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EXTENDED WEYL-TYPE THEOREMS FOR DIRECT SUMS

Abstract. In this paper, we study the stability of extended Weyl and Browder-
type theorems for orthogonal direct sum S @ T, where S and T are bounded linear
operators acting on Banach space. Two counterexamples shows that property (ab), in
general, is not preserved under direct sum. Nonetheless, and under the assumptions
that TIS(T) < 04(S) and TIS(S) < 0, (T), we characterize preservation of property (ab)
under direct sum S @ T. Furthermore, we show that if S and T satisfy generalized
a-Browder’s theorem, then S @ T satisfies generalized a-Browder’s theorem if and only
if JSBF;(S eT) = Tspr; (S) u Tspr; (T'), which improves a recent result of [13| by

removing certain extra assumptions.

1. Introduction

Throughout this paper, let X and Y be Banach spaces, let L(X,Y)
denote the set of bounded linear operators from X to Y, and abbreviate
L(X, X) to the Banach algebra L(X). For T € L(X), we will denote by
N(T) the null space of T, by «(T) the nullity of T, by R(T') the range of
T, by B(T) the defect of T" and by T* its dual. We will denote also by o(7")
the spectrum of T', by 0,(T") the approximate point spectrum of 7', by o,(T’)
the point spectrum of T (the set of all eigenvalues), and by o (T) the set of
all eigenvalues of T of finite multiplicity. If the range R(T") of T is closed
and «o(T) < oo (resp. B(T) < ), then T is called an upper semi-Fredholm
(resp. a lower semi-Fredholm) operator. If T'e L(X) is either an upper or
a lower semi Fredholm, then T is called a semi-Fredholm operator, and the
index of T is defined by ind(T) = «(T) — B(T). If both a(T) and 5(T)
are finite, then T is called a Fredholm operator. An operator T € L(X) is
called a Weyl operator if it is a Fredholm operator of index zero. The Weyl
spectrum ow (T) of T is defined by ow (T) = {A € C: T — Al is not a Weyl
operator}.
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For a bounded linear operator 7" and a nonnegative integer n, define Tf,
to be the restriction of T' to R(T™) viewed as a map from R(7") into R(T™)
(in particular Tjg) = T'). If for some integer n, the range space R(1™) is
closed and T}, is an upper (resp. a lower) semi-Fredholm operator, then
T is called an upper (resp. a lower) semi-B-Fredholm operator. A semi-
B-Fredholm operator T' is an upper or a lower semi-B-Fredholm operator,
and in this case the index of the semi-B-Fredholm operator T' is defined as
the index of the semi-Fredholm operator 1j,), see [7]. Moreover, if Ty s
a Fredholm operator, then T is called a B-Fredholm operator, see |3]. An
operator T' € L(X) is said to be a B-Weyl operator if it is a B-Fredholm
operator of index zero |4]. The B-Weyl spectrum opw (T') of T is defined by
opw(T) = {Ae C:T — Al is not a B-Weyl operator}.

Let SBF,(X) be the class of all upper semi-B-Fredholm operators,
SBF_(X)={T € SBF(X) :ind(T") < 0}. The essential semi-B-Fredholm
spectrum USBF;(T) of T is defined by USBF;(T) ={AeC:T-X ¢

SBF_(X)}. Recall that the ascent a(T), of an operator T, is defined by
a(T) = inf{n € N : N(T") = N(T"1)} and the descent §(T) of T, is
defined by 6(T) = inf{n € N : R(T") = R(T™"!)}, with inf) = co. An
operator T' € L(X) is called an upper semi-Browder operator if it is an
upper semi-Fredholm operator of finite ascent, and is called a Browder oper-
ator if it is a Fredholm operator of finite ascent and descent, or equivalently
([15, Theorem 7.9.3]) if T is a Fredholm operator and 7' — AI is invertible
for all sufficiently small A € C, A # 0 . The upper semi-Browder spec-
trum ou(T) of T is defined by ou,(T) = {\ € C : T — Al is not an upper
semi-Browder operator}, and the Browder spectrum o,(T) of T is defined by
op(T) = {A € C: T — A is not Browder}.

Define also the set LD(X) by LD(X) = {T € L(X) : a(T) < o and
R(TUT)+1Y is closed}. Following [6], an operator T € L(X) is said to be left
Drazin invertible if T € LD(X). The left Drazin spectrum orp(T) of T is
defined by opp(T) = {ANe C: T — X ¢ LD(X)}. We say that \ € 0,(T) is
a left pole of T if T — X\ € LD(X), and that A € 0,(T) is a left pole of T" of
finite rank if A is a left pole of T and a(T'—AI) < oo. Let I1,(7T") denote the set
of all left poles of T and let I19(T") denote the set of all left poles of T of finite
rank. Following [6], we say that T satisfies generalized Browder’s theorem
if opw(T) = o(T)\II(T') and it satisfies Browder’s theorem if oy (T) =
o(T)\II°(T), where TI(T) is the set of all poles of the resolvent of 7' and
I9T) = {\eI(T) : (T — M) < 0}.

DEFINITION 1.1. [10] Let S € L(X) and T € L(Y). We will say that
S and T have the same stable sign index if for each X € pgpp(T) and p €
pspr(S), ind(T—AI) and ind(S — pI) have the same sign, where pgpr(T) =
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C\USBF (T) and
ospr(T) = {Ae C:T — A is not a semi-B-Fredholm operator}.

Several authors had been concerned with the problem of giving conditions
on the direct summands to ensure that Weyl-Browder type theorems and
properties (generalized or not) hold for the direct sum, see for example |10~
14, 117). In the present paper, we study the preservation under direct sum of
the properties (ab), (gab), (aw) and (gaw), and the results we obtain can be
summarized as follows. In the second section, we give two counterexamples
which show that property (gab) and property (ab) are not transferred in
general from the direct summands S € L(X) and T € L(Y') to the direct
sum S@®T € L(X ®@Y). Nonetheless, and under the extra assumptions that
I1,(S) € 04(T) and I, (T) < 04(S), we characterize the stability of property
(gab) under direct sum via union of B-Weyl spectra of its components. We
obtain also an analogous result for property (ab). Moreover, we characterize
the preservation of generalized a-Browder’s theorem under direct sum via
union of essential semi-B-Fredholm spectra of its components, extending 13|
Theorem 2.7] by removing certain extra hypothesis. In the third section, we
characterize the stability of properties (aw) and (gaw) under direct sum via
union of Weyl or B-Weyl spectra of its summands, and under the assumption
of equality of their point spectrums.

2. Properties (ab) and (gab) for direct sums

We will say that T' € L(X) has the single valued extension property at Ao,
(SVEP for short) if for every open neighborhood U of A, the only analytic
function f : Y — X which satisfies the equation (7" — AI)f(A\) = 0 for all
A € U, is the function f = 0. An operator T' € L(X) is said to have the
SVEP if T has the SVEP at every point A € C (see |16]). For T' € L(X), let
A(T) = o(T)\ow(T), AN(T) = o(T)\opw (T).

According to |8, Definition 2.1|, an operator 7' € L(X) is said to pos-
sess property (ab) if A(T) = IY(T) and is said to possess property (gab) if
AY(T) = 11,(T). Property (gab) is an extension to the context of B-Fredholm
theory of the property (ab). We refer the reader to [8, 9] for more details
about these properties.

In a first step, we begin with the following useful lemma.

LEMMA 2.1. Let S € L(X) and letT € L(Y). Then orp(S®T) = orp(S)u
orLp(T).
Proof. Let A\ ¢ or.p(S) u orp(T) be arbitrary. Without loss of generality,

we can assume that A = 0. Then a(7) < o, a(S) < oo, the range spaces
R(TUD+Y and R(SH*1) are closed. As a(S @ T) = max{a(T),a(S)}
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then a(S®T) < w. If a(S®T) = a(T) then R((S @ T)*5&D)+1)
R(SUM+ @ R(TM)*1), Since a(S) < oo and R(SH¥)*1) is closed then by
|18, Lemma 12], we conclude that R(S*T)*1) is also closed. So R(S¥M+1)@
R(TT)+1) is closed. Similarly, if a(S@®T) = a(S), then R((S@T)H5ST)+1)
is closed. Thus 0 ¢ orp(S@®T) and orp(S@®T) < orp(S) v orp(T).

On the other hand, if 0 ¢ o7 p(S@®T) then SOT is left Drazin invertible,
so that a(S @ T) is finite and R((S @ T)45®T)+1) is closed. Clearly, a(S)
and a(T) are finite, and it is easily seen that R(T*™)*1) and R(S45)*1) are
closed. Thus 0 ¢ ULD(S)UULD(T). Hence JLD(SG-)T) = JLD(S)UULD(T). |

If Se L(X) and T € L(Y) both possess property (gab), then it is not
guaranteed that their (orthogonal) direct sum S@® 7T € L(X @ Y') possesses
property (gab). For instance, let R be the unilateral right shift operator
defined on the Hilbert space ¢*(N), then o(R) = D(0,1) the closed unit
disc in C, 0,(R) = C(0,1) the unit circle of C, opw(R) = D(0,1) and
II,(R) = 0. Tt follows that AY(R) = II,(R), i.e. R possesses property (gab).
If we let T = 0 then 04(T) = o(T) = II,(T) = {0} and opw(T) = 0. So
AY(T) = TI4(T), i.e. T possesses property (gab). Now consider the direct
sum ROT on 2(N)®¢?(N) then o(R®T) = D(0,1), opw (ROT) = D(0,1)
and II,(R® T) = {0}. Thus R@® T does not possess property (gab). We
notice that I1,(T") ¢ o4(R) and I, (R) € 04(T). Summing up: R@ T is an
operator for which property (gab) does not hold, although property (gab)
holds for both of its direct summands.

Nonetheless, we give in the following result sufficient conditions on T
and S under which the property (gab) will be transferred from the direct
summands to the direct sum.

THEOREM 2.2. Suppose that S € L(X) and T € L(Y') be such that I1,(T) <
04(S) and I1,(S) < 04(T). If S and T both possess property (gab), then the
following assertions are equivalent.

(i) ST possesses property (gab);
(ii) opw(S@®T) = opw(S) v opw(T).
Proof. (ii)=(i) Suppose that opw (S@®T) = opw(S) U opw(T'). Since we
know that 0,(S @ T) = 04(S5) U 04(T) for every pair of operators, and by
Lemma we have orp(S@®T) = orp(S) v orp(T) then
I,(SAT)=0,5@T)\orp(S®T)

= [0a(5) v 0u(T)\oLp(S) v orp(T)]

= [a(S) 0 pa(T)] © [Ia(T) N pa(5)] w [a(S) N Ha(T)],
where p,(.) = C\og(.). As by assumption, II,(S) < 04(7T) and II,(T) <
04(S) then I, (S) N po(T) = 0 and I, (T) N pa(S) = 0. Hence I, (SDT) =
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I1,(S) N II4(T"). On the other hand, since T" and S both possess property
(gab) then
[

)
o(S) v a(T)\lesw(S) v opw(T)]
= [ILo(S) N p(T)] v [ILa(T) N p(S)] v [I1a(S) N e (T)]

where p(.) = C\o(.). Again by hypothesis we have II,(S) n p(T) = @ and
II,(T) n p(S) = 0. Hence

[0(S) v o(T)Nosw (S) v opw(T)] =T (SST).

As we know that o(S®T) = o(S)uo(T) for any pair of operators, and by hy-
pothesis we have opw (S®T) = opw (S) vopw (T) then o (SET)\opw (S
T)=1I,(S®T), and S@ T possesses property (gab).

(i)=(ii) Since S@T possesses property (gab) and both of S and 1" possess
property (gab), we have opw (S) U opw(T) = opw (S @ T). To see this,
from |8, Corollary 2.6], S @ T satisfies generalized Browder’s theorem, so
op(S@®T) = opw(S@T). Since op(SAT) = op(S) uop(T) is always
true (see |10, Theorem 2.4|) then opw (S) v opw(T') < op(S) v op(T) =
O'D(S(—BT) = O'Bw(S(-BT), that is O'Bw(S) v O'Bw(T) c UB[/{/(S(—BT). Since
by ’10, Lemma 2.2] UBw(S) ) O'Bw(T) o UBw(S(—DT) then UBw(S@T) =
opw(S)vopw(T). u

REMARK 2.3. In Theorem the symmetric conditions I1,(7T) < 04(S)
and I1,(S) < 04(T) alone do not imply the property (gab) for S@T, although
property (gab) holds for both of its direct summands. Indeed, let R be the
unilateral right shift operator defined on the Hilbert space ¢2(N) and let
L its adjoint (the left shift operator on ¢?(N)). As it had been already
mentioned, we have R possesses property (gab). Since o,(L) = o(L) =
D(0,1), opw (L) = D(0,1) and II,(L) = 0 then L possesses property (gab).
Moreover, we have II,(R) < o4(L) and II,(L) < o,(R), but R@® L does
not possess property (gab). Indeed, as «(R@® L) = S(R® L) = 1 then
0¢ ow(R®L), and since a(R® L) = 0, it follows that R@® L does not have
the SVEP at 0. From |1, Theorem 2.2], R @® L does not satisfy Browder’s
theorem, and since we know from |2, Theorem 2.1] that Browder’s theorem
is equivalent to generalized Browder’s theorem, it then follows that R @
L does not satisfy generalized Browder’s theorem. Hence by |8, Corollary
2.6], it does not possess property (gab). Here the inclusion opw (R® L) <
opw(R) v opw (L) is proper, because opw (R) U opw (L) = D(0,1) and
0O¢o BW(R @ L).

The (bounded linear) operator A € L(X,Y) is said to be quasi-invertible
if it is injective and has dense range. Two bounded linear operators T € L(X)
and S € L(Y) on complex Banach spaces X and Y are quasisimilar provided
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there exist quasi-invertible operators A € L(X,Y) and B € L(Y, X) such
that AT = SA and BS = T'B. A bounded linear operator T acting on a
Hilbert space H is said to be hyponormal if T*T —TT* > 0 (or equivalently
|T*z| < ||Tz| for all x € H).

COROLLARY 2.4. Let S € L(H) and T € L(H) be quasisimilar hyponormal
operators. If S and T both possess property (gab), then S @ T possesses
property (gab).

Proof. As S and T are quasisimilar hyponormal operators, then by |10}
Lemma 2.8] we have II(T") = II(S). The property (gab) for S and for T" entails
that II(T") = II,(7T") and II(S) = II,(S). So II,(S) < 04(T) and II,(T) <
0a(S). On the other hand, since it is well known that every hyponormal
operator has the SVEP, then from [5, Theorem 2.5|, we deduce that S and
T are of stable sign index. This implies from [10, Proposition 2.3| that
opw(S@®T) = opw(S) uopw(T). But this is equivalent by Theorem
to saying that S @ T possesses property (gab). m

Similarly to Theorem we prove the following preservation result of
property (ab) under direct sums.

THEOREM 2.5. Suppose that S € L(X) and T € L(Y) be such that I19(S)
oo(T) and IY(T) < 04(S). If S and T both possess property (ab), then the
following statements are equivalent.

(i) S@®T possesses property (ab);
(ii)) ow(S@®T) = ow(S) v ow(T).

Proof. (ii)=(i) Suppose that o (S @ T) = ow(S) U ow(T). Since we
know that the upper semi-Browder spectrum of a direct sum is the union

of the upper semi-Browder spectra of its components, that is, o,,(S@®T) =
Uub(S) Y Uub(T)v then

HS(S@)T) = Ua(S®T)\Uub(S@T>
= [0a(S) Y 0a(T)\[ow(S) v oup(T)]
= [T12(8) A pa(T)] U [TI2(T) A pa(S)] U [TI2(S) A TIO(T)].
Since by hypothesis TIY(T) < 0,(S) and Y(S) < 04(T) then MY(S) N
pa(T) = TI%UT) N pa(S) = 0. Therefore TI2(S ® T) = M2(S) ~n TY(T). On
the other hand, as 7" and S both possess property (ab) then
[0(S) v o (T)\ow (S) v ow (T)]
= [I3(S) N p(T)] v [I5(T) n p(S)] © [I(S) N (7).
Since I2(S) n p(T) = I(T) n p(S) = 0, it then follows that
[0(8) v o(T)\[ow (S) v ow (T)] = (S ®T).
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As by hypothesis oy (S®T') = ow (S) vow (T) then o (SET)\ow (SBT) =
Y(S@T), and S@® T possesses property (ab).

(i)=(ii) The property (ab) for S@ T implies with no other restriction on
either S or T that ow (S®T) = ow (S)vow (T). Indeed, by |8, Theorem 2.4],
ST satisfies Browder’s theorem, so that o, (S@®T) = ow (SET). As we have
always op(S@®T) = 0p(S) U 0p(T') then ow (S) v ow (T') < 0p(S) U op(T) =
ap(S@®T) = ow(S@®T), that is ow (S) v ow (1) < ow (S@T). Since the
inclusion oy (S) U ow (T) > ow (S@T) is always true, then o (SO T) =
ow(S)vow(T). m

REMARK 2.6. (1) The following example shows that if S € L(X) and
T € L(Y) are Banach space operators possessing property (ab), then it does
not necessarily follow that the direct sum S@T possesses property (ab). On
the Hilbert space (2(N) we define S by S(z1,2,73,...) = (0, 29,23, ...) and
let R the unilateral right shift operator. Then S possesses property (ab),
since o(S) = a,(S) = {0,1}, ow(S) = {1}, MY(S) = {0}. We also have
that R possesses property (ab), since o(R) = D(0,1), ow(R) = D(0,1) and
9(R) = (). But S® R does not possess this property, since o(S @ R) =
D(0,1), ow(S®R) = D(0,1) and IY(S @ R) = {0}. Here I%(R) < 0,(S)
and ow (S® R) = ow (S) U ow (R) = D(0,1), but TI2(S) & 0.(R).

(2) Generally, Theorem 2.5 does not hold if we do not assume that oy (S®
T) = ow(S) v ow(T). If we consider the operator R @ L defined as in
Remark , then R possesses property (ab). We also have that L possesses
property (ab), since o(L) = D(0,1), ow (L) = D(0,1) and TI9(L) = 0.
But R ® L does not possess property (ab) although II2(R) < o,(L) and
9(L) € 04(R). Indeed, as R @ L does not satisfy Browder’s theorem then
by [8, Theorem 2.4], R @® L does not possess property (ab). Notice that the
inclusion oy (R®L) < ow (R) vow (L) is proper, because oy (R)vow (L) =
D(0,1) and 0 ¢ o (R®D L).

Since for every quasisimilar Banach spaces operators S and T', we have
a(T — NI) = a(S — M), and since it is easily seen that if S and T are of
stable sign index then ow (S@®T) = ow (S) v ow (T), from Theorem [2.5 we
obtain immediately the following corollary:

COROLLARY 2.7. Let S € L(H) and T € L(H) be quasisimilar hyponormal
operators. If S and T possess property (ab), then S @ T possesses property

(ab).
According to [6], we say that T satisfies generalized a-Browder’s theo-
rem if ogpp—(T) = 0q(T)\I14(T'). Generally, generalized a-Browder’s theo-
+

rem as well as property (gab), is not transferred from the direct summands
to the direct sum. Indeed, if we consider the operator R @ L defined
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as in Remark then R satisfies generalized a-Browder’s theorem, since
cq.(R) = C(0,1), USBF;(R) = (C(0,1) and II,(R) = 0. We also have
that L satisfies generalized a-Browder’s theorem, since o,(L) = D(0,1),
JSBF;(L) = D(0,1) and II,(L) = 0. But as R@® L does not satisfy gen-

eralized Browder’s theorem, then from [6, Theorem 3.8|, it does not satisfy
generalized a-Browder’s theorem. Observe that R is an upper semi-Fredholm
operator with ind(R) = —1 and L is an upper semi-Fredholm operator with
ind(L) =1, USBF;(R) v USBF;(L) =D(0,1) and 0 ¢ USBF;(R@)L)'
However, we have the following preservation result of generalized a-Brow-
der’s theorem under direct sum, extending |13, Theorem 2.7] which estab-
lishes that if S and T are a-polaroid operators acting on Hilbert spaces,
satisfying generalized a-Browder’s theorem and if o L (S)uogg Py (T) =

ogpp-(S@®T), then S @ T satisfies generalized a-Browder’s theorem.
+

THEOREM 2.8. If S€ L(X) and T € L(Y) satisfy generalized a-Browder’s
theorem, then the following assertions are equivalent.

(i) S@T satisfies generalized a-Browder’s theorem;

(i) JSBF;(SG')T) = JSBF;(S) v O'SBFJ:(T).

Proof. (i)=(ii) If generalized a-Browder’s theorem holds for S @ T then
USBF;(S (—BT) = ULD(S (—BT) AS O'LD(S @T) = ULD(S) U O’LD(T) (see
Lemma then Tspr: (S)UO’SBF; (T) corp(S)uorp(T) = orp(SPT) =
O'SBF;(SC-BT), that is O'SBF;(S) uaSBF;(T) c O'SBF;(S(—BT). Since by |10,
Lemma 2.2|, we have always that USBF;(S) Y Osps (T) o USBF;(S@T)
then O’SBF;(S(-BT) = O’SBF;(S) U O'SBF;(T).

(ii)=(i) Assume that Tspr: (SeT) = O‘SBF;(S) VOspp: (T'). As gener-
alized a-Browder’s theorem holds for 7" and for S then o7p(S) = Ospr; (S)
and orp(T) = USBF;(T)' Thus USBF;(S@T) = orp(S) v orp(T) =
orp(S@®T). So S@T satisfies generalized a-Browder’s theorem. m

Since we know from |10, Proposition 2.3 that
USBF;(S OT) = OsBF; () v IsBF; (T)

whenever S and T are bounded Banach spaces operators of stable sign index,
by Theorem [2.§ we have immediately the following corollary:

COROLLARY 2.9. If S € L(X) and T € L(Y) are of stable sign index
and satisfy generalized a-Browder’s theorem, then S@T satisfies generalized
a-Browder’s theorem.
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3. Properties (aw) and (gaw) for direct sums

For T € L(X), let E,(T) = {\ € isoo,(T) : 0 < a(T — \I)}, EY(T) =
{Ae Eo(T) : a(T — AI) < o0}, where isoo,(T") denotes the set of all isolated
points of 4(T"). Following |8, Definition 3.1|, an operator T' € L(X) is said
to possess property (aw) if A(T) = E(T) and is said to possess property
(gaw) if AY(T) = E4(T'), which extends property (aw) to the general context
of B-Fredholm theory. It is shown in [8], that the properties (gaw) and (aw)
imply the properties (gab) and (ab) respectively, but the converses do not
hold in general. For more details about these properties we refer the reader
to [8,]9].

In this section, we show that if S and T are Banach space operators
possessing property (gaw), then it does not necessarily imply that their
(orthogonal) direct sum S @ T possesses property (gaw) (see Example [3.2]).
Moreover, we explore in the following theorem certain sufficient conditions
on S and T to ensure that this property will be transferred from the direct
summands to the direct sum.

THEOREM 3.1. Suppose that S € L(X) and T € L(Y) have the same
point spectrum. If S and T both possess property (gaw), then the following
statements are equivalent.

(i) S@®T possesses property (gaw);
(ii) opw(S@®T) = opw(S) v opw(T).
Proof. (ii)=(i) Assume that opw (S@®T) = opw(S) U opw(T). Since T
and S both possess property (gaw) then
o(S®TN\opw(S®T) = [0(5) v a(T)\osw(S) v opw(T)]
= [Ea(T) M p(S)] v [Ea(S)
N p(T)] v [Ea(S) 0 Eo(T)].
As by hypothesis 0, (T") = 0,(S) then E,(T)np(S) = 0 and Eq(S)np(T) = 0.
Thus o(SET)\opw (S@®T) = E,(S) n Eo(T). On the other hand, we have
E(S®T) =is00,(SAT) nop(S®T)
~ is0[0a(S) U 7a(T)] A [0(5) U op(T)]
= [Ea(S) 0 pa(T)] U [Ea(T) 0 pa(S)] v [Ea(S) N isooa(T)]
U [Eq(T) nisooy(S)]

= E,(S) n E,(T),
since E4(S) n pa(T) = 0 and E(T) N pa(S) = 0. Hence E,(S®T) =
o(S®T)\opw(S@®T) and S@ T possesses property (gaw).

(i)=(ii) If S ® T possesses property (gaw), then from |8, Theorem 3.5],
S@T possesses property (gab). By the same arguments used as in the proof
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of “(i) =(ii)” of Theorem [2.2] we obtain that opw (S @ T) = opw(S) U
opw(T). =

EXAMPLE 3.2. The condition ogw (S@®T) = opw (S)vopw (T) assumed in
Theorem [3.1]is not a sufficient condition on the direct sum to possess property
(gaw). To see this, let S = 0 and T" defined on the Hilbert space ¢?(N) by
T(x1,z2,23,...) = (0,21/2,22/3,23/4,...). Then o(S) = {0}, opw(S) =0
and E,(S) = {0}. So a(S)\opw(S) = Eu(S), i.e. S possesses property
(gaw). We also have that o(T) = {0}, opw (T) = {0} and E,(T) = 0. So
o(T)\opw(T') = E4(T), i.e. T possesses property (gaw). But this property
does not hold for S @ T, because o(S@®T) = {0}, opw(S@T) = {0} and
E,(S@®T) = {0}. Notice that opw (S ®T) = opw(S) v opw(T), but
op(S) = {0} and 0,(T) = 0.

COROLLARY 3.3. Let S € L(H) and T € L(H) be quasisimilar hyponormal
operators. If S and T both possess property (gaw), then S @ T possesses

property (gaw).

Proof. It is easily seen that the quasisimilarity of S and T implies that
op(S) = 0,(T). As S and T are hyponormal, then they are of stable sign
index. Hence opw (S @®T) = opw(S) u opw(T), and since S and T both

possess property (gaw), from Theoremthis is equivalent to say that S@T
possesses property (gaw). m

Similarly to Theorem [3.I] we have the following result in the case of
property (aw).

THEOREM 3.4. Suppose that S € L(X) and T € L(Y) are such that 3(S) =

ag(T). If S and T both possess property (aw), then the following statements
are equivalent.

(i) S@®T possesses property (aw);
(i) ow(S@®T) = ow(S) v ow(T).

Proof. (ii)= (i) Suppose that o (S@®T) = ow (S) v ow (T). As T and S
both possess property (aw) then
o(SO®TNow (S@T) = [0(5) v a(T)\ow(5) v ow(T)]
= [E3(T) 0 p(S)] U [EQ(S) 0 p(T)]
U [Ea(S) n EJ(T)].
Since by hypothesis o0(T) = 05(S5), then E(T) n p(S) = 0 and EQ(S) N
p(T) = 0. Therefore o(S®T)\ow (S®T) = E2(S) n EX(T). Since we know
that O'S(S(—DT) ={\e O'S(S)UO’E(T) s dim N (S =) +dim N (T — M) < oo},
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then
EJ(S®T) =isooa(SDT) nop(S®T)

= i80[04(S) U 0o (T)] N O'S(S)

= [EQ(S) 0 pa(T)] U [E(T) 0 pa(8)] v [Eq(S) n EQ(T)]
= Eq(S) 0 EJ(T),

since E2(S) N pa(T) = 0 and EX(T) n pa(S) = 0. Hence (S ® T)\ow (S @
T)=E%S®T) and S @®T possesses property (aw).

(i)=(ii) If S@®T possesses property (aw), then by |8, Theorem 3.6], S®T
possesses property (ab). Hence the equality of the spectra ow (S @ T) and
ow (S) U ow (T) follows from the proof of “(i)=>(ii)” of Theorem n
EXAMPLE 3.5. The equality 02(5) = O'S(T) assumed in Theorem |3.4] plays
a central role in establishing conditions for the direct sum to possess property
(aw). Indeed, if we consider the operator S @ R defined as in part (1) of
Remark then S possesses property (aw), since o(S) = {0, 1}, ow(5) =
{1} and EJ(S) = {0}. We also have that R possesses property (aw), since
o(R) = ow(R) = D(0,1) and E%(R) = (). But S @ R does not possess
property (aw), since o(S®R) = ow (S®R) = D(0,1) and EX(S®R) = {0}.
Here o)(R) = 0, 09(S) = {0} and ow (S @ R) = ow (S) L ow (R).

As for every quasisimilar Banach spaces operators S and T, we have

o9(S) = op(T), then from Theorem 3.4, we obtain immediately the following

corollary:

COROLLARY 3.6. Let S € L(H) and T € L(H) be quasisimilar hyponormal
operators. If S and T both possess property (aw), then S @ T possesses
property (aw).
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