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VISCOSITY APPROXIMATION METHODS FOR
NONEXPANSIVE MULTI-VALUED NONSELF MAPPINGS
AND EQUILIBRIUM PROBLEMS

Abstract. In this paper, strong convergence theorems by the viscosity approximation
method for nonexpansive multi-valued nonself mappings and equilibrium problems are
established under some suitable conditions in a Hilbert space. The obtained results extend
and improve the corresponding results existed in the literature.

1. Introduction

Let H be a real Hilbert space with inner product ¢-,-) and norm || - |.
Let D be a nonempty and convex subset of H and let F': D x D — R be
a bifunction, where R is the set of real numbers. The equilibrium problem
for F' is to find u € D such that

(1.1) F(u,y) >0 Yye D.

The solutions set of is denoted by EP(F'). Given a mapping S : D — H,
let F(z,y) = (Sx,y — x) for all z,y € D. Then z € EP(F) if and only
if F(z,y) = (Sz,y —z) for all y € D, i.e., z is a solution of the varia-
tional inequality. The equilibrium problem includes as special cases
numerous problems in physics, optimization, and economics. Some meth-
ods have been continuously constructed for solving the equilibrium problem
(see, for example, [5H7, (9, 10, |13, (14} 19, 21} [24, 25, 28]). The set D is
called proximinal if for each x € F, there exists an element y € D such that
|z —y| = d(x, D), where d(z, D) = inf{|z — z| : z € D}. Let CB(D), K(D)
and P(D) be the families of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of D, respec-
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tively. The Hausdorff metric on CB(D) is defined by
H(A, B) = max {supd(z, B), supd(y, A)},
€A yeB

for A,B € CB(D). A single-valued mapping 7' : D — D is called nonez-
pansive if |Tx — Tyl < |z — y| for all z,y € D. A multi-valued mapping
T : D — CB(D) is said to be nonexpansive if H(Tz,Ty) < |z — y| for
all z,y € D. An element p € D is called a fized point of T : D — D (resp.
T:D — CB(D)) if p=Tp (resp. p € Tp). The fixed points set of T is
denoted by F(T).

For single-valued nonexpansive mappings, in 2000, Moudafi |16] proved
the following strong convergence theorem:

THEOREM M [16|. Let C be a nonempty, closed and conver subset of
a Hilbert space H and let S be a nonexpansive mapping of C into itself such
that F(S) is nonempty. Let f be a contraction of C into itself and let {z,}
be a sequence defined as follows: x1 = x € C and

Tn+1 = m Tn 1 j—nsnf(xn)’
for all n € N, where {e,} < (0,1) satisfies
¢ 1 1
lim &, =0, Z €n =00 and lim ——|=0.
n—0 nel n—=0 | En41 €n

Then {xn} converges strongly to z € F(S), where z = Pp(g)f(2) and Pp(g)
is the metric projection of H onto F(S).

Such a method is called the wviscosity approximation method. Recently,
motivated by Combettes-Hirstoaga [9], Moudafi [16] and Tada Taka-
hashi 28|, Takahashi-Takahashi [30] introduced an iterative scheme by the
viscosity approximation method for finding a common element of the solu-
tions set of and the fixed points set of a nonexpansive mapping in
a Hilbert space, and proved the following strong convergence theorem which
is connected with the result in |9, 31].

THEOREM TT. [30] Let C' be a nonempty, closed and convex subset of
a Hilbert space H. Let F : C xC — R be a bifunction satisfying the following
assumptions:

(Al) F(x,z) =0, for all z € C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0, for all z,y € C;

(A3) for each x,y,z € C,

1}%11’@2 + (1 =t)z,y) < F(z,y);

(A4) for each x € C, y — F(z,y) is convex and lower semicontinuous.
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Let S : C — H be a nonexpansive mapping such that F(S)~ EP(F) # 0,
let f : H— H be a contraction and let {x,} and {u,} be sequences generated
by x1 € H and

(12) un € C such that F(uy,y) + %n<y — Up, Uy, — Tpy >0, Vy e C,
. Tp4+1 = anf(xn) + (1 - Oén)SUn, n>1,

where {ay,} < [0,1] and {ry} < (0,0) satisfy im0 a = 0, oy oty = 0,
S o+t — ap| < oo, iminf, oo 7, > 0 and Y71 |rpg1 — rp| < 00.

Then {z,} and {u,} converge strongly to z € F(S) n EP(F), where
z = Prs)nprF)f(2).

In recent years, the fixed point theory of nonlinear multi-valued map-
pings in various spaces has been intensively studied and considered by many
authors (see, for example, |1, 4, 20, 23| [27] and the references cited therein).

One way for approximating the fixed point of nonlinear multi-valued
mappings is to use the concept of the best approximation operator Pr which
is defined by Prz = {y € Tz : |y — z| = d(z,Tx)}. It is remarked that
Hussain—Khan [11], in 2003, employed the best approximation operator Prz
to study the fixed points of *-nonexpansive multi-valued mapping and strong
convergence of its iterates to a fixed point defined on a closed and convex
subset of a Hilbert space. The fixed points of nonlinear multi-valued map-
pings by using the concept of the best approximation operator can be found
in |12} 22} 32].

In 2010, Zegeye—Shahzad [32] studied the convergence of viscosity approx-
imation process for nonexpansive nonself multi-valued mappings in Banach
spaces.

THEOREM ZS. [32| Let E be a uniformly convexr Banach space having a uni-
formly Gateauz differentiable norm, D a nonempty closed conver subset of F,
and T : D — K(D) a multimap such that Pr is nonexpansive. For given
xo € D, yo € Prxy, let {x,} be generated by the algorithm (see, e.g., [27])

Tn+l = Oénf(wn) + (1 - an)yna n > 17
Yn € Pr(zy) such that |yn—1 — yn| = d(yn—1, Pr(zy)), n > 1,

where f : D — D is a contraction with constant 5 and {ay,} is a real sequence
which satisfies the following conditions:

(ii) > o = o0 and

(iii) Timy, ., 12n=enztl — .
n

If F(T) # 0 then {x,} converges strongly to a fized point of T
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In 2011, Song—Cho [26] gave the example for a multi-valued mapping T
which is not necessary nonexpansive but Pr is nonexpansive. It would be
interesting to study the convergence of multi-valued mapping by using the
best approximation operator.

Let E be a Banach space and D a subset of E. A multi-valued mapping
T :D — CB(E) is said to satisfy the condition (A), if | — p| = d(x, Tp)
for all z € E and p e F(T).

It is easy to see that T satisfies the condition (A) if and only if Tp = {p}
for all p e F(T). The best approximation operator P satisfies the condition
(A).

Motivated by Takahashi-Takahashi [30], Zegeye-Shahzad [32|, we intro-
duce the viscosity approximation method for solving the equilibrium prob-
lems and the fixed points problem of multi-valued nonself mappings in
a Hilbert space.

2. Preliminaries and lemmas

Let H be a real Hilbert space with inner product {-,-) and norm | - |.
When {x,} is a sequence in H, x,, — z implies that {z,,} converges weakly
to x and x,, — = means the strong convergence. In a real Hilbert space H,
we have

Az + (1= Nyl* = Az[* + (1 = Myl* = A1 = Nz —y|?,

for all x,y € H and A € [0,1]. Let D be a closed and convex subset of H.
For every point = € H, there exists a unique nearest point in D, denoted by
Ppz, such that

v — Pl < o —yl, VyeD.
Pp is called the metric projection of H onto D. We know that Pp is a non-
expansive mapping of H onto D.

The following lemmas will be used for the proof of our main results in
the sequel.

LEMMA 2.1. |15, 29] Let D be a closed and convex subset of a real Hilbert
space H and let Pp be the metric projection from H onto D. Given x € H
and z € D. Then z = Ppz if and only if

(x —z,y—2)<0, VyeD.

LEMMA 2.2. |5] Let D be a nonempty, closed and conver subset of a real
Hilbert space H. Let F be a bifunction from D x D to R satisfying (A1)—(A4)
and let r > 0 and x € H. Then, there exists z € D such that

1
F(z,y)+;<y—272—$>20, for all ye D.
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LEMMA 2.3. |9] For r > 0, x € H, define the mapping T, : H — D as
follows:

1
T, (z) = {zeD:F(z,y)+<y—z,z—x>ZO, for allyeD}.
r

Then the followings hold:

(1) T, is single-value;

(2) T, is firmly nonexpansive, i.e., for any x,y € H,
”Trx - TryH2 < <Trl' — Ty, — y>;

(3) F(T,) = EP(F);

(4) EP(F) is closed and convez.

LEMMA 2.4. [18| Fach Hilbert space H satisfies Opial’s condition, i.e., for

any sequence {x,} < H with x,, — x, the inequality
liminf ||z, — z| < liminf |z, — y|

n—0o0 n—0o0
holds for each y € H with x # y.

LEMMA 2.5. |2]| Let D be a nonempty and weakly compact subset of a Ba-
nach space E with the Opial condition and T : D — K(FE) a nonexpansive
mapping. Then I —T is demiclosed.

LEMMA 2.6. [3| Let {s,} be a sequence of nonnegative real numbers, let
{an} be a sequence of [0,1] with >, | ay, = o0, let {B,} be a sequence of
nonnegative real numbers with > o, By < 0, and let {v,} be a sequence of
real numbers with limsup,,_,, 7n < 0. Suppose that
Sn+l1 = (1 - an)sn + anvyn + ﬁnv

for alln e N. Then lim,_,o s, = 0.

LEMMA 2.7. |8 Let D be a closed and conver subset of a real Hilbert
space H. Let T : D — CB(D) be a nonexpansive multi-valued map with

F(T) # 0 and Tp = {p} for each p € F(T). Then F(T) is a closed and
convex subset of D.

Using the above results, we study convergence of the following itera-
tion . Let D be a nonempty, closed and convex subset of a Hilbert
space H. Let T : D — K(H) be a multi-valued nonself mapping, f : H — H
a contraction and F': D x D — R a bifunction. Let {a,,} be a sequence in
[0,1] and {r,} a sequence in (0,00). For a given zo € H, we compute

1
up € D such that F(ug,y) + —(y — ug,up — xoy >0, Yy € D,
To

then we let zg € T'ug and define x1 € D by
x1 = agf(zo) + (1 — ap)2o.
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We next compute
1
uy € D such that F(u1,y) + —(y —u1,u1 —x1) >0, Yy e D.
™

From Nadler Theorem (see [17]), there exists z; € Tu; such that |z — 2| <
H(Tuy,Tug). Inductively, we construct the sequence {x,} as follows:

(2.1) uy, € D such that F(uy,y) + %@ — Up, Uy — Ty >0, Yy e D,
. Tp+1 = Olnf(xn) + (1 - an)zna n >0,

where z, € Tu,, such that |z,+1 — 2| < H(Tup+1, Tuy).

3. Main results

In this section, we prove a strong convergence theorem of the iteration
(2.1)) to find a common element of the solutions set of an equilibrium problem
and the fixed points set of a multi-valued nonself mapping.

THEOREM 3.1. Let D be a nonempty, closed and convex subset of a Hilbert
space H. Let F be a bifunction from D x D to R satisfying (A1)—(A4) and
T a nonexpansive multi-valued mapping of D into K(H) such that F(T) n
EP(F) # 0. Let f be a contraction of H into itself. Let {a,} < [0,1] and
{rn} < (0,00) be sequences satisfied the following conditions:

(i) limy, o vy = 0, Z;O:O oy = 00 and ZZO:O |1 — ap| < 005
(ii) liminf,, o 7y > 0 and ZZO:O |Tnt1 — | < 0.

If T satisfies the condition (A), then the sequences {x,} and {u,} generated
by (2.1) converge strongly to z € F(T)nEP(F), where z = Prp)~gpr) f(2)-

Proof. Using Lemma(4) and Lemma we can define Q = Pp(1)~EpP(F)-
Since f is a contraction, there exists a constant « € [0, 1) such that |Q f(x)—
Qfly)| < |f(x)—f(y)| < al|z—yl| for allz,y € H. Hence Qf is a contraction
of H into itself. So there exists a unique element z € H such that z = Q f(2).
We next divide the proof into five steps.

Step 1. Show that {z,} is bounded.

Let pe F(T) n EP(F). Then from u,, = T}, x,, we have

lun = pll = [Tr,2n = Trpl < llzn —pl,
for all n € N. It follows by the nonexpansiveness of T" that

|zns1 =2l < anl f(zn) —p| + (1 — an)llzn — p
< an(If(xn) = F®) + 1) —pl) + (1 — an)d(zn, Tp)
< an(alzn —pl +1F(p) —pl) + (1 = ) H(Tun, Tp)
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< an(afzn —pl + [ f(p) —pl) + (1 — o) |un — p|

< (1—an(l —a))|zn —p| + an(l - oz)(l_la)llf(p) —pl
1
< max{ o = pl, s 176) — 1 .
By induction, we have
1
J — p] < max {”330 bl 1) —p|}, ¥n > 0.

Hence {x,} is bounded. So are {u,}, {z,} and {f(zn)}.
Step 2. Show that ||z,4+1 — z5| — 0 as n — o0.

From the definition of {x,}, there exist z,+1 € Tup+1 and z, € Tu,, such
that |[2n1—2n| < H(Tuny1, Tup). Put K = sup,>of|f(zn)|+]2n[}. Then,
we have

(31)  [tnrs — nsal
= [ant1f(@n+1) — ans1f(zn) + ans1 f(@0) — an f(zn)
+ (1= ant1)zn+1 — (L = ant1)2n + (1 — ang1)zn — (1 — an) 2|
< o102t — al + lomsr — anllf @) + (1= 0mer)] st — 7]
+ a1 — anl|zn|
< anp1afenir — 2| + lants = on|]f(zn)]
4 (1= ) B (Ttins1, Ttm) + o1 — a2
< Q10| Tns1 — Tn| + 2]an+1 — an| K
+ (1 = any1)uns1 — unl.

On the other hand, from u,, = T), x, and u,4+1 =1,

rni1Tn+1, We have

1

n

for all y € D and

(33) F(un-i-la y) + <y — Un+1, Un4+1 — $n+1> >0,

Tn+1

for all y € D. Setting y = up4+1 in (3.2) and y = u,, in (3.3), we have

1
F(unvun+1) + 7<Un+1 — Up, Un — xn> >0
n

and
1

Tn+1

F(Un+1a Un) + <Un — Un+1, Un+1 — l”n+1> > 0.
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It follows from (A2) that

Up — Tp Un+1 — Tnt1
<un+1 — Unp, - > 0
Tn Tn+1

and hence
Tn

(un+1 - xn+1)> > 0.

Without loss of generality, let us assume that there exists a real number a
such that r, > a > 0 for all n > 0. Then, we have

r
Hun+1 - UnH2 < <un+1 = Up, Tp41 — Tp + (1 e )(un+1 - xn+1)>
Tn+1

<un+1 — Up, Up — Up+1 + Untl — Ty — ,
n+1

Tn

ftmes — xnm}
n+1

< unss = wnl{ b1 = anl 4 |1 =
and hence

1
(34)  unt1 = un| < 2ns1 — 2all + ——Irns1 — ral|uns1 — Toya
Tn+1

< [y = all + S lrass = ralM,
where M = sup{||un, — x| : n > 0}. Combining and (B.4), we obtain
[Tnt2 — Tnt1| < anpra]Tns1 — xnl + 2|ant1 — an|K
(1= ans) <||:,;n+1 ~nl + e - rn|M>
= (1 = apy1 + anp10)||Tni1 — ool + 2|1 — an|K
(1= anar) e = ral M
< (= ans1(l = @) |zps1 — zn] + 2lans1 — an| K

+ 7|7'n+1 - rn"
a

By conditions (i) and (ii), we have ||z,4+1 — zn]| — 0 as n — oo using
Lemma 2.6l
Step 3. Show that lim, o |z, — 2| = limp oo |un — 25| = 0.

From (3.4) and (ii), we have
(3.5) lim |up+1 —un| = 0.
n—a0
Since zp+1 = anf(zy) + (1 — an)zn,

|Tni1 — zn| = anl f(2n) — 2nl.

From «a;, — 0 as n — 00, we have |z,41 — z,| — 00 as n — 0o, This implies
that
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(3.6) lzn — 20l < l|lzn — Tnga| + [2n+1 — 20] — 0
asn — o0. For pe F(T) n EP(F), we see that
lun = plI? = | T, 20 — T, 0]
< Ty, wn — T 0, 20 — D)
= (Uun = P, Tn = )

1
= 5 (1n = 217+ =512 =l = ),

which yields
|y — pH2 <z, - pH2 — |lzn — unHZ-

Therefore, from the convexity of | - |2, we have

lzns1 = pl? = lanf(zn) = (1 = an)zn — p|®

< ol flan) = p|* + (1 = ow)|zn — p|?

= an| f(zn) —p“2 +(1- O‘n)d(ZmTp)2

< ap| f(zn) —p“2 +(1- O‘n)H(TUmTp)Q

< an| f(zn) = pI* + (1 — o) |un — p|?
(zn) )

IN

el f@a) = pI? + (1 = an (m — b2 = [ —W)

< an|f(@n) = pl* + Jzn = pl* = (1 — an)an — un|”
and hence
(1= an)zn = unl* < el f(@n) = pI* + |20 = pI* = |@ns1 — p?
< an|f(@n) = plI* + |znt1 = zal (Jzn — ol + |2ns1 = )
It follows from (i) and lim, o |Zn4+1 — 2,/ = 0 that

(3.7) |z — un| — 0
as n — o0. It follows from that
(3.8) lzn — unl < |20 — 20| + |20 — upf — 0
as n — 0.
Step 4. Show that limsup,_,,{(f(z) — z,2, — 2) < 0, where z =
PF(T)mEP(F)f(Z)'

Firstly, we choose a subsequence {z,} of {z,} such that

llIg)<f(Z) — %y Tn; — Z> = hmsup<f(z) — &, Tp — Z>

and x,, — ¢ € D. From |z, — u,| — 0, we obtain u,, — ¢. Let us show
ge EP(F). From u,, = T, x,, we have

1
F(up,y) + 7<y_unaun_xn> >0, VyeD.
n
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From (A2), we also have

1
— Y = U,y Uy, — Ty > F(y, up)
Tn

and hence

<y - um, unl_wnl> 2 F(yaum)
Tn;

Since % — 0 and up, — ¢, from (A4) we have

0> F(y,q),

for all ye D. For t with 0 <t <1and ye D, let y, =ty + (1 — t)g. Since
ye D and g€ D, y: € D. Hence F(yt,q) < 0. So, from (Al) and (A4) we
get

0= F(y,y:) <tF(ye,y) + (1 —t)F(ye, q) < tF(ye,y)

and hence 0 < F(y,y). So 0 < F(q,y) for all y € D by (A3) and hence
q € EP(F). Since lim, o0 |20, — un| = 0, up, — ¢ and I — T is demiclosed
at 0, we obtain that ¢ € F(T). Therefore ¢ € F(T) n EP(F). Since z =
Pp(rynep(r)f(2), by Lemma 2.1}

(3.9) linmj£p<f (2) =2 2p — 2) = Um(f(2) = 2,20, — 2)
={f(z) —2z,¢—2) <0.

Step 5. Show that x,, — z as n — 0.
From zp41 — 2 = an(f(zn) — 2) + (1 — an)(2n — 2), we have

(1= an)?lzn = 21 2 |zns1 — 2[* = 200(f (zn) = 2, Tp41 — 2).
Hence
(310)  zner — #I? < (1= an)? |z — 212 + 2000 (@0) = 2 Zu1 — )
= (1 — an)?d(2n, T2)? + 20, f (z) — 2, Tpy1 — 2)
< (1= an)?H(Tun, T2)? + 20,{f (xn) — 2,Tns1 — 2)
<(1- an)zHun - ZHQ + 200 (f(@n) — f(2), Zn41 — 2)
+ 200, (f(2) — 2, Zp41 — 2)
< (1= an)?lzn — 2] + 20nalzn — 2| |zne1 - 2]
+2a,(f(2) — 2, Tp+1 — 2)

< (1— an)?zn — 212 + ana{|xn o+ fzngs — z|2}

+ 204n<f(z) — 2, Tn+1 — Z>'
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This implies that

1—ap)? + aza 2
_ 2<( n n o 2 n . _
o — 2] < =IO g, 2P 4 O (f(2) — 2 — )
1—2a, + apo «
= ————"|lzn — 2 + —2—n — 2|?
1—aya 1—aya
20
. (f(2) =z, Tp41 — 2)
1— oo
n

- (1- =2 o -

1— a0

2(11:$§n{2(1af 5 [2n — z”2 + ﬁ@”(z) — 2, Tpa1 — z>}

Put v, = ﬁ\\xn — 2|2 + [ (2) = z,2p41 — 2). It follows from (i)
and (3.9) that limsup,,_,., Y» < 0. So lim, 4 |2, — 2|? = 0 by Lemma
This concludes that {x,} converges strongly to z € F(T) n EP(F'). We can
easily check that {u,} also converges strongly to z. We thus complete the
proof. m

If Tp = {p} for all p € F(T), then T satisfies the condition (A). We
obtain the following results:

COROLLARY 3.2. Let D be a nonempty, closed and convex subset of
a Hilbert space H. Let F be a bifunction from D x D to R satisfying
(A1)—(A4) and T a nonexpansive multi-valued mapping of D into K(H)
such that F(T) n EP(F) # (. Let f be a contraction of H into itself, and
let {a} and {rn} be as in Theorem B1l If Tp = {p} for all p € F(T),
then the sequences {x,} and {u,} generated by converge strongly to
yAS] F(T) N EP(F), where z = PF(T)mEP(F)f(Z)

Since Pr satisfies the condition (A), we also obtain the following results:

COROLLARY 3.3. Let D be a nonempty, closed and convex subset of
a Hilbert space H. Let F be a bifunction from D x D to R satisfying
(A1)—(A4) and T a multi-valued mapping of D into P(H) such that F(T) n
EP(F) # 0 and F(T) is closed and convex. Let f be a contraction of H into
itself, and let {ay,} and {r,} be as in Theorem 1] Let the sequences {z,}
and {u,} be generated as follows:

(3.11) un € D such that F(u,,y) + %<y — Up, Uy, — Ty >0, Yy € D,
. Tp+1l = Oénf(l'n) + (1 - an)zm

where z, € Ppu, such that |zn,+1 — zn| < H(Prun+1, Pruy).
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If Pr is nonexpansive and I — T is demiclosed at 0, then the sequences

{xn} and {u,} converge strongly to z € F(T) n EP(F), where

z = PF(T)mEP(F)f(Z)'

REMARK 3.4. The main results obtained in this paper extend those an-
nounced in [30] for multi-valued mappings.
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