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CROSSED PRODUCT OF A C˚-ALGEBRA
BY A SEMIGROUP OF INTERACTIONS

Abstract. The paper presents a construction of the crossed product of a C˚-algebra
by a commutative semigroup of bounded positive linear maps generated by partial isome-
tries. In particular, it generalizes Antonevich, Bakhtin, Lebedev’s crossed product by
an endomorphism, and is related to Exel’s interactions. One of the main goals is the
Isomorphism Theorem established in the case of actions by endomorphisms.

1. Introduction
Recently, in [1] A. B. Antonevich, V. I. Bakhtin and A. V. Lebedev in-

troduced a new crossed product of a C˚-algebra by an endomorphism (for
abbreviation we shall call it ABL-crossed product) which in a sense, see [1],
generalizes all the previous approaches to constructions of that kind in the
case of a single endomorphism [4], [5], [18], [7], [16], [8], [11]. Afterwards, see
[12], the ABL-crossed product was adapted to the case of actions by a semi-
group Γ` which is a positive cone of a totally ordered commutative group Γ.
It is fundamental that the ABL-construction arose against a background of
R. Exel’s crossed product [8], which was adapted to the semigroup context
by N. S. Larsen [13] and requires a unital C˚-algebra A, a semigroup homo-
morphism α : Γ` Ñ EndpAq where EndpAq is the set of endomorphisms of A
(with composition as a semigroup operation), and also it depends on a choice
of transfer action, i.e. a semigroup homomorphism L : Γ` Ñ PosLinpAq
where PosLinpAq is the set of all linear bounded positive maps on A, such
that

Lxpαxpaqbq “ aLxpbq, for all a, b P A and x P Γ`.
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In other words, Exel’s crossed product is a certain C˚-algebra associated
to the system pA,Γ`, α, Lq consisting of four elements (cf. Example 3.1),
whereas the ABL-crossed product [1], [12], depends only on the triple
pA,Γ`, αq. The price to pay (which eventually is not that high, see [1])
is that ABL-crossed product is defined only for a special class of finely rep-
resentable systems pA,Γ`, αq, see [12], [1].

A link between Exel’s and ABL-crossed product is provided by the result
of V. I. Bakhtin and A. V. Lebedev [3], which being stated in the semigroup
language [12], says that pA,Γ`, αq is finely representable if and only if there
exists a transfer action L for pA,Γ`, αq, such that

(1.1) αxpLxpaqq “ αxp1qaαxp1q, for all a P A, x P Γ`,

in which case L is called a complete transfer action. It is important that
the complete transfer action, if it exists, is unique and α and L determine
uniquely one another via the formulae

Lxpaq “ α´1
x pαxp1qaαxp1qq, αxpaq “ L´1

x pLxp1qaq, a P A, x P Γ`,

see [3, Thm. 2.8], [12, Thm. 2.4].
Let us note that, although one can not help feeling that in the above

picture the action α is somewhat privileged, there is no particular reason
to single out α since we have one-to-one correspondence α ÐÑ L (in the
ABL-context, of course). This simple observation is a starting point for the
present article. We attempt to clarify here a number of questions which arise
naturally:

• Why not carry out the ABL-construction starting with L rather than
with α?
• Is it necessary for one of the elements in the pair pα,Lq to act by multi-
plicative mappings?
• What happens if we drop this multiplicativity condition, which of the
results concerning ABL-crossed products can be carried over then?

Furthermore, we are not simply interested in generalizing ABL-crossed
product. We also aim at a powerful tool to study crossed products the so-
called Isomorphism Theorem [19], [2], [14], [11], which has not been studied
in the ABL-context yet.

We have to mention one more important fact. In [9], a similar dissat-
isfaction of an asymmetry between actions and transfer actions in the con-
struction of Exel’s crossed product led R. Exel to an object which he called
interaction. Simply, due to the author of [9], interaction is a pair pV,Hq of
two positive bounded linear maps on a C˚-algebra A such that

V ˝H ˝ V “ V, H ˝ V ˝H “ H,
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V|HpAq and H|VpAq are multiplicative.

It is quite striking that a connection of the article [9] with the present paper
is completely analogous to that of Exel’s crossed product with ABL-crossed
product (which will become clear during the further reading).

The paper is organized as follows.
In Section 2, we convert Exel’s notion of interaction to the semigroup

case and present some of its properties. Then in Section 3, we define com-
plete interactions, explain their connection with complete transfer actions,
and give a few characteristics of this notion. Section 4 is devoted to finely
representable actions and associated crossed products. Here, we define fine
representability of an action V and then show that it implies the existence
of (necessarily unique) action H such that the pair pV,Hq is a complete
interaction. We also develop some terminology and facts concerning the in-
ternal structure of the crossed product, which we use later in Section 5 to
obtain a necessary and sufficient condition for a representation of the crossed
product to be faithful. The final Section 6 is dedicated to the Isomorphism
Theorem which holds for the so-called topologically free actions. We present
here a definition of a topological freedom for complete interactions, which
in fact is a verbatim of the corresponding definition for partial actions, see
[14]. Though in the generality under consideration we failed to establish
the Isomorphism Theorem, we managed to obtain a partial result, see The-
orem 6.4, and we obtained a complete goal, see Theorem 6.5, in the case of
ABL-crossed products, that is when one of the actions from the pair pV,Hq
acts by endomorphisms.

2. Interactions
Let us start with establishing notation and more accurate definitions of

basic notions appearing in the text. Throughout the paper, we letA denote a
C˚-algebra with an identity 1, and Γ` be a positive cone of a totally ordered
abelian group Γ with an identity 0:

Γ` “ tx P Γ : 0 ≤ xu, Γ “ Γ` Y p´Γ`q, Γ` X p´Γ`q “ t0u.

2.1. We say that V is an action of Γ` on A if V : Γ` Ñ PosLinpAq is a semi-
group homomorphism, and then for each x P Γ`, we denote by Vx : AÑ A,
the corresponding positive linear map:

V0 “ Id, Vx ˝ Vy “ Vx`y, x, y P Γ`.

If V acts not only by linear but also multiplicative maps then usually we
shall denote it by α and call the triple pA,Γ`, αq a C˚-dynamical system,
cf. [12].
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The following is a simple modification of [12, Def. 3.1].

2.2. A pair pV,Hq consisting of two actions V and H of Γ` on a C˚-algebra
A will be called interaction if for each x P Γ` the following conditions are
satisfied

i) VxHxVx “ Vx,
ii) HxVxHx “ Hx,
iii) Vxpabq “ VxpaqVxpbq, if either a or b belong to HxpAq,
iv) Hxpabq “ HxpaqHxpbq, if either a or b belong to VxpAq.

We stress that the preceding definition is not a generalization, in the
strict sense, of the one given by R. Exel in [9] (and presented above in the
introduction).

Example 2.3. Let A “ M2pCq be the algebra of 2 ˆ 2 complex matrices.
We define two positive maps on A by the formulae

Vppaijqq “
a11

2

˜

1 1

1 1

¸

, Hppaijqq “
a11 ` a12 ` a21 ` a22

2

˜

1 0

0 0

¸

.

It is a pleasant exercise to show that V and H satisfies the conditions i) - iv)
from 2.2, and hence they form an interaction in the sense of [9]. But they do
not yield an interaction in our sense because, for instance, H2˝V2˝H2 ‰ H2.
Actually, the obstacle here is that V and H are implemented by a partial
isometry which is not a power partial isometry (in particular Vp1qHp1q ‰
Hp1qVp1q, cf. Proposition 3.3 below).

However, thanks to [9, Prop. 2.6, 2.7], the following fundamental prop-
erties of interactions are true.

Proposition 2.4. Let pV,Hq be an interaction, and let x P Γ` be fixed.
Then

i) VxpAq and HxpAq are C˚-subalgebras of A,
ii) EVx “ Vx ˝Hx is a conditional expectation onto VxpAq,
iii) EHx “ Hx ˝ Vx is a conditional expectation onto HxpAq,
iv) the mappings Vx : HxpAq Ñ VxpAq, Hx : VxpAq Ñ HxpAq are

*-isomorphisms, each being the inverse of the other, and we have Vx “
Vx ˝ EHx and Hx “ Hx ˝ EVx .

As the algebra A considered here is unital we may (for any interaction
pV,Hq) study the elements Vxp1q, Hxp1q, x P Γ`, which happen to have very
useful properties.
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Proposition 2.5. Let pV,Hq be an interaction. Then

i) for any a P A and any x, y P Γ` such that y ≥ x, we have

VypHxp1qaq “ VypaHxp1qq “ Vypaq,
HypVxp1qaq “ HypaVxp1qq “ Hypaq,

in particular VypHxp1qq “ Vyp1q and HypVxp1qq “ Hyp1q,
ii) tVxp1quxPΓ` and tHxp1quxPΓ` form decreasing families of orthogonal pro-

jections,
iii) for any x, y P Γ` such that y ≥ x we have

a “ Vxp1qa “ aVxp1q, if a P VypAq,
a “ Hxp1qa “ aHxp1q, if a P HypAq.

Proof. By symetry between V and H it is enough to prove only a half of
each hypothesis in each item. We fix a P A and y ≥ x.

i). We have

VypHxp1qaq “ Vy´xpVxpHxp1qaqq “ Vy´xpVxpHxp1qqVxpaqq
“ Vy´xpVxpHxp1qqVx ˝Hx ˝ Vxpaqq
“ Vy´xpVxpHxp1 ¨ Vxpaqqq “ Vypaq.

Taking adjoints one obtains VypaHxp1qq “ Vypaq.
ii). Since Vx is positive, Vxp1q is self-adjoint and it is an idempotent

because

Vxp1q “ Vx
`

EHxp1q
˘

“ Vx
`

EHxp1q1
˘

“ Vx
`

EHxp1q
˘

Vxp1q “ Vxp1qVxp1q.
Thus Vxp1q is an orthogonal projection. Now observe that Vxp1q ≥ Vyp1q,
y ≥ x, because using i) twice, we get

Vxp1qVyp1q “ VxpHxp1qqVxpVy´xp1qq “ VxpHxp1qVy´xp1qq
“ VxpVy´xp1qq “ Vyp1q.

iii). Let a “ Vypbq for a certain b P A. Using i), we have

a “ Vypbq “ VypHyp1qbq “ VypHyp1qqVypbq “ Vyp1qa
and hence by ii) all the more a “ Vxp1qa. Similarly one gets a “ aVxp1q.

As one would like to think of interactions as of the natural generaliza-
tion of C˚-dynamical systems, one may be disappointed to see that for a
C˚-dynamical system pA,Γ`, αq and its transfer action L, the pair pα,Lq
might not be an interaction. However, if the transfer action L is complete,
the pair pα,Lq is always an interaction, see Proposition 3.4, and the class
of transfer actions that yield interactions is even wider (for definitions of
transfer and complete transfer actions see Introduction). As an example, we
present here a simple corollary to [9, Prop. 3.4].
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Proposition 2.6. Let L be a transfer action for a C˚-dynamical system
pA,Γ`, αq such that Lxp1q “ 1 for each x P Γ˚. Then pα,Lq is an interac-
tion.

3. Complete interactions
Here we introduce a notion of a complete interaction which is a gener-

alization of the complete transfer action notion, see 3.4. Afterwards, for a
given action V we write down the necessary and sufficient conditions for ex-
istence of an action H such that pV,Hq is a complete interaction. Moreover,
we show the uniqueness of such action H, see Theorem 3.5. In order to show
that in general an action does not determine uniquely an interaction, we
adapt to our needs an example from [3].

Example 3.1. (An example of a C˚-dynamical system pA,Γ`, αq which
admits uncountably many transfer actions satisfying assumptions of Propo-
sition 2.6.) Let A “ CpXq where X “ R pmod 1q and let Γ` “ N. We define
an action α by endomorphisms of A by the formula

αnpaqpxq “ ap2nx pmod 1qq, n P N.

We fix any continuous function ρ on X having the properties

0 ≤ ρpxq ≤ 1, ρ

ˆ

x

2
`

1

2

˙

` ρ

ˆ

x

2

˙

“ 1, x P r0, 1q.

Take the standard tent map: T pxq “ 1 ´ |1 ´ 2x|, x P r0, 1s, and associate
with ρ a family of cocycles given by

ρ0 ” 1 and ρnpxq “ ρpTn´1pxqq ¨ ¨ ¨ ¨ ¨ ρpT pxqq ¨ ρpxq, for n ą 0.

Then it is not hard to check that ρn satisfies the relations

0 ≤ ρnpxq ≤ 1,
2n´1
ÿ

k“0

ρn

ˆ

x

2n
`

k

2n

˙

“ 1, x P r0, 1q,

and the following formula defines an action L on CpXq

Lnpaqpxq “
2n´1
ÿ

k“0

ρn

ˆ

x

2n
`

k

2n

˙

a

ˆ

x

2n
`

k

2n

˙

, x P r0, 1q, n P N.

Clearly, for any ρ chosen L is a transfer action for α and since Lnp1q “ 1 for
each n P N, the pair pα,Lq is an interaction by Proposition 2.6.

Definition 3.2. The interaction pV,Hq will be called complete, if the
following conditions are satisfied

HxpVxpaqq “ Hxp1qaHxp1q, VxpHxpaqq “ Vxp1qaVxp1q,(3.1)
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Hyp1qVxp1q “ Vxp1qHyp1q, x, y P Γ`,(3.2)

for all x, y P Γ` and a P A.
The interaction in Example 3.1 is not complete because condition (3.1) is

not fulfilled. The condition (3.2) is closely related to the following criterium
for the product of partial isometries to be a partial isometry, cf. Example
2.3, and the proof of Proposition 4.2.

Proposition 3.3. [10, Lem. 2] Let S and T be partial isometries. Then
ST is a partial isometry iff S˚S commutes with TT ˚.

Now we explain the relationship between complete interactions and the
complete transfer actions for C˚-dynamical systems. We denote by ZpAq
the center of A.
Proposition 3.4. If L is a complete transfer action for a C˚-dynamical
system pA,Γ`, αq, then the pair pα,Lq is a complete interaction and

Lxp1q P ZpAq, x P Γ`.

Conversly, if pV,Hq is a complete interaction such that Hxp1q P ZpAq, x P
Γ`, then pA,Γ`,Vq is a C˚-dynamical system and H is its complete transfer
action.

Proof. Let us prove the first part of the proposition. Condition 2.2 i) follows
from [12, 2.2], and 2.2 ii) follows from [12, 2.3], see also [3, (2.15)]. Since αx
is an endomorphism 2.2 iii) is trivial. We recall that Lxp1q belongs to the
center of A and Lxpαxpaqq “ Lxp1qa, cf. [12, Thm. 2.4]. Hence (3.1), (3.2)
are valid and to show 2.2.iv), we notice that

Lxpαxpaqbq “ aLxpbq “ aLxp1qLxpbq “ LxpαxpaqqLxpbq.

By taking adjoints one obtains Lxpbαxpaqq “ LxpbqLxpαxpaqq.
To prove the remaining part of the statement it suffices to show that if

Hxp1q belongs to ZpAq then Vx is multiplicative. By Proposition 2.5, formula
(3.1) and the definition of interaction, we have

Vxpabq “ VxpHp1qabHp1qq “ VxpaHp1qbp1qHp1qq
“ VxpaqVxpHp1qbp1qHp1qq “ VxpaqVxpbq,

for arbitrary a, b P A and the proof is complete.

In view of the above proposition, the following statement is a generaliza-
tion of [12, Thm. 2.4].

Theorem 3.5. Let V be an action of Γ` on A. The following conditions
are equivalent:

1q there exists an action H such that pV,Hq is a complete interaction,
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2q piq there exists an action H such that pV,Hq is an interaction,

piiq VxpAq, HxpAq are hereditary subalgebras of A for each x P Γ`,

piiiq Vxp1q and Hyp1q commute for all x, y P Γ`,
3q piq Vxp1q is an orthogonal projection and VxpAq “ Vxp1qAVxp1q for each

x P Γ`,
piiq there exists a decreasing family tPxuxPΓ` of orthogonal projections

such that
a) Vxp1q and Py commute for all x, y P Γ`,
b) VxpPx`yq “ Vxp1qPy, for each x, y P Γ`,
c) the mappings Vx : PxAPx Ñ VxpAq are ˚-isomorphisms.

Moreover, the objects in 1q – 3q are defined in a unique way, i.e. the action
H in 1q and 2q is unique and the family of projections tPxuxPΓ` in 3q is
unique as well. These objects are combined by formulae

(3.3) Px “ Hxp1q, x P Γ`,

and

(3.4) Hxpaq “ V´1
x pVxp1qaVxp1qq, a P A,

where V´1
x : αxpAq Ñ PxAPx is the inverse mapping to Vx : PxAPx Ñ

VxpAq, x P Γ`.

Proof. 1q ô 2q. In view of (3.2) and Proposition 2.4, it is enough to show
that 2) (ii) is equivalent to (3.1). It is straightforward that if (3.1) holds
then

HxpAq “ Hxp1qAHxp1q, VxpAq “ Vxp1qAVxp1q
are hereditary subalgebras. Conversely, if HxpAq and VxpAq are hereditary
subalgebras of A then the argument used in the proof of [8, Prop. 4.1] shows
that Vxp1qAVxp1q Ă VxpAq and Hxp1qAHxp1q Ă HxpAq. By Proposition
2.5, we have HxpAq Ă Hxp1qAHxp1q and VxpAq Ă Vxp1qAVxp1q, and hence
(3.1) holds.
1q, 2q ñ 3q. Take Px “ Hxp1q, x P Γ`. Item 3) then follows from Proposi-
tions 2.4 and 2.5.
3q ñ 1q. Fix x P Γ`. Let V´1

x : VxpAq “ Vxp1qAVxp1q Ñ PxAPx be
the inverse mapping to Vx : PxAPx Ñ VxpAq. Define Hx by the formula
Hxpaq “ V´1

x pVxp1qaVxp1qq. Clearly Hx is linear and positive, and (3.1) is
fulfilled. Furthermore, 2.2.i), ii) hold. To prove 2.2.iii) we note that

Vx
`

HxpVxpaqbq
˘

“ Vxp1qVxpaqbVxp1q “ VxpaqVxp1qbVxp1q “ VxpaqVxpHxpbqq
“ VxpHxpVxpaqqqVxpHxpbqq “ VxpHxpVxpaqqHxpbqq,

and as the elements HxpVxpaqbq and HxpVxpaqqHxpbq belong to the subalge-
bra PxAPx where the mapping Vx is injective, they coincide. Similarly one
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proves that HxpaVxpbqq “ HxpaqHxpVxpbqq and thus 2.2.iii) holds.
The same argument proves 2.2.iv) and therefore to show that pV,Hq is an
interaction, we only need to prove that H is an action of the semigroup Γ`.
Using 3q piiq and 2.2.iii), we have

VypPx`yAPx`yq “ VypPx`yqVypAqVypPx`yq “ PxVypAqPx
and as Px`yAPx`y Ă PyAPy we obtain that Vy : Px`yAPx`y Ñ PxVypAqPx
is a ˚-isomorphism and the inverse is given by Hy. Thus we have

HypHxpAqq “ HypPxAPxq “ HypVyp1qPxAPxVyp1qq
“ HypPxVyp1qAVyp1qPxq “ HypPxVypAqPxq “ Px`yAPx`y.

Hence HypHxpaqq and Hx`ypaq belong to the subalgebra Px`yAPx`y where
the map Vx`y is injective, and as

Vx`ypHypHxpaqq “ Vx
`

VypHypHxpaqq
˘

“ Vx
`

Vyp1qHxpaqVyp1q
˘

“ Vx
`

Vyp1qPxHxpaqPxVyp1q
˘

“ Vx
`

PxVyp1qPxHxpaqPxVyp1qPx
˘

“ VxpPxVyp1qPxqVxpHxpaqqVxpPxVyp1qPxq
“ VxpVyp1qqVxpHxpaqqVxpVyp1qq
“ Vx`yp1qVxp1qaVxp1qVx`yp1q “ Vx`yp1qaVx`yp1q
“ Vx`ypHx`ypaqq

we have Vx`y “ Vy ˝ Vx. The uniqueness of the objects in 1) - 3) is now
straightforward.

4. Finely representable actions and their crossed products
In this section, we define finely representable actions as the ones possess-

ing nondegenerated covariant representations, and thereby possessing non-
degenerated crossed products. These actions are closely related to complete
interactions. Namely, it is not very difficult to prove (see Proposition 4.2)
that every finely representable action is a ’part’ of a complete interaction,
and although it might be difficult to prove, it is very likely that the opposite
is also true, cf. [3], [12].

Furthermore, we investigate a dense ˚-subalgebra of the crossed product
via quasi-monomials. In particular, we prove certain inequality which will
be of primary importance in the forthcoming sections.

Definition 4.1. Let V be an action of Γ` on a C˚-algebra A. We say that
V is finely representable if there exists a triple pC, σ, Uq, called a covariant
representation of V, consisting of a unital C˚-algebra C, unital monomor-
phism σ : A Ñ C and a semigroup homomorphism U : Γ` Ñ C such that
for every x P Γ`, Ux is a partial isometry, and for every a P A, x P Γ`, the
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following conditions are satisfied

(4.1) σpVxpaqq “ UxσpaqU
˚
x , U˚xσpaqUx P σpAq.

Let us clarify how the interaction notion is involved in the above defini-
tion.

Proposition 4.2. If V is a finely representable action of Γ` on A, then
there exists a (necessarily unique) action H such that pV,Hq is a complete
interaction. Moreover, for any covariant representation pC, σ, Uq, the follow-
ing formulae hold

(4.2) σpVxpaqq “ UxσpaqU
˚
x , σpHxpaqq “ U˚xσpaqUx, a P A, x P Γ`.

Proof. If conditions (4.1) are satisfied then (identifying A with σpAq) one
can set

Hxp¨q “ U˚x p¨qUx, x P Γ`.

Using fundamental properties of partial isometries one easily verifies that
pV,Hq is an interaction and that conditions (3.1) are satisfied. Condition
(3.2) follows from the fact that UxUy “ Ux`y is a partial isometry, and
Proposition 3.3. Thus pV,Hq is a complete interaction. By Theorem 3.5, H
is unique, and hence (4.2) holds for any covariant representation of V.

The following statement is partially converse to the above one.

Theorem 4.3. Let pV,Hq be a complete interaction such that one of the
equivalent conditions iq, iiq, iiiq hold

i) each Vx is an endomorphism,
ii) Hxp1q P ZpAq, for all x P Γ`,
iii) pA,Γ`,Vq is a C˚-dynamical system,

or a counter part of one of them with V replaced by H hold. Then both V
and H are finely representable actions.

Proof. If follows from Proposition 3.4 and [12, Thm. 3.2].

Unfortunately the author was not able to answer the following general
question:

Problem 1. Let pV,Hq be an arbitrary complete interaction. Are the
actions V and H finely representable?

Fortunately, this obstacle does not really affect our further considera-
tions.

Let us note that by Proposition 4.2, every finely representable action
V determines uniquely another finely representable action H such that for
every covariant representation pC, σ, Uq of V, the triple pC, σ, U˚q where
pU˚qx “ U˚x , is a covariant representation for H and vice versa. In particular,
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H is finely representable and in view of the following definition the crossed
products by V and H coincide.

Definition 4.4. Let V be a finely representable action and let pV,Hq
be the corresponding complete interaction. The crossed product (also called
covariance algebra) of the C˚-algebra A by the action V, which we denote
by A ˆpV,Hq Γ to indicate the role (and the symmetry) of the interaction
pV,Hq, is the universal unital C˚-algebra generated by a copy of A and a
family tÛxuxPΓ` of partial isometries subject to relations

(4.3) Vxpaq “ ÛxaÛ
˚
x , Hxpaq “ Û˚x aÛx, a P A, x P Γ`,

ÛxÛy “ Ûx`y, x, y P Γ`.

If pC, σ, Uq is a covariant representation of V then we denote by pσˆUq the
homomorphism of AˆpV,Hq Γ into C established by

pσ ˆ Uqpaq “ σpaq, pσ ˆ UqpÛxq “ Ux, a P A, x P Γ`.

In order to study covariance algebras, it is important to understand the
structure of a ˚-subalgebra C0 of AˆpV,HqΓ generated by A and a semigroup
Û “ tÛxuxPΓ` . Let us thus investigate C0.

The basic elements in C0 are the ones of the form

(4.4)
n
ź

i“1

aiÛ
˚
xi “ a1Û

˚
x1a2 . . . anÛ

˚
xn ,

n
ź

i“1

aiÛxi “ a1Ûx1a2 . . . anÛxn ,

x1, . . . , xn P Γ`, a1, . . . , an P A. We shall call them monomials of negative
and positive type, respectively. In this context, the element x1 ` ¨ ¨ ¨ ` xn
is a degree of both of these monomials, and any finite sum of monomials of
the same type and the same degree will be called a quasi-monomial. Namely
quasi-monomials of degree x are the elements of the form

(4.5) q´x “
ÿ

y“py1,...,ynqPQ
y1`¨¨¨`yn“x

n
ź

i“1

a´yi Û˚yi , qx “
ÿ

y“py1,...,ynqPQ
y1`¨¨¨`yn“x

n
ź

i“1

ayi Ûyi ,

where Q is a finite set consisting of finite sequences with entries in Γ` (pre-
sumably with different lengths). In particular, every quasi-monomial q0 of
degree 0 is in fact a monomial and q0 P A. We claim that

Proposition 4.5. C0 consists of finite sums of monomials (4.4), and a
fortiori of sums of quasi-monomials.

Proof. It is clear that the finite sums of monomials form a self-adjoint linear
space (containing A and tÛxuxPΓ). In fact, they form an algebra because
every "mixed monomial" a1Ûx1b1Û

˚
y1a2Ûx2 . . . anÛxnbnÛ

˚
yn equals to a "non-
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mixed monomial" in one of the forms

c1Û
˚
z1c2 . . . cmÛ

˚
zm or c1Ûz1c2 . . . cmÛzm

depending on whether x1`¨ ¨ ¨`xn ≤ y1`¨ ¨ ¨`yn or y1`¨ ¨ ¨`yn ≤ x1`¨ ¨ ¨`xn
(this is an easy fact due to the total ordering of Γ and (4.3)).

Consequently, for any a P C0 there exists a finite set F Ă Γ`zt0u, and a
family of quasi-monomials q˘x of degree x P F and a0 P A, such that

(4.6) a “
ÿ

xPF

q´x ` a0 `
ÿ

xPF

qx.

Moreover, as the next proposition shows, the quasi-monomial a0 of degree 0
is uniquely determined by a.

Proposition 4.6. For any a P C0, and any presentation of a in the form
(4.6), the following inequality holds

(4.7) }a0} ≤ }a}.

Proof. Take any faithful non-degenerate representation π : A ˆpV,Hq Γ Ñ

LpHq, and consider the Hilbert space rH “
À

gPΓHg where Hg “ H, for all
g P Γ, and the representation ν : AˆpV,Hq Γ Ñ Lp rHq given by the formulae

pνpaqξqg “ πpaqpξgq, where a P A, rH Q ξ “ tξgugPΓ;

pνpÛxqξqg “ πpÛxqpξg´xq, pνpÛ˚x qξqg “ πpÛ˚x qpξg`xq.

Routine verification shows that νpAq and νpÛxq satisfy all the conditions of
a covariant representation and thus ν is well defined.
Now take any a P A ˆpV,Hq Γ given by (4.6) and for a given ε ą 0 chose a
vector η P H such that

(4.8) }η} “ 1 and }πpa0qη} ą }πpa0q} ´ ε.

Set ξ P rH by ξg “ δp0,gqη, where δpi,jq is the Kronecker symbol. Then we
have }ξ} “ 1 and the explicit form of νpaqξ and (4.8) imply

}νpaqξ} ≥ }πpa0qη} ą }πpa0q} ´ ε,

which by the arbitrariness of ε proves the desired inequality. Namely

}a} ≥ }νpaq} ≥ }πpa0q} “ }a0}.

Remark 4.7. It is clear that the form (4.6) of a P C0 is far from being
unique in general. However, if pV,Hq comes from a C˚-dynamical system, i.e.
one of the conditions iq–iiiq from Theorem 4.3 holds, then every monomial
and every quasi-monomial of degree x P Γ` can be presented in one of the
forms q´x “ Û˚x a´x or qx “ axÛx, cf. [15]. Consequently, any element
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a P C0 can be presented in the form

a “
ÿ

xPF

Û˚x a´x ` a0 `
ÿ

xPF

axÛx, where a´x P AÛ Û˚ and ax P Û Û
˚A.

Moreover, see [12], [15], the coefficients a˘x in the above formula are uniquely
determined by a.

5. Conditional expectation and faithful representations of crossed
products
From now on, we fix a finely representable action V and hence by Propo-

sition 4.2, we also fix a complete interaction pV,Hq. Here we use Proposition
4.6 to define a conditional expectation from A ¸pV,Hq Γ onto A, for which
certain ’spectral’ formula holds, see (5.1), and to give a criterion for a repre-
sentation of A ¸pV,Hq Γ to be faithful. In the literature such necessary and
sufficient condition plays important role and is usually called property p˚q
(for different versions and a history of property p˚q see in particular [15], [14],
[1], [11]).

The first advantage of inequality (4.7) is that it implies that the mapping
E0 : C0 Ñ A given by

E0paq “ a0,

where a is of the form (4.6), is well defined and can be extended to the
conditional expectation acting on the whole of A ¸pV,Hq Γ. We shall show
that using E0 one may express (by the formula generalizing the C˚-equality
}a}2 “ }aa˚}, a P A) the norm of elements from A¸pV,Hq Γ by the norms of
elements from A, see Theorem 5.2. But first, we need to estimate the growth
rate of number of quasi-monomials appearing in the powers of an element
a P C0.

Proposition 5.1. For any a P C0 there exists a family tFkukPN of finite
subsets of Γ`zt0u such that

ak “
ÿ

xPFk

q´xpkq ` q0pkq `
ÿ

xPFk

qxpkq,

where q˘xpkq are quasi-monomials of degree x, x P Γ`, k P N, and

lim
kÑ8

|Fk|
1
k “ 1,

where |F | denotes the number of elements in a set F . In other words, the
growth rate of number of quasi-monomials appearing in the k-th power of a,
is subexponential.

Proof. Let a be given by (4.6) where F “ tx1, .., xnu, then the quasi-
monomials in (4.6) are numbered by the elements of F0 “ t0,˘x1, . . . ,˘xnu,
and it is clear that the quasi-monomials appearing in ak may be numbered
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by the set F k0 “ ty1y2 . . . yk : yi P F0u. Thus putting Fk “ F k0 X pΓ
`zt0uq

and recalling that abelian groups are subexponential, one obtains the hy-
pothesis.

Theorem 5.2. Let a P C0 Ă A¸pV,Hq Γ. Then we have

(5.1) }a} “ lim
kÑ8

4k

b

}E0 rpa ¨ a˚q2ks}.

Proof. Let a be of the form (4.6). Applying to a the known equality
}
řm
i“1 di}

2 ≤ m }
řm
i“1 did

˚
i } (which holds for any elements d1, . . . , dm in

an arbitrary C˚-algebra), where m “ 2|F | ` 1 and dk, k “ 1, . . . ,m are
appropriate quasi-monomials, we obtain that

}a}2 ≤ p2|F | ` 1q
›

›

›
a0a

˚
0 `

ÿ

xPF

`

q´xq
˚
´x ` qxq

˚
x

˘

›

›

›
“ p2|F | ` 1q}E0paa

˚q}.

On the other hand, as E0 is contractive, we have }a}2 “ }aa˚} ≥ }E0paa
˚q}

and thus

(5.2) }E0paa
˚q} ≤ }aa˚} “ }a}2 ≤ p2|F | ` 1q}E0paa

˚q}.

Applying (5.2) to paa˚qk and having in mind that paa˚qk “ paa˚qk˚ and
}paa˚q2k} “ }a}4k, one has
›

›

›
E0

”

paa˚q2k
ı›

›

›
≤ }paa˚qk ¨ paa˚qk˚} “ }a}4k ≤ p2|Fk| ` 1q

›

›

›
E0

”

paa˚q2k
ı›

›

›
,

where Fk Ă Γ`zt0u is the set of all degrees of non-zero quasi-monomials
appearing in ak. By Proposition 5.1, we have limkÑ8p2|Fk| ` 1q

1
k “ 1, and

thus
4k

b

}E0 rpaa˚q2ks} ≤ }a} ≤ 4k
a

2|Fk| ` 1 ¨ 4k

b

}E0 rpaa˚q2ks}

implies that }a} “ limkÑ8
4k
a

}E0 rpaa˚q2ks}.

One would perceive the origin of the following definition in Proposi-
tion 4.6.

Definition 5.3. Let pC, σ, Uq be a covariant representation of V. We shall
say that pC, σ, Uq possesses property p˚q if for any element a P C0 (that is
for a of the form (4.6)), we have

p˚q }E0paq} ≤ }pσ ˆ Uqpaq}
or in other words }a0} in not greater than the norm of
ÿ

xPF

ˆ

ÿ

y“py1,...,ynqPQ
y1`¨¨¨`yn“x

n
ź

i“1

σpa´yi qU
˚
yi

˙

`σpa0q`
ÿ

xPF

ˆ

ÿ

y“py1,...,ynqPQ
y1`¨¨¨`yn“x

n
ź

i“1

σpa´yi qUyi

˙

.

We are ready to formulate and prove the main result of this section.
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Theorem 5.4. Let pC, σ, Uq be a covariant representation of pV,Hq. The
homomorphism pσˆUq : A¸pV,Hq Γ Ñ C is a monomorphism if and only if
pC, σ, Uq possesses property p˚q.
Proof. Necessity follows from Proposition 4.6. In order to show the suffi-
ciency take any a P C0. By Theorem 5.2 and the definition of property p˚q,
we have

}a} “ lim
kÑ8

4k

b

}E0 rpaa˚q2ks} ≤ lim
kÑ8

4k

b

}pσ ˆ Uqpaa˚q2k}

“ lim
kÑ8

4k

b

}pσ ˆ Uqpaa˚qkpσ ˆ Uqpaa˚qk} “ lim
kÑ8

4k

b

}pσ ˆ Uqpaq}4k

“ }pσ ˆ Uqpaq} .

Hence }a} “ }pσ ˆ Uqpaq} on a dense subset of A¸pV,Hq Γ.

Corollary 5.5. There is the action of the dual group Γ̂ by the automor-
phisms of A¸pV,Hq Γ given by

λa :“ a, a P A, λÛx :“ λxÛx,

for x P Γ`, λ P Γ̂, λx “ λpxq (here we consider Γ as a discrete group).
Proof. Suppose thatA¸pV,HqΓ is faithfully and nondegenerately represented
on a Hilbert spaceH. Then for each λ P Γ̂ the triple pid, λÛ ,Hq, where λÛ “
tλÛxuxPΓ` , is a covariant representation possessing property p˚q, whence
pidˆ λÛq is an automorphism of A¸pV,Hq Γ.

6. Topologically free interactions
In this section, we rely heavily on the paper [14] where A. V. Lebedev

defined topological freedom for partial actions of groups and obtained the
Isomorphism Theorem for partial crossed products. Roughly speaking, the
contribution of the author of the present paper to the current section reduces
nearly only to an observation that the definition of topological freedom given
by A. V. Lebedev also makes sense in the context of complete interactions.
In particular, Lemma 6.3 and its proof is an almost faithful verbatim of [14,
Lem. 2.7].

To start with let us note that a complete interaction defines in a natural
way partial dynamical systems (the actions of a group Γ by partial homeo-
morphisms) on the primitive ideal space PrimA and the spectrum Â of A
considered here as topological spaces equipped with the Jacobson topology.

Let us give the description of these partial dynamical systems. For any
x P Γ`, we set

Ax “ Vxp1qAVxp1q, A´x “ Hxp1qAHxp1q,
and thus we have a family tAgugPΓ of hereditary subalgebras of A.
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We recall that for any subset S Ă A, the set suppS “ tI P PrimA :
I Č Su is open in PrimA (see [6, Prop. 3.1.2]), and for any hereditary C˚-
subalgebra B of A, the mapping I Ñ I X B establishes a homeomorphism
suppB ÐÑ PrimB (see [17, Thm. 5.5.5]). Analogously, the set ÂS “ tπ P
Â : πpSq ‰ 0u is open in Â and for any hereditary C˚-subalgebra B of A, the
mapping π Ñ π|B establishes a homeomorphism ÂB ÐÑ B̂ (see [6, 3.2.1]).
Thus we may and we shall identify the family tPrimAgugPΓ with the family
tsuppAgugPΓ of open sets in PrimA, and family tÂgugPΓ with the family
tÂAgugPΓ of open sets in Â.

Let us define the mappings τx : Â´x Ñ Âx, τ´x : Âx Ñ Â´x, for x P Γ`,
in the following way:

τxpπqpaq “ πpHxpaqq, π P Â´x, a P Ax,

τ´xpπqpaq “ πpVxpaqq, π P Âx, a P A´x.

By [17, Thm. 5.5.7], τx and τ´x are homeomorphisms. Let us also define
the mapping tg : PrimA´g Ñ PrimAg, for g P Γ in the following way: for
any point I P PrimA´g such that I “ kerπ where π P Â´g, we set

tgpIq “ ker τgpπq.

Clearly tg is a homeomorphism.
Concluding, for τg and tg defined in the above described way, tτgugPΓ

defines an action of Γ by partial homeomorphisms of Â and ttgugPΓ defines
an action of Γ by partial homeomorphisms of PrimA.

Definition 6.1. We say that the interaction pV,Hq is topologically free if
one of the following equivalent conditions holds

i) for any finite set tx1, . . . , xku Ă Γ` and any nonempty open set U Ă

PrimA´x1X¨ ¨ ¨XPrimA´xk there exists a point I P U such that all the
points txipIq, i “ 1, . . . , k, are distinct.

ii) For any finite set tx1, . . . , xku Ă Γ` and any nonempty open set U , there
exists a point I P U such that all the points txipIq, i “ 1, . . . , k that are
defined, are distinct.

iii) If we denote by Gx the set

Gx “ tI P PrimA´x : txpIq “ Iu,

for any finite set tx1, . . . xnu Ă Γ`zt0u, the interior of the set
Ťn
i“1Gxi

is empty.

The main statements of this section are Theorems 6.4 and 6.5 and the
most important technical result is Lemma 6.3. Among the technical instru-
ments of the proof of this lemma is the next simple Lemma 6.2.
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Lemma 6.2. ([2], Lem. 12.15.) Let B be a C˚-subalgebra of the algebra
LpHq of linear bounded operators in a Hilbert space H. If P1, P2 P LpHq
are two orthogonal projections lying in the commutant B1 of B such that the
restrictions

B|HP1
and B|HP2

pwhere HP1 “ P1pHq, HP2 “ P2pHqq are both irreducible and these restric-
tions are distinct representations then HP1 K HP2 .

Lemma 6.3. Let V be a finely representable action such that the corre-
sponding complete interaction pV,Hq be topologically free. Let pC, σ, Uq is a
covariant representation of V, and let b be an operator of the form

(6.1) b “
ÿ

xPF

σpa´xl qU
˚
xσpa

´x
r q ` σpa0q `

ÿ

xPF

σpaxl qUxσpa
x
r q,

where F is a finite subset of Γ`zt0u. Then for every ε ą 0 there exists an
irreducible representation π : σpAq Ñ LpHπq such that for any irreducible
representation ν : pσˆUqpA¸pV,Hq Γq Ñ LpHνq, which is an extension of π
pHπ Ă Hνq, we have

(i) }πrσpa0qs} ≥ }a0} ´ ε,
(ii) Pπ πrσpa0qsPπ “ Pπ νpbqPπ,

where Pπ P LpHνq is the orthogonal projection onto Hπ.

Proof. As σ is faithful, we may and we shall identify throughout the proof
σpAq and A. For any a P A and I P PrimA, we denote by ăpIq the number

(6.2) ăpIq “ inf
jPI
}a` j}.

For every a P A, the function ăp¨q is lower semicontinuous on PrimA and
attains its upper bound equal to }a}, see for instance [6, 3.3.2 and 3.3.6].
Let I0 P PrimA be a point at which ă0pI0q “ }a0} and π0 be an irreducible
representation of A such that I0 “ kerπ0 (thus }π0pa0q} “ }a0}). Since the
function ă0p¨q is lower semicontinuous, it follows that for any ε ą 0 there
exists an open set U Ă PrimA such that

(6.3) ă0pIq ą }a0} ´ ε, for every I P U.

As F “ tx1, . . . , xku is finite and the interaction pV,Hq is topologically free,
there exists a point I P U such that all the points txipIq, i “ 1, . . . , k are
distinct (if they are defined, i.e. if I P PrimA´xi).

Let π be an irreducible representation of A such that kerπ “ I
and let ν be any extension of π up to an irreducible representation of
pπ ˆ UqpA¸pV,Hq Γq. For this representation ν, we have

Hπ Ă Hν ,
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whereHπ is the representation space for π andHν is that for ν. Furthermore,
for the orthogonal projection Pπ : Hν Ñ Hπ, we have Pπ P νpAq1.

By the choice of π and (6.3), we conclude that there exists a vector ξ P Hπ

such that }ξ} “ 1 and

(6.4) }πpa0qξ} ą }a0} ´ ε.

Thus (i) is proved.
To prove (ii) it is enough to show that for any monomials σpaxl qUxσpa

x
r q,

σpa´xl qU
˚
xσpa

´x
r q, which are elements of the sum (6.3), we have

(6.5) Pπ ν
´

σpaxl qUxσpa
x
r q

¯

Pπ “ 0, Pπ ν
´

σpa´xl qU
˚
xσpa

´x
r q

¯

Pπ “ 0.

We will only prove the former relation as the proof for the latter one is
completely analogous. We fix an element x in the set F “ tx1, . . . , xku and
consider the following possible positions of I.

If I R PrimAx then we have νpUxU˚x qPπ “ πpVxp1qq “ 0 and thus

Pπν
`

σpaxl qUxσpa
x
r q
˘

Pπ “ Pπν
`

σpaxl qUxU
˚
xUxσpa

x
r q
˘

Pπ

“ νpσpaxl qqνpUxU
˚
x qPπν

`

Uxσpa
x
r q
˘

Pπ “ 0.

If I R PrimA´x then observing that νpU˚xUxqPπ “ πpHxp1qq “ 0, we
have

Pπν
`

σpaxl qUxσpa
x
r q
˘

Pπ “ Pπν
`

σpaxl qUx
˘

νpU˚xUxqPπνpσpa
x
r qq “ 0.

Finally, let I P PrimAx X PrimA´x.
In this case π is an irreducible representation as for Ax so also for A´x

and t˘xpIq P PrimAx (according to the definition of tg). Moreover, we have

(6.6) νpU˚xUxqη “ η, νpUxU
˚
x qη “ η for any η P Hπ.

In other words, Hπ belongs as to the initial and final subspaces of νpUxq so
also to the initial and final subspaces of νpU˚g q.

We will use Lemma 6.2 where P1 “ Pπ and P2 “ νpUxqPπνpU
˚
x q. By the

definition of ν, we have P1 P νpAq1 and (6.6) means that P1 “ P1 νpU
˚
xUxq “

P1 νpUxU
˚
x q. Moreover

νpUxq : P1pHνq Ñ P2pHνq

is an isomorphism. Observe also that

(6.7) P2 P νpAxq1.
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Indeed, for any a P Ax we have

P2νpaq “ νpUxqP1νpU
˚
x qνpaq “ νpUxqP1νpU

˚
x qνpUxU

˚
x qνpaq

“ νpUxqP1

´

νpU˚x qνpaqνpUxq
¯

νpU˚x q “ νpUxqP1ν
`

Hxpaq
˘

νpU˚x q

“ νpUxqνpHxpaqqνpU˚xUxqP1νpU
˚
x q “ ν

`

VxpHxpaqq
˘

νpUxqP1νpU
˚
x q

“ νpaqP2.

Thus (6.7) is true. In addition, the irreducibility of νpAxq|HP1
implies the

irreducibility of νpAxq|HP2
(here HP1 “ P1pHνq “ Hπ and HP2 “ P2pHνq).

Now observe that for a P Ax, we have

P1νpaq “ 0 ðñ πpaqP1 “ 0 ðñ ăpIq “ 0

and

P2νpaq “ 0 ðñ νpUxqP1νpU
˚
x qνpaVxp1qq “ 0

ðñ νpUxqP1ν pHxpaqq νpU˚x q “ 0

ðñ νpUxqP1ν pHxpaqqP1νpU
˚
x q “ 0

ðñ P1ν pHxpaqq “ 0 ðñ πpHxpaqq “ 0

ðñ H̆xpaqpIq “ 0 ðñ ăptgpIqq “ 0.

Thus, since the points I and txpIq are distinct, we conclude that the repre-
sentations νpAxq|HP1

and νpAxq|HP2
are distinct. Applying Lemma 6.2, we

find that
P1 ¨ P2 “ 0,

from which we have

PπνpUxqPπ “ PπνpUxqνpU
˚
xUxqPπ “ PπνpUxqPπνpU

˚
xUxq “ P1P2νpUxq “ 0.

Thus

Pπ ν
´

σpaxl qUxσpa
x
r q

¯

Pπ “ νpσpaxl qq
`

PπνpUxqPπ
˘

νpσpaxr qq “ 0,

which finishes the proof of (6.5) and therefore the proof of the lemma as
well.

As a consequence, in the presence of topological freedom, we get that all
covariant representations satisfy a ’weaker version of p˚q property’.

Theorem 6.4. Let V be a finely representable action such that the corre-
sponding complete interaction pV,Hq be topologically free. Then for every
element a P C0 of the form

(6.8) a “
ÿ

xPF

a´xl Û˚x a
´x
r ` a0 `

ÿ

xPF

axl Ûxa
x
r ,
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where F is a finite subset of Γ`zt0u and for every pC, σ, Uq covariant repre-
sentation of V, the operator pσ ˆ Uqpaq determines uniquely the coefficient
a0. Namely for every a of the form (6.8), the following inequality holds

}E0paq} ≤ }pσ ˆ Uqpaq}.
Since in the case of covariance algebras for C˚-dynamical systems, see

Remark 4.7, each finite sum of quasi-monomials may be presented in the form
(6.8), we immediately obtain the following statement, cf. also Proposition
3.4.
Theorem 6.5. (Isomorphism Theorem for C˚-dynamical systems)
Let pV,Hq be a topologically free complete interaction such that the hypotheses
of Theorem 4.3 hold. Then V and H are finely representable and for any
covariant representation pC, σ, Uq the formulae

pσ ˆ Uqpaq “ σpaq, pσ ˆ UqpÛxq “ Ux, a P A, x P Γ`,

determines the isomorphism pσˆUq from A¸pV,HqΓ onto pσˆUqpA¸pV,HqΓq.
In view of the foregoing statement, Theorem 6.4 may be regarded as

a part of Isomorphism Theorem for interactions. However, the following
problem still remains open.
Problem 2. Can the Isomorphism Theorem be extended to the general
finely representable actions case?
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