flern,...,erp)wf(ers, ... er,)
+ f(ery,...,ery)?beInC,

for all r1,...,7r, € R. In case there exist t1,...,t, € eR such that
0#af(ty,....tn)2+ f(ty, . t)wf(te, ... ty) + f(t1, ... tn)?beeR N C

then eR possesses a central generalized polynomial identity and from Theo-
rem 1 in [4], R is a Pl-ring and RC' is a finite-dimensional simple C-algebra
by Posner’s Theorem. By the Wedderburn-Artin Theorem, there exists a
division ring D such that RC' =~ Mj(D) where D is a finite-dimensional C-
algebra. Replacing R with RC', we may assume that R = My(D). Choose a
maximal subfield K of D. Then My (K)®c K =~ M;(K) and

af(x1,...,x0)2+ flor, .. xp)wf(x, ... x0)+ f(z1, ..., 20)%b e Z(M(K))

is satisfied by eR ®c K (Lemma 2 in [I8] and Proposition in [23]). Thus
without loss of generality, we may assume R = M;(K) and [ = eR®c K.
So I n Z(M(K)) # 0, that is I contains some invertible element of R and
I = R, a contradiction.
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Therefore in the following, we assume that for all x1,...,x, € R
(2.6)
af(exy,... exn)*+ f(exy,. .., exp)wf(exry,. .. exy)+ f(exy,...,ex,)’b=0

with ae = eae and also

(2.7)  af(exye, ..., exne)?® + flexie, ... expe)wf(exie, ..., expe)

+ flexye,. .. exne)’b = 0.
Right multiplying by (1 —e) in (2.7), we have that f(ex1,...,ex,)%eb(1 —e)
= 0, for all x1,...,2, € R, which implies by [7] that eb(1 — e) = 0, that is,
eb = ebe, since f(eR)e # (0).

Here we write

f(xia CIEER ,$n) = Zti(l‘la ey Lj—1, Ti41,5 - - 'axn)xiv
7

where each ;(y1, ..., yn—1) is a multilinear polynomial in n — 1 variables and
x; never appears in any monomial of ¢;(y1,...,yn—1). In particular, there
exists at least one t;(x1,...,2i—1,%it1,...,Tn), which is not an identity for
eRe, if not f(x1,...,x,) should be an identity for eRe, which is a contra-
diction. Assume that t,(z1,...,2,-1) is not an identity for eRe. Then
tn(eRe) # 0. Now let x € R. We replace z,, with z(1 —e) in (2.7)) and then
obtain that

tn(exy, ... exp_1)ex(l —e))wty(exy, ..., exn—1)ex(l —e)) =0,

which implies ((1 — e)wety,(ex1,...,ex,—1)ex)® = 0, for all x € R. By
Levitzki’s Lemma [12, Lemma 1.1], (1 — e)wet,(ex1e,...,ex,_1€) = 0, for
all x1,...,2,-1 € R. Since t,(eRe) # 0, it follows that (1 — e)we = 0, that
is, we = ewe.

Now, left and right multiplying by e in (2.7)), we have that eRe satisfies
(2.8)  eaef(x1,...,xn)? + f(21,...,20)ewef(x1,...,Tn)
+ f(21,...,2,)%be = 0.
Now, we may apply the result contained in Theorem A to the prime ring

eRe. Thus either char(R) = 2 and eRe satisfies s4 (which contradicts with
the choices of v1,...,v5) or one of the following cases occurs:

1. There exist a, 3,7 € C such that (¢ — a)e = 0, (w — B)e = 0 and
eb = ev. Hence, since by (2.6 R satisfies
af(exy,... exn)* + flext, ... exy)wf(ext,... exy) + flexy, ..., ex,)?b,

it follows that f(eR)?(a+ 8 +b) = (0). Since f(eR)e # (0), by [7] it follows
a+f+b=0,that is, be C and (a — a)c; = (w— B)ca = 0, a contradiction.
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2. f(w1,...,2,)? is central valued on eRe and there exists v € C such
that we = —ae — eb = ve. In this case, right multiplying by e and
using [f(eR)?, eR]e = (0), we have that f(eR)?(a + v + b)e = (0), that
is (a + v + b)e = 0 (see again [7]), which contradicts with the choices of
Uly.woyUpto, €3 and cq. w

Finally we are ready to prove our main result:

3. The Proof of Main Theorem

By Fact 2, we may assume that for all z € U, G(z) = ax + d(z) and
H(z) = bx + 6(x), where a,b € U and d, § are derivations of U. By the
hypothesis I satisfies

(3.1)  (af(z1,...,x0)2 +d(f(z1,. .. 20))flz1,. .., 20)
— flx1, . xn)(0f (21, s 2n) + 0(f(21,.. . 2y))) € C.
Since I and IU satisfy the same generalized polynomial identities (see [0])

as well as the same differential identities (see [17]), we may assume, for
Ui, ..., U, € I, that U satisfies

(3.2) (af(uiey,. .., UnfL“n)2 +d(f(urr, ... un®p)) f(urey, . .. UpZy)
— flurzy, .. upey) (bf (Ui, . .. unxy) + 0(f(urzy, ..., upxy,))) € C.

Now, we divide the proof into two cases:

3.1. CASE 1: Let d(z) = [p,z] for all z € U and é(x) = [¢,z] for all z € U
i.e.,, d and § are both inner derivations of U. Then from (3.1)), we obtain
that I satisfies

(33)  ((a+p)f(x1,.. . zn)? = f@1,. . szn) b+ p+q)flxr, ... x0)

+ f(x1,...,2,)%) € C.
By Proposition [7], one of the following holds:

1. [f(z1,...,2n), Tpy1]Tnyo is an identity for I;

2.geC,(a+p—a)I=0,(b+p+q+pP)I =0, (¢+a+p) =0, for some
a,B8 € C. So that (a —b)I =0, (a+p)l = ol and G(z) = ax + [p, z],
H(xz) = bz, for all x € R. This is the conclusion of the Theorem in the
case [ is not PL.

3. char(R) = 2 and s4(x1, z2, z3,z4)x5 is an identity for I;

4. [f(x1,. .. 20)2 Tng1]Tnse is an identity for I, (b+p + q + ) = 0,
(a+p+qg+~)I =0 for some v € C and G(z) = (a + p)z + z(—p),
H(z)=(b+q¢z—xq=(b+q+~vy)x+x(—q—"), for all z € R (which is
a particular case of conclusion (5c) when d = 0 and o = 0).

5. R satisfies s4, a+p—q=a€ C,b+p+q = € C, that is G(z) =
qr — zp + ax and H(x) = —px — xq + Sz, for all x € R.
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3.2. CASE 2: Let d and § are not both inner derivations of U.

Assume that d and § are C-dependent modulo inner derivations of U, say
d = M + ady,, where A€ C, pe U and ad,(x) = [p,z], for all z € U. Then d
can not be inner derivation of U. From , we obtain that I satisfies

(3.4)  (af(x1,...,zn) +d(f(z1,...,2n)) f(x1,...,20)
—f(z1, . zn)(Df (21, .-y xn) + AA(f (21, ..o ymp)) + [, f(21, .- 20)]) € C.
that is, as in , for uy,...,u, € I, U satisfies

(3.5) (af(ulxl, e UnTy) + furan, . ,unxn)>f(u1w1, ey UpXy)

<Z flurzy, ..., d(w)x; + wid(x;), . .. ,unxn))f(ulzvl, ey Uny)

— f(ula/:l, ey UnTy) (bf(ulml, cey UpTy) + )\fd(ulxl, ey Uny)

+)\2 flurzy, ... d(w)zi+uid(xy), ... upzy)+[p, furzy,. .. ,unxn)]> eC.

Thenl by Kharchenko’s theorem [14], we have that U satisfies

(3.6) (af(ulxl, cuny) + furz, . ,unxn)>f(u1x1, ey UpZy)
<2f UITL, - d(wi) T + wiy, - - ,unmn)>f(u1x1, ey UpTy)

— flurzy, ..., upey) (bf(ulacl, ey UpTy) + )\fd(ulxl, e ,unxn)>

— flurzy, ..., upxy) (AZ flurzy, ..., d(w)x; + wiYiy -« ., Unxy)

+ [p, f(urzy, ... ,unmn)]> e C.

In particular, U satisfies the blended component
(3.7) (2 flurzy, .. uiyi, - .. ,una:n)>f(u1x1, ey Un )
Z — flurzy, ..., upzy) (AZ flurzy, ... uiyi, . .. ,unxn)) eC.
Since I and IU satisfy the same polynz)mial identities, we have that I satisfies
(3.8) (Zf Ty ey Uiy oo ))f(xl,,:vn)
— flx1,...,x ()\Zf:vl,...,yi,...,xn)>eC’.

Thus I is a Pl-right ideal of R, then by Proposition in [19], there exists an
idempotent element e? = e € Soc(RC) such that I = eR. Hence
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(3.9) (2 flex,... ey, .. .,efcn))f(exl, ceey €T

— f(e:vb...,exn)<)\2f(ex1,...,eyi,...,eazn)> eC

is satisfied by U. If [I,I]I = (0), then a fortiori [f(x1,...,%n), Tnt1]Tnt2
is an identity for I and we are done. So, let [I,I]I # (0). Therefore, there
exists v € R such that ev € I = eR and [ev,I]] # (0). This implies
(ev — p)I # (0) for all 4 € C. Then ev ¢ C, otherwise for p = ev € C,
(ev — p)I = (0), a contradiction.

Now replacing in each ey; with [ev, ex;], we get

(3.10)  [ev, f(ex1,...,exy)]f(exy, ..., exy,)
— M(exy,... exy)|ev, f(exy,...,exy)] € C

is satisfied by U, that is,

(3.11)  evflex,...,exn)? + flexy, ..., exy)(—ev — Nev) flexs, ..., exy)

+ flexy, ... exn)*(Nev) € C.
Now we may apply Proposition [7| Since (ev — pu)I # (0) for all € C, we
conclude that either I satisfies [f(z1,...,%n), Tnt+1]Tnt2 or char(R) = 2 and
I satisfies s4(21,...,24)ws5, unless [f(21,...,20)%, Tni1]Tne2 is an identity
for I and ((14+X)ev+pu)I = (0) for some pu € C. In the following, we consider
just the last case (if not we are done).

In this case, if 1+ X\ # 0, then (ev+ u(1+X)~1)I = (0), contradicting the
fact (ev —y)I # (0) for all v € C. Hence, A = —1. Thus G(z) = ax + d(x)
and H(z) = bx — d(z) + [p, z] for all x € U. Moreover, starting by for
A = —1, we have that U satisfies the blended component

af(ulxl,...,una:n)Q — flurzy, .o wiYiy - ooy Un@n) (b + ) fur ey, . . .y upxy)
+ f(urzy, ..., upzy)?pe C

and in particular U satisfies

le(eﬂi'l, cee ewn)Q - f(el'l’ cee exn)(b +p)f(e$1a sy emn)
+ f(exy,...,exy)’peC.
Applying again Proposition , it follows that either [ f(z1,...,%n), Tni1]Tnio

is a polynomial identity for I or char(R) = 2 and [ satisfies s4(x1,...,z4)25
unless when one of the following holds:

(i) p € C and there exist a, § € C such that (a—a)l = (0), (b+p+5) =
0), (p+ a+ B) = (0), that is, G(z) = ax + d(x), H(z) = bx — d(z), for all
x € R, with (a — a)I = (b— «a)I = (0) (a particular case of conclusion (5¢)).
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(ii) There exists v € C such that (b+p++)I = (0) and (a+p+~)I = (0),
that is, G(z) = ax + d(x) and H(z) = bz — xp — d(x), with b/ = b + p,
(' ++4)] = (0) = (a +p+~)I (again a particular case of conclusion (5¢)).

(iii) R satisfies s4, a —p € cand b+p € C, that is G(z) = az + d(z) and
H(x) =ab—d(z), for all x € R, with a + b e C.

Similarly, from the symmetry of the expression d 4+ ¢ = ad,, we can say
that d = pd + ady,, and by similar above argument, it follows that either
[f(x1,...,2n), Tnt1]Tnie is a polynomial identity for I or char(R) = 2 and
I satisfies s4(x1,...,24)25 unless when p = —1, [f(z1,...,2,)% Tno1]Tnio
is an identity for I and one of the following holds:

(i) There exist ' € U and a € C such that G(z) = d'z — §(x) and
H(z) = bx + §(x), for all z € R, with (¢’ — «)I = (0) = (b— «)I.

(ii) There exist a’,a” € U and « € C such that G(z) = d'z + za” — §(x)
and H(z) = bx + 0(x), for all x € R, with (' — a)I = (0) = (b—d" — a)I.

(iii) R satisfies s4, G(z) = za—4d(z) and H(x) = bz +0(x), for all z € R,
with a —be C.

Here also we get particular cases of conclusion (c).

Next assume that d and § are C-independent modulo inner derivations
of U. As in (3.2)), for uy,...,u, € I, we have that U satisfies

(3.12) <af(u1x1, o Uny) + fHurz, .. ,unmn)>f(u1x1, ey UpTy)
<Z flurzy, ..., d(w)x; + wid(x;), . .. ,unz:n))f(ulxl, ey UpTy)
— furzy, ..., upxy) (bf(ulxl, e Unn) F o (ur, . ,un:cn))
— flurzy, ... ,unxn)()\Ef(ulxl, oo 0(ug)xs 4+ uid (), .. ,un:pn)) e C.
Then by Kharchenko’s theorem [14], we have that U satisfies
(3.13) <af(u1x1, o uptn) + fHura, . ,unxn))f(ularl, ey UnTy)
(Zf (urz1, ..., d(us)x; + wiys, ... ,unxn))f(ula:l, ey UpTy)
— flurxy, ..., upey) (bf(ulzcl, e UnTy) + f‘s(ul:):l, . ,unxn)>

— flurzy, ..., upey) ()\Z flurzy, ..., 0(ui)x; + uiz, . .. ,un:cn)> e C.
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In particular, U satisfies the blended component
(3.14) (Z flurzy, .o uiyi, - - - un:rn)>f(u1x1, ey Upy) € C.
i

Since I and IU satisfy the same polynomial identities, we have that I satisfies

(3.15) (Z F@, i ,xn)>f(x1, cevan) € C.

Thus I is a Pl-right ideal of R, then as above I = eR for some idem-
potent element e?> = e € soc(RC). Also, here we replace any y; with
[ev,ex;] with v € R such that [ev,I]|] # (0). Thus I = eR satisfies
[v, f(z1,...,2n)]f(21,...,2,) € C. In this case, since ev ¢ C, by Proposition
We conclude that either I satisfies [f(z1,...,%n), Tnt+1]Tny2 or char(R) = 2
and I satisfies s4(21,...,74)x5. »
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