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VISCOSITY APPROXIMATION METHODS FOR
NONEXPANSIVE MULTI-VALUED NONSELF MAPPINGS

AND EQUILIBRIUM PROBLEMS

Abstract. In this paper, strong convergence theorems by the viscosity approximation
method for nonexpansive multi-valued nonself mappings and equilibrium problems are
established under some suitable conditions in a Hilbert space. The obtained results extend
and improve the corresponding results existed in the literature.

1. Introduction
Let H be a real Hilbert space with inner product x¨, ¨y and norm } ¨ }.

Let D be a nonempty and convex subset of H and let F : D ˆ D Ñ R be
a bifunction, where R is the set of real numbers. The equilibrium problem
for F is to find u P D such that

(1.1) F pu, yq ≥ 0 @y P D.

The solutions set of (1.1) is denoted by EP pF q. Given a mapping S : D Ñ H,
let F px, yq “ xSx, y ´ xy for all x, y P D. Then z P EP pF q if and only
if F pz, yq “ xSz, y ´ zy for all y P D, i.e., z is a solution of the varia-
tional inequality. The equilibrium problem (1.1) includes as special cases
numerous problems in physics, optimization, and economics. Some meth-
ods have been continuously constructed for solving the equilibrium problem
(see, for example, [5–7, 9, 10, 13, 14, 19, 21, 24, 25, 28]). The set D is
called proximinal if for each x P E, there exists an element y P D such that
}x´ y} “ dpx,Dq, where dpx,Dq “ inft}x´ z} : z P Du. Let CBpDq,KpDq
and P pDq be the families of nonempty closed bounded subsets, nonempty
compact subsets, and nonempty proximinal bounded subsets of D, respec-
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tively. The Hausdorff metric on CBpDq is defined by
HpA,Bq “ max

 

sup
xPA

dpx,Bq, sup
yPB

dpy,Aq
(

,

for A,B P CBpDq. A single-valued mapping T : D Ñ D is called nonex-
pansive if }Tx ´ Ty} ≤ }x ´ y} for all x, y P D. A multi-valued mapping
T : D Ñ CBpDq is said to be nonexpansive if HpTx, Tyq ≤ }x ´ y} for
all x, y P D. An element p P D is called a fixed point of T : D Ñ D (resp.
T : D Ñ CBpDq) if p “ Tp (resp. p P Tp). The fixed points set of T is
denoted by F pT q.

For single-valued nonexpansive mappings, in 2000, Moudafi [16] proved
the following strong convergence theorem:
Theorem M [16]. Let C be a nonempty, closed and convex subset of
a Hilbert space H and let S be a nonexpansive mapping of C into itself such
that F pSq is nonempty. Let f be a contraction of C into itself and let txnu
be a sequence defined as follows: x1 “ x P C and

xn`1 “
1

1` εn
Sxn `

εn
1` εn

fpxnq,

for all n P N, where tεnu Ă p0, 1q satisfies

lim
nÑ8

εn “ 0,
8
ÿ

n“1

εn “ 8 and lim
nÑ8

ˇ

ˇ

ˇ

ˇ

1

εn`1
´

1

εn

ˇ

ˇ

ˇ

ˇ

“ 0.

Then txnu converges strongly to z P F pSq, where z “ PF pSqfpzq and PF pSq
is the metric projection of H onto F pSq.

Such a method is called the viscosity approximation method. Recently,
motivated by Combettes–Hirstoaga [9], Moudafi [16] and Tada–Taka-
hashi [28], Takahashi–Takahashi [30] introduced an iterative scheme by the
viscosity approximation method for finding a common element of the solu-
tions set of (1.1) and the fixed points set of a nonexpansive mapping in
a Hilbert space, and proved the following strong convergence theorem which
is connected with the result in [9, 31].
Theorem TT. [30] Let C be a nonempty, closed and convex subset of
a Hilbert space H. Let F : CˆC Ñ R be a bifunction satisfying the following
assumptions:

(A1) F px, xq “ 0, for all x P C;
(A2) F is monotone, i.e., F px, yq ` F py, xq ≤ 0, for all x, y P C;
(A3) for each x, y, z P C,

lim
tÓ0

F ptz ` p1´ tqx, yq ≤ F px, yq;

(A4) for each x P C, y ÞÑ F px, yq is convex and lower semicontinuous.
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Let S : C Ñ H be a nonexpansive mapping such that F pSqXEP pF q ‰ ∅,
let f : H Ñ H be a contraction and let txnu and tunu be sequences generated
by x1 P H and

(1.2)

#

un P C such that F pun, yq `
1
rn
xy ´ un, un ´ xny ≥ 0, @y P C,

xn`1 “ αnfpxnq ` p1´ αnqSun, n ≥ 1,

where tαnu Ă r0, 1s and trnu Ă p0,8q satisfy limnÑ8 αn “ 0,
ř8
n“1 αn “ 8,

ř8
n“1 |αn`1 ´ αn| ă 8, lim infnÑ8 rn ą 0 and

ř8
n“1 |rn`1 ´ rn| ă 8.

Then txnu and tunu converge strongly to z P F pSq X EP pF q, where
z “ PF pSqXEP pF qfpzq.

In recent years, the fixed point theory of nonlinear multi-valued map-
pings in various spaces has been intensively studied and considered by many
authors (see, for example, [1, 4, 20, 23, 27] and the references cited therein).

One way for approximating the fixed point of nonlinear multi-valued
mappings is to use the concept of the best approximation operator PT which
is defined by PTx “ ty P Tx : }y ´ x} “ dpx, Txqu. It is remarked that
Hussain–Khan [11], in 2003, employed the best approximation operator PTx
to study the fixed points of *-nonexpansive multi-valued mapping and strong
convergence of its iterates to a fixed point defined on a closed and convex
subset of a Hilbert space. The fixed points of nonlinear multi-valued map-
pings by using the concept of the best approximation operator can be found
in [12, 22, 32].

In 2010, Zegeye–Shahzad [32] studied the convergence of viscosity approx-
imation process for nonexpansive nonself multi-valued mappings in Banach
spaces.

Theorem ZS. [32] Let E be a uniformly convex Banach space having a uni-
formly Gâteaux differentiable norm, D a nonempty closed convex subset of E,
and T : D Ñ KpDq a multimap such that PT is nonexpansive. For given
x0 P D, y0 P PTx0, let txnu be generated by the algorithm psee, e.g., [27])

#

xn`1 “ αnfpxnq ` p1´ αnqyn, n ≥ 1,

yn P PT pxnq such that }yn´1 ´ yn} “ dpyn´1, PT pxnqq, n ≥ 1,

where f : D Ñ D is a contraction with constant β and tαnu is a real sequence
which satisfies the following conditions:

(i) limnÑ8 αn “ 0;
(ii)

ř8
n“1 αn “ 8 and

(iii) limnÑ8
|αn´αn´1|

αn
“ 0.

If F pT q ‰ ∅ then txnu converges strongly to a fixed point of T .
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In 2011, Song–Cho [26] gave the example for a multi-valued mapping T
which is not necessary nonexpansive but PT is nonexpansive. It would be
interesting to study the convergence of multi-valued mapping by using the
best approximation operator.

Let E be a Banach space and D a subset of E. A multi-valued mapping
T : D Ñ CBpEq is said to satisfy the condition (A), if }x ´ p} “ dpx, Tpq
for all x P E and p P F pT q.

It is easy to see that T satisfies the condition (A) if and only if Tp “ tpu
for all p P F pT q. The best approximation operator PT satisfies the condition
(A).

Motivated by Takahashi–Takahashi [30], Zegeye–Shahzad [32], we intro-
duce the viscosity approximation method for solving the equilibrium prob-
lems and the fixed points problem of multi-valued nonself mappings in
a Hilbert space.

2. Preliminaries and lemmas
Let H be a real Hilbert space with inner product x¨, ¨y and norm } ¨ }.

When txnu is a sequence in H, xn á x implies that txnu converges weakly
to x and xn Ñ x means the strong convergence. In a real Hilbert space H,
we have

}λx` p1´ λqy}2 “ λ}x}2 ` p1´ λq}y}2 ´ λp1´ λq}x´ y}2,

for all x, y P H and λ P r0, 1s. Let D be a closed and convex subset of H.
For every point x P H, there exists a unique nearest point in D, denoted by
PDx, such that

}x´ PDx} ≤ }x´ y}, @y P D.
PD is called the metric projection of H onto D. We know that PD is a non-
expansive mapping of H onto D.

The following lemmas will be used for the proof of our main results in
the sequel.

Lemma 2.1. [15, 29] Let D be a closed and convex subset of a real Hilbert
space H and let PD be the metric projection from H onto D. Given x P H
and z P D. Then z “ PDx if and only if

xx´ z, y ´ zy ≤ 0, @y P D.

Lemma 2.2. [5] Let D be a nonempty, closed and convex subset of a real
Hilbert space H. Let F be a bifunction from DˆD to R satisfying (A1)–(A4)
and let r ą 0 and x P H. Then, there exists z P D such that

F pz, yq `
1

r
xy ´ z, z ´ xy ≥ 0, for all y P D.
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Lemma 2.3. [9] For r ą 0, x P H, define the mapping Tr : H Ñ D as
follows:

Trpxq “

"

z P D : F pz, yq `
1

r
xy ´ z, z ´ xy ≥ 0, for all y P D

*

.

Then the followings hold:

(1) Tr is single-value;
(2) Tr is firmly nonexpansive, i.e., for any x, y P H,

}Trx´ Try}
2 ≤ xTrx´ Try, x´ yy;

(3) F pTrq “ EP pF q;
(4) EP pF q is closed and convex.

Lemma 2.4. [18] Each Hilbert space H satisfies Opial’s condition, i.e., for
any sequence txnu Ă H with xn á x, the inequality

lim inf
nÑ8

}xn ´ x} ă lim inf
nÑ8

}xn ´ y}

holds for each y P H with x ‰ y.

Lemma 2.5. [2] Let D be a nonempty and weakly compact subset of a Ba-
nach space E with the Opial condition and T : D Ñ KpEq a nonexpansive
mapping. Then I ´ T is demiclosed.

Lemma 2.6. [3] Let tsnu be a sequence of nonnegative real numbers, let
tαnu be a sequence of r0, 1s with

ř8
n“1 αn “ 8, let tβnu be a sequence of

nonnegative real numbers with
ř8
n“1 βn ă 8, and let tγnu be a sequence of

real numbers with lim supnÑ8 γn ≤ 0. Suppose that

sn`1 “ p1´ αnqsn ` αnγn ` βn,

for all n P N. Then limnÑ8 sn “ 0.

Lemma 2.7. [8] Let D be a closed and convex subset of a real Hilbert
space H. Let T : D Ñ CBpDq be a nonexpansive multi-valued map with
F pT q ‰ ∅ and Tp “ tpu for each p P F pT q. Then F pT q is a closed and
convex subset of D.

Using the above results, we study convergence of the following itera-
tion (2.1). Let D be a nonempty, closed and convex subset of a Hilbert
space H. Let T : D Ñ KpHq be a multi-valued nonself mapping, f : H Ñ H
a contraction and F : D ˆD Ñ R a bifunction. Let tαnu be a sequence in
r0, 1s and trnu a sequence in p0,8q. For a given x0 P H, we compute

u0 P D such that F pu0, yq `
1

r0
xy ´ u0, u0 ´ x0y ≥ 0, @y P D,

then we let z0 P Tu0 and define x1 P D by

x1 “ α0fpx0q ` p1´ α0qz0.
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We next compute

u1 P D such that F pu1, yq `
1

r1
xy ´ u1, u1 ´ x1y ≥ 0, @y P D.

From Nadler Theorem (see [17]), there exists z1 P Tu1 such that }z1´ z0} ≤
HpTu1, Tu0q. Inductively, we construct the sequence txnu as follows:

(2.1)

#

un P D such that F pun, yq `
1
rn
xy ´ un, un ´ xny ≥ 0, @y P D,

xn`1 “ αnfpxnq ` p1´ αnqzn, n ≥ 0,

where zn P Tun such that }zn`1 ´ zn} ≤ HpTun`1, Tunq.

3. Main results
In this section, we prove a strong convergence theorem of the iteration

(2.1) to find a common element of the solutions set of an equilibrium problem
and the fixed points set of a multi-valued nonself mapping.

Theorem 3.1. Let D be a nonempty, closed and convex subset of a Hilbert
space H. Let F be a bifunction from D ˆD to R satisfying (A1)–(A4) and
T a nonexpansive multi-valued mapping of D into KpHq such that F pT q X
EP pF q ‰ ∅. Let f be a contraction of H into itself. Let tαnu Ă r0, 1s and
trnu Ă p0,8q be sequences satisfied the following conditions:

(i) limnÑ8 αn “ 0,
ř8
n“0 αn “ 8 and

ř8
n“0 |αn`1 ´ αn| ă 8;

(ii) lim infnÑ8 rn ą 0 and
ř8
n“0 |rn`1 ´ rn| ă 8.

If T satisfies the condition (A), then the sequences txnu and tunu generated
by (2.1) converge strongly to z P F pT qXEP pF q, where z “ PF pT qXEP pF qfpzq.

Proof. Using Lemma 2.3(4) and Lemma 2.7, we can defineQ “ PF pT qXEP pF q.
Since f is a contraction, there exists a constant α P r0, 1q such that }Qfpxq´
Qfpyq} ≤ }fpxq´fpyq} ≤ α}x´y} for all x, y P H. HenceQf is a contraction
of H into itself. So there exists a unique element z P H such that z “ Qfpzq.
We next divide the proof into five steps.

Step 1. Show that txnu is bounded.
Let p P F pT q X EP pF q. Then from un “ Trnxn, we have

}un ´ p} “ }Trnxn ´ Trnp} ≤ }xn ´ p},

for all n P N. It follows by the nonexpansiveness of T that

}xn`1 ´ p} ≤ αn}fpxnq ´ p} ` p1´ αnq}zn ´ p}
≤ αn

`

}fpxnq ´ fppq} ` }fppq ´ p}
˘

` p1´ αnqdpzn, Tpq

≤ αn
`

α}xn ´ p} ` }fppq ´ p}
˘

` p1´ αnqHpTun, Tpq
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≤ αn
`

α}xn ´ p} ` }fppq ´ p}
˘

` p1´ αnq}un ´ p}

≤
`

1´ αnp1´ αq
˘

}xn ´ p} ` αnp1´ αq
1

p1´ αq
}fppq ´ p}

≤ max

"

}xn ´ p},
1

p1´ αq
}fppq ´ p}

*

.

By induction, we have

}xn ´ p} ≤ max

"

}x0 ´ p},
1

p1´ αq
}fppq ´ p}

*

, @n ≥ 0.

Hence txnu is bounded. So are tunu, tznu and tfpxnqu.
Step 2. Show that }xn`1 ´ xn} Ñ 0 as nÑ8.
From the definition of txnu, there exist zn`1 P Tun`1 and zn P Tun such

that }zn`1´zn} ≤ HpTun`1, Tunq. Put K “ supn≥0t}fpxnq}`}zn}u. Then,
we have

(3.1) }xn`2 ´ xn`1}

“ }αn`1fpxn`1q ´ αn`1fpxnq ` αn`1fpxnq ´ αnfpxnq

` p1´ αn`1qzn`1 ´ p1´ αn`1qzn ` p1´ αn`1qzn ´ p1´ αnqzn}

≤ αn`1α}xn`1 ´ xn} ` |αn`1 ´ αn|}fpxnq} ` p1´ αn`1q}zn`1 ´ zn}
` |αn`1 ´ αn|}zn}

≤ αn`1α}xn`1 ´ xn} ` |αn`1 ´ αn|}fpxnq}
` p1´ αn`1qHpTun`1, Tunq ` |αn`1 ´ αn|}zn}

≤ αn`1α}xn`1 ´ xn} ` 2|αn`1 ´ αn|K

` p1´ αn`1q}un`1 ´ un}.

On the other hand, from un “ Trnxn and un`1 “ Trn`1xn`1, we have

(3.2) F pun, yq `
1

rn
xy ´ un, un ´ xny ≥ 0,

for all y P D and

(3.3) F pun`1, yq `
1

rn`1
xy ´ un`1, un`1 ´ xn`1y ≥ 0,

for all y P D. Setting y “ un`1 in (3.2) and y “ un in (3.3), we have

F pun, un`1q `
1

rn
xun`1 ´ un, un ´ xny ≥ 0

and

F pun`1, unq `
1

rn`1
xun ´ un`1, un`1 ´ xn`1y ≥ 0.
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It follows from (A2) that
B

un`1 ´ un,
un ´ xn
rn

´
un`1 ´ xn`1

rn`1

F

≥ 0

and hence
B

un`1 ´ un, un ´ un`1 ` un`1 ´ xn ´
rn
rn`1

pun`1 ´ xn`1q

F

≥ 0.

Without loss of generality, let us assume that there exists a real number a
such that rn ą a ą 0 for all n ≥ 0. Then, we have

}un`1 ´ un}
2 ≤

B

un`1 ´ un, xn`1 ´ xn `

ˆ

1´
rn
rn`1

˙

pun`1 ´ xn`1q

F

≤ }un`1 ´ un}
"

}xn`1 ´ xn} `

ˇ

ˇ

ˇ

ˇ

1´
rn
rn`1

ˇ

ˇ

ˇ

ˇ

}un`1 ´ xn`1}

*

and hence

}un`1 ´ un} ≤ }xn`1 ´ xn} `
1

rn`1
|rn`1 ´ rn|}un`1 ´ xn`1}(3.4)

≤ }xn`1 ´ xn} `
1

a
|rn`1 ´ rn|M,

where M “ supt}un ´ xn} : n ≥ 0u. Combining (3.1) and (3.4), we obtain

}xn`2 ´ xn`1} ≤ αn`1α}xn`1 ´ xn} ` 2|αn`1 ´ αn|K

` p1´ αn`1q

ˆ

}xn`1 ´ xn} `
1

a
|rn`1 ´ rn|M

˙

“ p1´ αn`1 ` αn`1αq}xn`1 ´ xn} ` 2|αn`1 ´ αn|K

` p1´ αn`1q
1

a
|rn`1 ´ rn|M

≤
`

1´ αn`1p1´ αq
˘

}xn`1 ´ xn} ` 2|αn`1 ´ αn|K

`
M

a
|rn`1 ´ rn|.

By conditions (i) and (ii), we have }xn`1 ´ xn} Ñ 0 as n Ñ 8 using
Lemma 2.6.

Step 3. Show that limnÑ8 }xn ´ zn} “ limnÑ8 }un ´ zn} “ 0.
From (3.4) and (ii), we have

(3.5) lim
nÑ8

}un`1 ´ un} “ 0.

Since xn`1 “ αnfpxnq ` p1´ αnqzn,

}xn`1 ´ zn} “ αn}fpxnq ´ zn}.

From αn Ñ 0 as nÑ8, we have }xn`1 ´ zn} Ñ 8 as nÑ8. This implies
that
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(3.6) }xn ´ zn} ≤ }xn ´ xn`1} ` }xn`1 ´ zn} Ñ 0

as nÑ8. For p P F pT q X EP pF q, we see that

}un ´ p}
2 “ }Trnxn ´ Trnp}

2

≤ xTrnxn ´ Trnp, xn ´ py
“ xun ´ p, xn ´ py

“
1

2

ˆ

}un ´ p}
2 ` }xn ´ p}

2 ´ }xn ´ un}
2

˙

,

which yields
}un ´ p}

2 ≤ }xn ´ p}2 ´ }xn ´ un}2.
Therefore, from the convexity of } ¨ }2, we have

}xn`1 ´ p}
2 “ }αnfpxnq ´ p1´ αnqzn ´ p}

2

≤ αn}fpxnq ´ p}2 ` p1´ αnq}zn ´ p}2

“ αn}fpxnq ´ p}
2 ` p1´ αnqdpzn, Tpq

2

≤ αn}fpxnq ´ p}2 ` p1´ αnqHpTun, Tpq2

≤ αn}fpxnq ´ p}2 ` p1´ αnq}un ´ p}2

≤ αn}fpxnq ´ p}2 ` p1´ αnq
ˆ

}xn ´ p}
2 ´ }xn ´ un}

2

˙

≤ αn}fpxnq ´ p}2 ` }xn ´ p}2 ´ p1´ αnq}xn ´ un}2

and hence

p1´ αnq}xn ´ un}
2 ≤ αn}fpxnq ´ p}2 ` }xn ´ p}2 ´ }xn`1 ´ p}2

≤ αn}fpxnq ´ p}2 ` }xn`1 ´ xn}
`

}xn ´ p} ` }xn`1 ´ p}
˘

.

It follows from (i) and limnÑ8 }xn`1 ´ xn} “ 0 that

(3.7) }xn ´ un} Ñ 0

as nÑ8. It follows from (3.6) that

(3.8) }zn ´ un} ≤ }zn ´ xn} ` }xn ´ un} Ñ 0

as nÑ8.
Step 4. Show that lim supnÑ8xfpzq ´ z, xn ´ zy ≤ 0, where z “

PF pT qXEP pF qfpzq.
Firstly, we choose a subsequence txniu of txnu such that

lim
iÑ8

xfpzq ´ z, xni ´ zy “ lim sup
nÑ8

xfpzq ´ z, xn ´ zy

and xni á q P D. From }xn ´ un} Ñ 0, we obtain uni á q. Let us show
q P EP pF q. From un “ Trnxn, we have

F pun, yq `
1

rn
xy ´ un, un ´ xny ≥ 0, @y P D.
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From (A2), we also have
1

rn
xy ´ un, un ´ xny ≥ F py, unq

and hence
B

y ´ uni ,
uni ´ xni

rni

F

≥ F py, uniq.

Since uni´xni
rni

Ñ 0 and uni á q, from (A4) we have

0 ≥ F py, qq,

for all y P D. For t with 0 ă t ≤ 1 and y P D, let yt “ ty ` p1 ´ tqq. Since
y P D and q P D, yt P D. Hence F pyt, qq ≤ 0. So, from (A1) and (A4) we
get

0 “ F pyt, ytq ≤ tF pyt, yq ` p1´ tqF pyt, qq ≤ tF pyt, yq

and hence 0 ≤ F pyt, yq. So 0 ≤ F pq, yq for all y P D by (A3) and hence
q P EP pF q. Since limnÑ8 }zn ´ un} “ 0, uni á q and I ´ T is demiclosed
at 0, we obtain that q P F pT q. Therefore q P F pT q X EP pF q. Since z “
PF pT qXEP pF qfpzq, by Lemma 2.1,

lim sup
nÑ8

xfpzq ´ z, xn ´ zy “ lim
iÑ8

xfpzq ´ z, xni ´ zy(3.9)

“ xfpzq ´ z, q ´ zy ≤ 0.

Step 5. Show that xn Ñ z as nÑ8.
From xn`1 ´ z “ αnpfpxnq ´ zq ` p1´ αnqpzn ´ zq, we have

p1´ αnq
2}zn ´ z}

2 ≥ }xn`1 ´ z}2 ´ 2αnxfpxnq ´ z, xn`1 ´ zy.

Hence

(3.10) }xn`1 ´ z}
2 ≤ p1´ αnq2}zn ´ z}2 ` 2αnxfpxnq ´ z, xn`1 ´ zy

“ p1´ αnq
2dpzn, T zq

2 ` 2αnxfpxnq ´ z, xn`1 ´ zy

≤ p1´ αnq2HpTun, T zq2 ` 2αnxfpxnq ´ z, xn`1 ´ zy

≤ p1´ αnq2}un ´ z}2 ` 2αnxfpxnq ´ fpzq, xn`1 ´ zy

` 2αnxfpzq ´ z, xn`1 ´ zy

≤ p1´ αnq2}xn ´ z}2 ` 2αnα}xn ´ z}}xn`1 ´ z}

` 2αnxfpzq ´ z, xn`1 ´ zy

≤ p1´ αnq2}xn ´ z}2 ` αnα
"

}xn ´ z}
2 ` }xn`1 ´ z}

2

*

` 2αnxfpzq ´ z, xn`1 ´ zy.
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This implies that

}xn`1 ´ z}
2 ≤ p1´ αnq

2 ` αnα

1´ αnα
}xn ´ z}

2 `
2αn

1´ αnα
xfpzq ´ z, xn`1 ´ zy

“
1´ 2αn ` αnα

1´ αnα
}xn ´ z}

2 `
α2
n

1´ αnα
}xn ´ z}

2

`
2αn

1´ αnα
xfpzq ´ z, xn`1 ´ zy

“

ˆ

1´
2p1´ αqαn
1´ αnα

˙

}xn ´ z}
2

`
2p1´ αqαn
1´ αnα

"

αn
2p1´ αq

}xn ´ z}
2 `

1

1´ α
xfpzq ´ z, xn`1 ´ zy

*

.

Put γn “ αn
2p1´αq}xn ´ z}2 ` 1

1´αxfpzq ´ z, xn`1 ´ zy. It follows from (i)
and (3.9) that lim supnÑ8 γn ≤ 0. So limnÑ8 }xn ´ z}

2 “ 0 by Lemma 2.6.
This concludes that txnu converges strongly to z P F pT q XEP pF q. We can
easily check that tunu also converges strongly to z. We thus complete the
proof.

If Tp “ tpu for all p P F pT q, then T satisfies the condition (A). We
obtain the following results:

Corollary 3.2. Let D be a nonempty, closed and convex subset of
a Hilbert space H. Let F be a bifunction from D ˆ D to R satisfying
(A1)–(A4) and T a nonexpansive multi-valued mapping of D into KpHq
such that F pT q X EP pF q ‰ ∅. Let f be a contraction of H into itself, and
let tαnu and trnu be as in Theorem 3.1. If Tp “ tpu for all p P F pT q,
then the sequences txnu and tunu generated by (2.1) converge strongly to
z P F pT q X EP pF q, where z “ PF pT qXEP pF qfpzq.

Since PT satisfies the condition (A), we also obtain the following results:

Corollary 3.3. Let D be a nonempty, closed and convex subset of
a Hilbert space H. Let F be a bifunction from D ˆ D to R satisfying
(A1)–(A4) and T a multi-valued mapping of D into P pHq such that F pT q X
EP pF q ‰ ∅ and F pT q is closed and convex. Let f be a contraction of H into
itself, and let tαnu and trnu be as in Theorem 3.1. Let the sequences txnu
and tunu be generated as follows:

(3.11)

#

un P D such that F pun, yq `
1
rn
xy ´ un, un ´ xny ≥ 0, @y P D,

xn`1 “ αnfpxnq ` p1´ αnqzn,

where zn P PTun such that }zn`1 ´ zn} ≤ HpPTun`1, PTunq.
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If PT is nonexpansive and I ´ T is demiclosed at 0, then the sequences
txnu and tunu converge strongly to z P F pT q X EP pF q, where

z “ PF pT qXEP pF qfpzq.

Remark 3.4. The main results obtained in this paper extend those an-
nounced in [30] for multi-valued mappings.
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