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CROSSED PRODUCT OF A C*-ALGEBRA
BY A SEMIGROUP OF INTERACTIONS

Abstract. The paper presents a construction of the crossed product of a C*-algebra
by a commutative semigroup of bounded positive linear maps generated by partial isome-
tries. In particular, it generalizes Antonevich, Bakhtin, Lebedev’s crossed product by
an endomorphism, and is related to Exel’s interactions. One of the main goals is the
Isomorphism Theorem established in the case of actions by endomorphisms.

1. Introduction

Recently, in [I] A. B. Antonevich, V. I. Bakhtin and A. V. Lebedev in-
troduced a new crossed product of a C*-algebra by an endomorphism (for
abbreviation we shall call it ABL-crossed product) which in a sense, see [1],
generalizes all the previous approaches to constructions of that kind in the
case of a single endomorphism [4], [5], [18], [7], [16], [8], [LT]. Afterwards, see
[12], the ABL-crossed product was adapted to the case of actions by a semi-
group I'" which is a positive cone of a totally ordered commutative group T.
It is fundamental that the ABL-construction arose against a background of
R. Exel’s crossed product [§], which was adapted to the semigroup context
by N. S. Larsen [13] and requires a unital C*-algebra A, a semigroup homo-
morphism « : I'" — End(A) where End(.A) is the set of endomorphisms of A
(with composition as a semigroup operation), and also it depends on a choice
of transfer action, i.e. a semigroup homomorphism L : 't — PosLin(A)
where PosLin(A) is the set of all linear bounded positive maps on A, such
that

Ly(az(a)b) = aLg(b), for all a,be A and xe ",
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In other words, Exel’s crossed product is a certain C*-algebra associated
to the system (A,T'",«, L) consisting of four elements (cf. Example ,
whereas the ABL-crossed product [I], [12], depends only on the triple
(A,T",«). The price to pay (which eventually is not that high, see [I])
is that ABL-crossed product is defined only for a special class of finely rep-
resentable systems (A, T, a), see [12], [1].

A link between Exel’s and ABL-crossed product is provided by the result
of V. I. Bakhtin and A. V. Lebedev [3], which being stated in the semigroup
language [12], says that (A,T'", «) is finely representable if and only if there
exists a transfer action L for (A,T'", a), such that

(1.1) agz(Ly(a)) = az(l)acy (1), forall ae A, xeT™,

in which case L is called a complete transfer action. It is important that
the complete transfer action, if it exists, is unique and « and L determine
uniquely one another via the formulae

Ly(a) = ag Hagz(1)aag (1)), az(a) = LY (L, (1)a), ac A zel™t,

T
see [3, Thm. 2.8], [I12, Thm. 2.4].

Let us note that, although one can not help feeling that in the above
picture the action « is somewhat privileged, there is no particular reason
to single out « since we have one-to-one correspondence o «— L (in the
ABL-context, of course). This simple observation is a starting point for the
present article. We attempt to clarify here a number of questions which arise
naturally:

e Why not carry out the ABL-construction starting with L rather than
with a?

e Is it necessary for one of the elements in the pair (o, L) to act by multi-
plicative mappings?

e What happens if we drop this multiplicativity condition, which of the
results concerning ABL-crossed products can be carried over then?

Furthermore, we are not simply interested in generalizing ABL-crossed
product. We also aim at a powerful tool to study crossed products the so-
called Isomorphism Theorem [19], [2], [14], [T1], which has not been studied
in the ABL-context yet.

We have to mention one more important fact. In [9], a similar dissat-
isfaction of an asymmetry between actions and transfer actions in the con-
struction of Exel’s crossed product led R. Exel to an object which he called
interaction. Simply, due to the author of [9], interaction is a pair (V,H) of
two positive bounded linear maps on a C*-algebra A such that

VoHoV =YV, HoVoH="H,
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Vlyay and Hly) are multiplicative.

It is quite striking that a connection of the article [9] with the present paper
is completely analogous to that of Exel’s crossed product with ABL-crossed
product (which will become clear during the further reading).

The paper is organized as follows.

In Section [2] we convert Exel’s notion of interaction to the semigroup
case and present some of its properties. Then in Section [3| we define com-
plete interactions, explain their connection with complete transfer actions,
and give a few characteristics of this notion. Section [4] is devoted to finely
representable actions and associated crossed products. Here, we define fine
representability of an action V and then show that it implies the existence
of (necessarily unique) action H such that the pair (V,H) is a complete
interaction. We also develop some terminology and facts concerning the in-
ternal structure of the crossed product, which we use later in Section [5] to
obtain a necessary and sufficient condition for a representation of the crossed
product to be faithful. The final Section [f] is dedicated to the Isomorphism
Theorem which holds for the so-called topologically free actions. We present
here a definition of a topological freedom for complete interactions, which
in fact is a verbatim of the corresponding definition for partial actions, see
[14]. Though in the generality under consideration we failed to establish
the Isomorphism Theorem, we managed to obtain a partial result, see The-
orem and we obtained a complete goal, see Theorem [6.5] in the case of
ABL-crossed products, that is when one of the actions from the pair (V, H)
acts by endomorphisms.

2. Interactions

Let us start with establishing notation and more accurate definitions of
basic notions appearing in the text. Throughout the paper, we let A denote a
C*-algebra with an identity 1, and I'" be a positive cone of a totally ordered
abelian group I' with an identity O:

I*={zel:0<z}, T=T"u(-I"), It (I ={0}.

2.1. We say that V is an action of I'" on Aif V : Tt — PosLin(A) is a semi-
group homomorphism, and then for each x € I'", we denote by V, : A — A,
the corresponding positive linear map:

Vo = 1d, VieoVy = Veiy, z,ye T,

If V acts not only by linear but also multiplicative maps then usually we
shall denote it by « and call the triple (A, T'", ) a C*-dynamical system,
cf. [12].
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The following is a simple modification of [12], Def. 3.1].

2.2. A pair (V,H) consisting of two actions V and H of I't on a C*-algebra
A will be called interaction if for each x € I'" the following conditions are
satisfied

1) VoHo Vs
i) HoVaHe
) Ve(ab) =

) Ha

T

V.
HCE?
Vi (a)Vy(b), if either a or b belong to H,(A),
Ho(a)H(b), if either a or b belong to V,(A).

1ii

1v

(a
(ab) =

We stress that the preceding definition is not a generalization, in the
strict sense, of the one given by R. Exel in [9] (and presented above in the
introduction).

ExXAMPLE 2.3. Let A = M(C) be the algebra of 2 x 2 complex matrices.
We define two positive maps on A by the formulae

a (11 au F a1 Fan taz (10
V((aij)):;<1 1>: Hl(ay) = =————5——— (0 0>'

It is a pleasant exercise to show that V and H satisfies the conditions i) - iv)
from and hence they form an interaction in the sense of [9]. But they do
not yield an interaction in our sense because, for instance, HZoV?oH? # H2.
Actually, the obstacle here is that ¥V and H are implemented by a partial
isometry which is not a power partial isometry (in particular V(1)H (1) #
H(1)V(1), cf. Proposition (3.3 below).

However, thanks to [9, Prop. 2.6, 2.7], the following fundamental prop-
erties of interactions are true.

PROPOSITION 2.4. Let (V,H) be an interaction, and let x € Tt be fized.
Then

1) Vz(A) and Hy(A) are C*-subalgebras of A,

ii) By, = V o H, is a conditional expectation onto V,(A),
iii) By, = Hy oV, is a conditional expectation onto H,(A),
iv) the mappings Vi : Hyp(A) — Vi(A), Hz : Vo(A) — Hi(A) are
*_isomorphisms, each being the inverse of the other, and we have V, =
VyoEy, and Hy = Hy o By,

As the algebra A considered here is unital we may (for any interaction
(V,H)) study the elements V, (1), H.(1), z € I'", which happen to have very
useful properties.
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PROPOSITION 2.5. Let (V,H) be an interaction. Then

i) for any a€ A and any x, y € T such that y > x, we have
Vy(He(1)a) = Vy(aHe(1)) = Vy(a),
Hy(Vo(1)a) = Hy(aVe(1)) = Hy(a),
in particular Vy(Hz(1)) = Vy(1) and Hy(Ve(1)) = Hy(1),
i) {(Vo(1)}per+ and {Ho (1)} er+ form decreasing families of orthogonal pro-

jections,
iii) for any x, y € I'" such that y > = we have

a=V,(1)a = aV,(1), if aeVy(A),
a=H,(1)a=aH,(1), if aeHMy(A).

Proof. By symetry between V and H it is enough to prove only a half of
each hypothesis in each item. We fix a € A and y > z.

i). We have
Vy(He(D)a) = Vyo(Ve(Ha(1)a)) = V,— (V (Ha(1))Vz(a))
=V o (Ve(Ha(1))Ve 0 Hy 0 Vi (a))
= Vy—o(Ve(Ha(1- (a))) Vy(a).

Taking adjoints one obtains V,(aH.(1)) = Vy(a).
ii). Since V, is positive, V(1) is self-adjoint and it is an idempotent
because

Va(1) = Va (Ep, (1) = Vo (B, (1)1) = Va (B, (1) Ve (1) = Va(1)Va(1).
Thus V. (1) is an orthogonal projection. Now observe that V,(1) > V,(1),
y > x, because using i) twice, we get

Vm(l)vyu) - Vx(Hx(l))Vx(Vy—x(l)) = Vw(%w(l)vy—w(l))
= Ve(Vy—e(1)) = Vy(1).
iii). Let a = V,(b) for a certain b € A. Using i), we have
a=Vy(b) = Vy(Hy(1)b) = Vy(Hy(1))Vy(0) = Vy(1)a
and hence by ii) all the more a = V;(1)a. Similarly one gets a = aV,(1). =

As one would like to think of interactions as of the natural generaliza-
tion of C*-dynamical systems, one may be disappointed to see that for a
C*-dynamical system (A,T'",«) and its transfer action L, the pair (a, L)
might not be an interaction. However, if the transfer action L is complete,
the pair (o, L) is always an interaction, see Proposition and the class
of transfer actions that yield interactions is even wider (for definitions of
transfer and complete transfer actions see Introduction). As an example, we
present here a simple corollary to [9, Prop. 3.4].
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PROPOSITION 2.6. Let L be a transfer action for a C*-dynamical system
(A, TF,a) such that L,(1) = 1 for each x € T*. Then («, L) is an interac-
tion.

3. Complete interactions

Here we introduce a notion of a complete interaction which is a gener-
alization of the complete transfer action notion, see Afterwards, for a
given action V we write down the necessary and sufficient conditions for ex-
istence of an action #H such that (V,H) is a complete interaction. Moreover,
we show the uniqueness of such action H, see Theorem In order to show
that in general an action does not determine uniquely an interaction, we
adapt to our needs an example from [3].

ExXAMPLE 3.1. (An example of a C*-dynamical system (A,I'", «) which
admits uncountably many transfer actions satisfying assumptions of Propo-
sition[2.6]) Let A = C(X) where X = R (mod 1) and let T+ = N. We define
an action a by endomorphisms of A by the formula

ap(a)(x) = a(2"x (mod 1)), neN.
We fix any continuous function p on X having the properties

1
0<p(x) <1, p(‘; +2> +p<;> =1, zelo,1).

Take the standard tent map: T'(z) = 1 — |1 — 2z|, « € [0,1], and associate
with p a family of cocycles given by

po=1 and po(z) = p(T" (@) -+ p(T(@)) - plx),  forn>0.
Then it is not hard to check that p,, satisfies the relations

2" —1
x k
0SSt X om(gtg) =1 ceb),
k=0

and the following formula defines an action L on C(X)

2" —1
k k
Lo(a)(z) = Y] pn<2$n+2n>a<2:i+2n), ze0,1), neN.

k=0
Clearly, for any p chosen L is a transfer action for o and since L, (1) = 1 for
each n € N, the pair (o, L) is an interaction by Proposition .
DEFINITION 3.2. The interaction (V,H) will be called complete, if the

following conditions are satisfied

(3.1) Ho(Ve(a)) = Ha(1)aHz(1), Vi(Hi(a)) = Ve(1)aVe(1),
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(3.2) Hy(1)Va(1) = Va(1)Hy(1), z,yel™,
for all z,y e I'" and a € A.
The interaction in Example is not complete because condition (3.1) is

not fulfilled. The condition (3.2)) is closely related to the following criterium
for the product of partial isometries to be a partial isometry, cf. Example

and the proof of Proposition

ProrosITION 3.3. [10, Lem. 2| Let S and T be partial isometries. Then
ST is a partial isometry iff S*S commutes with TT*.

Now we explain the relationship between complete interactions and the
complete transfer actions for C*-dynamical systems. We denote by Z(.A)
the center of A.

PROPOSITION 3.4. If L is a complete transfer action for a C*-dynamical
system (A, T, ), then the pair (o, L) is a complete interaction and
L.(1)e Z(A), rel™.

Conversly, if (V,H) is a complete interaction such that H,(1) € Z(A), z €
', then (A, TF,V) is a C*-dynamical system and H is its complete transfer
action.

Proof. Let us prove the first part of the proposition. Condition i) follows
from [12] 2.2], and [2.2]ii) follows from [12] 2.3|, see also [3, (2.15)]. Since a,
is an endomorphism iii) is trivial. We recall that L,(1) belongs to the
center of A and Ly (ag(a)) = Ly(1)a, cf. [12, Thm. 2.4]. Hence (3.1)),
are valid and to show .iv), we notice that

Ly(ag(a)b) = aLy(b) = aLy(1)Ly(b) = Ly(ag(a))Ly(b).

By taking adjoints one obtains L, (bay(a)) = Ly (b) Ly (g (a)).

To prove the remaining part of the statement it suffices to show that if
H,(1) belongs to Z(A) then V, is multiplicative. By Proposition[2.5] formula
and the definition of interaction, we have

Vi(ab) = Va(H(1)abH(1)) = Vi(aH(1)b(1)H(1))
= Vo (@)Va (H(D)(1)H(1)) = Ve (a)Va(b),
for arbitrary a,b € A and the proof is complete. m

In view of the above proposition, the following statement is a generaliza-
tion of |12, Thm. 2.4].

THEOREM 3.5. Let V be an action of ' on A. The following conditions
are equivalent:

1) there exists an action H such that (V,H) is a complete interaction,
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2) (i) there exists an action H such that (V,H) is an interaction,
(ii) Vi(A), Hz(A) are hereditary subalgebras of A for each x € T't,

(iii) Vi(1) and Hy(1) commute for all z,y € T'T,
3) (i) V(1) is an orthogonal projection and V,(A) = V,(1).AV,(1) for each
rxelt,
(ii) there exists a decreasing family {Py},cr+ of orthogonal projections
such that

a) Vz(1) and P, commute for all x,y € T'",

b) Vo(Priy) = Vu(1)P,, for each x,y e T,

c) the mappings Vy: Py APy, — Vi (A) are *-isomorphisms.
Moreover, the objects in 1) — 3) are defined in a unique way, i.e. the action
H in 1) and 2) is unique and the family of projections {Py}zer+ in 3) is
unique as well. These objects are combined by formulae

(3.3) P, = M, (1), rel™,
and
(3.4) Hola) = V1 (Ve(D)aVe(1), a€ A,

where V1 ¢ az(A) — Py AP, is the inverse mapping to V, : Py AP, —
Vo(A), zeTT.

Proof. 1) < 2). In view of (3.2) and Proposition it is enough to show
that 2) (ii) is equivalent to (3.1]). It is straightforward that if (3.1]) holds
then

Hz(A) = Hx(l)AHa:(l)v VI(‘A) = Vz(l)AVx(l)

are hereditary subalgebras. Conversely, if H;(A) and V,(A) are hereditary
subalgebras of A then the argument used in the proof of [8, Prop. 4.1] shows
that V3 (1) AV, (1) < Viu(A) and H,(1)AH,(1) = Hi(A). By Proposition
we have Hy(A) € Hay(1)AHL(1) and Vi (A) < Vy(1)AV,(1), and hence
holds.

1),2) = 3). Take P, = H,(1), x € T'". Item 3) then follows from Proposi-
tions 2.4] and 2.5

3) = 1). Fixz e I'". Let V;': Vo(A) = Vo(1) AV, (1) — P, AP, be
the inverse mapping to V, : P, AP, — V,(A). Define H, by the formula
Hela) = V1 (Ve(D)aV, ( )) Clearly H, is linear and positive, and is

xT

fulfilled. Furthermore, [2.2]i), i) hold. To prove [2.2}iii) we note that
VI(HI(Vx(a)b)) = x( ) z(a)b ( ) Ve (a)Ve(1)bVe(1) = Vi(a)Ve(He (D))

and as the elements Hx( Ve (a)b ) and Hz(Vx(a))’Hx(b) belong to the subalge-
bra P, AP, where the mapping V, is injective, they coincide. Similarly one
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proves that Hy(aVy (b)) = He(a)Ha(Ve(b)) and thus [2.2]iii) holds.

The same argument proves [2.2]iv) and therefore to show that (V,H) is an
interaction, we only need to prove that H is an action of the semigroup I'*.
Using 3) (ii) and [2.2]iii), we have

Vy(PeryAP:Hy) = Vy(P:c+y)Vy(A)Vy(Pz+y) = Parvy(A)Px
and as Ppyy APy, € PyAP, we obtain that V, : Ppiy APy — P.Vy(A)P,
is a *-isomorphism and the inverse is given by #,. Thus we have
Hy(Ha(A)) = Hy(PrAPy) = Hy(Vy(1) P APV, (1))
= Hy(PeVy(DAVy (1) Pr) = Hy(PrVy(A) Pr) = PryyAPryy.

Hence Hy(Hy(a)) and Hy4y(a) belong to the subalgebra Py, AP, ., where
the map V., is injective, and as

Very(Hy(He(a) = Vo (Vy(Hy(Ha(a))) = Va (Vy(1) V(1))
= Ve (Vy() PeH, ( )P:Vy (1))
= Vo (PoVy(1) PoHo(a) PrVy (1) P
Vi (PeVy(1) Pr) Vi (Ha(a)) Ve (PeVy (1) Py)
= Ve (Vy(1))Va(Ha(a)) Ve (Vy(1))
= m+y(1)Vz( ) z( )Vx+y(1) Very( )aner(l)

= Vary(Hary(a))

we have V,4, = V, o V,. The uniqueness of the objects in 1) - 3) is now
straightforward. =

4. Finely representable actions and their crossed products

In this section, we define finely representable actions as the ones possess-
ing nondegenerated covariant representations, and thereby possessing non-
degenerated crossed products. These actions are closely related to complete
interactions. Namely, it is not very difficult to prove (see Proposition
that every finely representable action is a ’part’ of a complete interaction,
and although it might be difficult to prove, it is very likely that the opposite
is also true, cf. [3], [12].

Furthermore, we investigate a dense *-subalgebra of the crossed product
via quasi-monomials. In particular, we prove certain inequality which will
be of primary importance in the forthcoming sections.

DEFINITION 4.1. Let V be an action of I'" on a C*-algebra A. We say that
V is finely representable if there exists a triple (C,0,U), called a covariant
representation of V), consisting of a unital C*-algebra C', unital monomor-
phism ¢ : A — C and a semigroup homomorphism U : I't — C such that
for every x € ', U, is a partial isometry, and for every a € A, x € I'", the
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following conditions are satisfied
(4.1) o(Vz(a)) = Ugo(a)U;, Ufo(a)Uy € o(A).

Let us clarify how the interaction notion is involved in the above defini-
tion.

PROPOSITION 4.2. IfV is a finely representable action of '™ on A, then
there exists a (necessarily unique) action H such that (V,H) is a complete
interaction. Moreover, for any covariant representation (C,o,U), the follow-
ing formulae hold

(4.2)  o(Ve(a)) = Uro(a)U¥, o(Hy(a)) =Ulo(a)Uy, a€c A zelt.
Proof. If conditions (4.1)) are satisfied then (identifying A with o(.A)) one

can set

He () = U (U, rel™.
Using fundamental properties of partial isometries one easily verifies that
(V,H) is an interaction and that conditions are satisfied. Condition
follows from the fact that U,U, = Uy, is a partial isometry, and
Proposition Thus (V,H) is a complete interaction. By Theorem [3.5[ H
is unique, and hence holds for any covariant representation of V. =

The following statement is partially converse to the above one.

THEOREM 4.3. Let (V,H) be a complete interaction such that one of the
equivalent conditions 1), ii), iii) hold

i) each Vy is an endomorphism,
i) Hy(1) e Z(A), for allz e T,
iii) (A, TF,V) is a C*-dynamical system,

or a counter part of one of them with V replaced by H hold. Then both V
and H are finely representable actions.

Proof. If follows from Proposition 3.4 and [12, Thm. 3.2]. =

Unfortunately the author was not able to answer the following general
question:

PrROBLEM 1. Let (V,H) be an arbitrary complete interaction. Are the
actions V and H finely representable?

Fortunately, this obstacle does not really affect our further considera-
tions.

Let us note that by Proposition 4.2 every finely representable action
V determines uniquely another finely representable action H such that for
every covariant representation (C,o,U) of V, the triple (C,o,U*) where
(U*), = UZ, is a covariant representation for 4 and vice versa. In particular,
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‘H is finely representable and in view of the following definition the crossed
products by V and H coincide.

DEFINITION 4.4. Let V be a finely representable action and let (V,H)
be the corresponding complete interaction. The crossed product (also called
covariance algebra) of the C*-algebra A by the action V, which we denote
by A x4 I' to indicate the role (and the symmetry) of the interaction
(V,H), is the universal unital C*-algebra generated by a copy of A and a
family {U,},er+ of partial isometries subject to relations

(4.3) Vela) = UpaU¥,  Hy(a) = Ufal,, acA, zel¥,
Uny = Uxﬂ,, z,yel™T.

If (C,0,U) is a covariant representation of V then we denote by (o x U) the
homomorphism of A Xy, 3/) I' into C' established by
(o0 x U)(a) = o(a), (o xU)Uy)=U,, acA, xelt,
In order to study covariance algebras, it is important to understand the
structure of a *-subalgebra Cp of A x(y 3;)I" generated by A and a semigroup

U = {Uyp}yer+- Let us thus investigate C.
The basic elements in Cy are the ones of the form

A

n n
- - . . .
(4.4) H a;Uy, = a Uy as...a, Uy, H iUz, = a1Ug, a2 ... a,Uy,,
i=1 i=1

T1,...,2p €T ay,...,a, € A. We shall call them monomials of negative
and positive type, respectively. In this context, the element xy + --- + x,
is a degree of both of these monomials, and any finite sum of monomials of
the same type and the same degree will be called a quasi-monomial. Namely
quasi-monomials of degree = are the elements of the form

(4'5) qQ—x = Z Ha;yﬁy*i’ qz = Z Ha?ina

y=(¥1,--yn)eQ =1 y=(y1,--,yn)€Q i=1
Y1+ tyn=z Y1+ tyn=z

where @ is a finite set consisting of finite sequences with entries in I'" (pre-
sumably with different lengths). In particular, every quasi-monomial ¢y of
degree 0 is in fact a monomial and gy € A. We claim that

PROPOSITION 4.5. Cy consists of finite sums of monomials (4.4)), and a
fortiori of sums of quasi-monomials.

Proof. It is clear that the finite sums of monomials form a self-adjoint linear
space (containing A and {Ug}zer). In fact, they form an algebra because
every "mixed monomial" alleblU;‘l agUsz, ... anUsz, by Uy equals to a "non-
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mixed monomial" in one of the forms

rw ~u .
aU;c...cnU] or cUzca...cnUs,

depending on whether z1+- - -4+x, < y1+---+ypory1+-- - +yn < x1+---+Tp
(this is an easy fact due to the total ordering of I" and (4.3))). =

Consequently, for any a € C there exists a finite set F' < I'"\{0}, and a
family of quasi-monomials ¢4, of degree x € F' and ag € A, such that

(4.6) a= > qatart ), g
zeF zeF
Moreover, as the next proposition shows, the quasi-monomial ag of degree 0

is uniquely determined by a.

PROPOSITION 4.6. For any a € Cy, and any presentation of a in the form
(4.6)), the following inequality holds

(4.7) laoll <'lla].

Proof. Take any faithful non-degenerate representation 7 : A x(y 3 I' —

L(H), and consider the Hilbert space H = @Dyer Hy where Hy = H, for all

~

g € T, and the representation v : A x5y I' — L(H) given by the formulae

(v(a)é), = m(a) (&), where ae A, H3&={¢}ser;
(V(ﬁz)g)g = W(ﬁx)(ggfx)’ (V(U;)g)g = W(ﬁ:)(gngx)-

~

Routine verification shows that v(A) and v(U,) satisfy all the conditions of
a covariant representation and thus v is well defined.

Now take any a € A x4, I' given by and for a given € > 0 chose a
vector n € H such that

(4.8) Inl =1 and |w(ao)n| > [m(ao)| —e.

Set € € H by & = d0,g)n, Where d; ;) is the Kronecker symbol. Then we
have [|£]| = 1 and the explicit form of v(a)¢ and (4.8]) imply

[v(a)é]l = |Im(ao)n] > |7 (ao)| — e,
which by the arbitrariness of € proves the desired inequality. Namely

la = [v(a)]l = |x(ao)]| = llao].

REMARK 4.7. It is clear that the form of a € Cy is far from being
unique in general. However, if (V, H) comes from a C*-dynamical system, i.e.
one of the conditions i)—iii) from Theorem holds, then every monomial
and every quasi-monomial of degree x € I'* can be presented in one of the
forms q_, = ﬁ;a_x or ¢y = ayUy,, cf. [15]. Consequently, any element
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a € Cy can be presented in the form

a= Z U;a_m +ag + Z a;Uy,  where a_y € AUU* and a, € UU*A.
el zeF

Moreover, see [12], [15], the coefficients a4, in the above formula are uniquely

determined by a.

5. Conditional expectation and faithful representations of crossed

products

From now on, we fix a finely representable action ' and hence by Propo-
sition we also fix a complete interaction (V, H). Here we use Proposition
to define a conditional expectation from A xy 3 I' onto A, for which
certain ’spectral’ formula holds, see , and to give a criterion for a repre-
sentation of A %y 3/) I to be faithful. In the literature such necessary and
sufficient condition plays important role and is usually called property (*)
(for different versions and a history of property (*) see in particular [15], [14],
1, [11).

The first advantage of inequality is that it implies that the mapping
Ey : Cy — A given by

EO (CL) = ap,

where a is of the form , is well defined and can be extended to the
conditional expectation acting on the whole of A xy, 3) I We shall show
that using Ep one may express (by the formula generalizing the C*-equality
la|* = |aa*|, a € A) the norm of elements from A x(y, 3) I by the norms of
elements from A, see Theorem [5.2] But first, we need to estimate the growth
rate of number of quasi-monomials appearing in the powers of an element
ae Co.

PROPOSITION 5.1. For any a € Cy there exists a family {Fi}ren of finite
subsets of TT\{0} such that

ak = Zl; -z (k) + qo(k) + Zl; ¢ (K),

where q+.(k) are quasi-monomials of degree x, x € Tt, ke N, and
lim |Fj|* = 1,
k—o0

where |F| denotes the number of elements in a set F. In other words, the
growth rate of number of quasi-monomials appearing in the k-th power of a,
1s subexponential.

Proof. Let a be given by (4.6) where F' = {x1,..,x,}, then the quasi-
monomials in (4.6) are numbered by the elements of Fy = {0, +z1,..., tz,},
and it is clear that the quasi-monomials appearing in a® may be numbered



Crossed product of a C*-algebra by a semigroup of interactions 363

by the set FF = {y192...yx : i € Fo}. Thus putting Fj, = FF¥ n (I\{0})
and recalling that abelian groups are subexponential, one obtains the hy-
pothesis. =

THEOREM 5.2. Let a€ Cy = A xyg) . Then we have

(5.1) Jafl = Jim W 1B [(a- a*)2]].

Proof. Let a be of the form Applying to a the known equality
1> di I < m > didf (Whlch holds for any elements dy,...,d,, in
an arbltrary C*-algebra), where m = 2|F| + 1 and di, k = 1,...,m are
appropriate quasi-monomials, we obtain that

Jal? < @IF|+ 1) |agas + Y (a-00%, + e
zeF

= Q2F| + 1| Eo(aa™)].

On the other hand, as Ej is contractive, we have |a|? = ||aa*| > ||Eo(aa*)|
and thus

(5.2) HEo(aa )| < llaa*| = [af® < (2|F| + 1) | Eo(aa®)].
Applying (5.2) to (aa*)* and having in mind that (aa*)* = (aa*)** and

[(aa*)?] = HaH‘”“, one has

B0 [(aa")™]| < I(aa®)* - (aa*)*| = al* < (2IF| + 1) Eo | (aa®)].

where F < T'"\{0} is the set of all degrees of non-zero quasi-monomials
appearing in a*. By Proposition we have limg_,o (2| Fg| + 1)% =1, and

thus
VIEo [(aa*)?* ]| < [lall < R/2[F| + 1+ {/|Eo [(aa*)?]|
implies that |al| = limy_,o, X/||Eo [(aa*)%<]|. w

One would perceive the origin of the following definition in Proposi-
tion [£.6]

DEFINITION 5.3. Let (C,0,U) be a covariant representation of V. We shall
say that (C,o,U) possesses property (*) if for any element a € Cy (that is
for a of the form (4.6))), we have

() | Eo(a)]| < ll(e x U)(a)]
or in other words |lap|| in not greater than the norm of

ZF< (2 [Toto; U*>+aa0+2( (2 ﬁa(ai—y)in)

y=(Y1,-,yn)€Q i=1 z€F My=(y1,...,yn)eQ i=1
Y1+ tyn= Y1t tyn=o

We are ready to formulate and prove the main result of this section.
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THEOREM 5.4. Let (C,o0,U) be a covariant representation of (V,H). The
homomorphism (o x U) : A X ['— C is a monomorphism if and only if
(C,0,U) possesses property (*).

Proof. Necessity follows from Proposition In order to show the suffi-
ciency take any a € Cy. By Theorem and the definition of property (*),
we have

lall = lim /| Eo [(aa*)?*]| < lim 4\’“/\\(0 x U)(aa*)?|

k—00 k—o0
lim 4{/”(0 x U)(aa*)k (o x U)(aa*)k| = lim {/[(o x U)(a)|"
k—o0 k—o0

[(a < U)(a)].
Hence |a| = [[(o x U)(a)| on a dense subset of A x 3T =

COROLLARY 5.5. There is the action of the dual group I by the automor-
phisms of A x ) T' given by

Aa:=a, a€A, N, = A\ U,
forzeTT Ael, A\, = A(z) (here we consider T as a discrete group).

Proof. Suppose that Axy 3)I is faithfully and nondegenerately represented

on a Hilbert space H. Then for each A € I the triple (id, MU, H), where U =
{/\Ux}xgﬁ, is a covariant representation possessing property (*), whence
(id x AU) is an automorphism of A x5 . =

6. Topologically free interactions

In this section, we rely heavily on the paper [I4] where A. V. Lebedev
defined topological freedom for partial actions of groups and obtained the
Isomorphism Theorem for partial crossed products. Roughly speaking, the
contribution of the author of the present paper to the current section reduces
nearly only to an observation that the definition of topological freedom given
by A. V. Lebedev also makes sense in the context of complete interactions.
In particular, Lemma and its proof is an almost faithful verbatim of [14]
Lem. 2.7].

To start with let us note that a complete interaction defines in a natural
way partial dynamical systems (the actions of a group I' by partial homeo-
morphisms) on the primitive ideal space Prim .4 and the spectrum A of A
considered here as topological spaces equipped with the Jacobson topology.

Let us give the description of these partial dynamical systems. For any
z eI, we set

-A:Jc = Vz(l)AVx(1)7 Afrp = Hw(l)AHw(1)>
and thus we have a family {A4}ger of hereditary subalgebras of A.
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We recall that for any subset S < A, the set suppS = {I € Prim A :
I $ S} is open in Prim A (see 6l Prop. 3.1.2]), and for any hereditary C*-
subalgebra B of A, the mapping I — [ n B establishes a homeomorphism
supp B «—— Prim B (see [I7, Thm. 5.5.5]). Analogously, the set A5 = {7 €
A :7(S) # 0} is open in A and for any hereditary C*-subalgebra B of A, the
mapping m — 7|, establishes a homeomorphism A8 «— B (see [6, 3.2.1]).
Thus we may and we shall identify the family {Prim Ag}ser with the family
{supp Ag}ger of open sets in Prim A, and family {./Zlg}gep with the family
{A49} s of open sets in A.

Let us define the mappings 7, : A, — ./le, Ty Ay — fl_gg, forxel'™,
in the following way:

72(m)(a) = m(Ha(a)), meA ., acA,,
7_o(m)(a) = T1(Va(a)), TeAy, acA,.

By [17, Thm. 5.5.7|, 7, and 7_, are homeomorphisms. Let us also define
the mapping ¢4 : PrimA_; — Prim Ay, for g € I" in the following way: for
any point I € Prim A_, such that I = ker m where 7 € /l_g, we set

tg(I) = ker 7,4(m).

Clearly t4 is a homeomorphism.

Concluding, for 7, and t, defined in the above described way, {7;}ser
defines an action of I' by partial homeomorphisms of A and {tg}ger defines
an action of I' by partial homeomorphisms of Prim A.

DEFINITION 6.1. We say that the interaction (V,H) is topologically free if
one of the following equivalent conditions holds

i) for any finite set {x1,...,2x} < I'" and any nonempty open set U <
Prim A_;, n---nPrim A_,, there exists a point € U such that all the
points tz,(I), i =1,...,k, are distinct.

ii) For any finite set {z1, ..., 2t} € 't and any nonempty open set U, there
exists a point I € U such that all the points t,,(I), i = 1,...,k that are
defined, are distinct.

iii) If we denote by G, the set

Gy ={lePrimA_, : t,(I) = I},

for any finite set {z1,...2,} < I'"\{0}, the interior of the set | J;"; Gq,
is empty.
The main statements of this section are Theorems [6.4] and [6.5] and the

most important technical result is Lemma [6.3] Among the technical instru-
ments of the proof of this lemma is the next simple Lemma [6.2]
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LEMMA 6.2. ([2], Lem. 12.15.) Let B be a C*-subalgebra of the algebra
L(H) of linear bounded operators in a Hilbert space H. If Pi, Py € L(H)
are two orthogonal projections lying in the commutant B’ of B such that the
restrictions

B]le and B]HPQ

(where Hp, = Py(H), Hp, = Py(H)) are both irreducible and these restric-
tions are distinct representations then Hp, 1| Hp,.

LEMMA 6.3. Let V be a finely representable action such that the corre-
sponding complete interaction (V,H) be topologically free. Let (C,o,U) is a
covariant representation of V, and let b be an operator of the form
(6.1) b= ola;")Uio(a;") + o(ag) + Y| o(af ) Uso(al),

zeF zeF
where F is a finite subset of TT\{0}. Then for every e > 0 there exists an
irreducible representation m : 0(A) — L(Hy) such that for any irreducible
representation v : (0 x U)(A %y I') — L(H,), which is an extension of w
(Hr € H,), we have

(i) |lw[o(ao)]ll = faol —e,
(ii) Prmlo(ao)] Pr = Prv(b) Pr,

where Pr € L(H,) is the orthogonal projection onto H.

Proof. As o is faithful, we may and we shall identify throughout the proof
o(A) and A. For any a € A and I € Prim A, we denote by a(I) the number

(6.2) a(I) = inf |a + j].
jel

For every a € A, the function a(-) is lower semicontinuous on Prim.4 and
attains its upper bound equal to |a|, see for instance [6l 3.3.2 and 3.3.6].
Let Ip € Prim A be a point at which ag(ly) = [|ao| and 7y be an irreducible
representation of A such that Iy = kermy (thus ||mo(ap)| = [laol). Since the
function aGo(-) is lower semicontinuous, it follows that for any ¢ > 0 there
exists an open set U < Prim A such that

(6.3) ao(I) > |ao| — e, for every IeU.
As F = {x1,...,xx} is finite and the interaction (V,H) is topologically free,
there exists a point I € U such that all the points t,,(I), i = 1,...,k are
distinct (if they are defined, i.e. if [ € Prim . A_;.).

Let m be an irreducible representation of A such that kerm = 1

and let v be any extension of m up to an irreducible representation of
(m x U)(A x ) I'). For this representation v, we have

Hy < Hy,
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where H; is the representation space for m and H,, is that for v. Furthermore,
for the orthogonal projection P, : H, — H,, we have P, € v(A)".

By the choice of 7 and ([6.3)), we conclude that there exists a vector £ € H
such that || =1 and

(6.4) |m(a0)é] > llaoll —e.

Thus (i) is proved.
To prove (ii) it is enough to show that for any monomials o(af)Uzo(ay),
o(a; *)Ugo(a;*), which are elements of the sum (6.3]), we have

T

6.5) P u(a(af)Uxa(aff)) P.=0, P, y(a(a;x)U*a(a;x)) P, =0.

We will only prove the former relation as the proof for the latter one is
completely analogous. We fix an element z in the set F' = {z1,..., 2} and
consider the following possible positions of I.

If I ¢ Prim A, then we have v(UyUZ)Pr = m7(Vx(1)) = 0 and thus
Prv(o(af)Uzo(al)) Pr = Prv(o(af )UpUsUzo(al)) Pr
= v(o(a]))v(U,UF) Prv(Uyo(af)) Py = 0.

If I ¢ PrimA_, then observing that v(UXU,)P, = w(Hz(1)) = 0, we
have

Pﬁu(a(af)Uxa(af))Pﬂ = PﬂV(O'(CLf)Ux)I/(U;UI)PWV(O'((If)) =0.

Finally, let I € Prim A, n Prim A_,.

In this case 7 is an irreducible representation as for A, so also for A_,
and t1,(/) € Prim A, (according to the definition of ¢;). Moreover, we have

(6.6) v(UzUs)n =n, v(UsUp)n=n for any ne Hr.

In other words, H, belongs as to the initial and final subspaces of v(U,) so
also to the initial and final subspaces of v(Uy).

We will use Lemma [6.2] where Py = P and P, = v(U,) Prv(U}). By the
definition of v, we have P; € v(A)" and means that P = P v(U}U;) =
P, v(U,U;). Moreover

v(Uy) : PI(H,) — P,(H,)
is an isomorphism. Observe also that

(6.7) P2 S I/(Ax)/.
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Indeed, for any a € A, we have
Pyw(a) = v(Uy) Piv(US)v(a) = v(Uy) Piv(US)v(U,US v (a)

= v(U2) P (v(U)(a)(U) )v(UF) = v(U. )Plz/(Hm( ()
v(Up)v(Ha(a))v(UiUy) Pv(UY) = v(Ve(Ha(a)))v(Us) Pv(US)
=v(a)Py.
Thus |D is true. In addition, the irreducibility of v(A,)| Hp, implies the
irreducibility of V(Aw)‘HPQ (here Hp, = Py(H,) = H; and Hp, = P»(H,)).
Now observe that for a € A,, we have

Piv(a) =0« 7(a)P =0« a(l) =0

and
Py (a) = 0 < v(Us) Prv(Uy)v(aVe(1)) = 0
= v(Us) Prv (He(a) v(Uy) =
= v(Uz)Prv (Hy(a)) Piv(UF) =0

(I) = 0 < a(ty(I)) = 0.

)
Thus, since the points I and t,(I) are distinct, we conclude that the repre-
sentations v(A,)| Hp, and v(Az)|y, are distinct. Applying Lemma@ we
2
find that

PP, =0,
from which we have
Pov(Uy) Py = Prv(Up)v(UFU,) Py = Prv(Up) Prv(UFU,) = PyPov(U,) = 0.
Thus
Prv(o(af)Uso(af)) Pr = vio(af)) (Pev(Us) Pr)v(o(af)) = 0,

which finishes the proof of (6.5) and therefore the proof of the lemma as
well. m

As a consequence, in the presence of topological freedom, we get that all
covariant representations satisfy a 'weaker version of (*) property’.

THEOREM 6.4. Let V be a finely representable action such that the corre-
sponding complete interaction (V,H) be topologically free. Then for every
element a € Cy of the form

(6.8) a—Zal ra, +ao+2af

zeF el
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where F' is a finite subset of TT\{0} and for every (C,o,U) covariant repre-
sentation of V, the operator (o x U)(a) determines uniquely the coefficient
ag. Namely for every a of the form , the following inequality holds

[Eo(a)]| < (o x U)(a)]-

Since in the case of covariance algebras for C*-dynamical systems, see
Remark [£.7] each finite sum of quasi-monomials may be presented in the form
, we immediately obtain the following statement, cf. also Proposition

B4

THEOREM 6.5. (Isomorphism Theorem for C*-dynamical systems)
Let (V,H) be a topologically free complete interaction such that the hypotheses
of Theorem hold. Then V and H are finely representable and for any

covariant representation (C,o,U) the formulae

(o xU)(a) = o(a), (0 x U)(Uy) = Uy, acA, vel™,
determines the isomorphism (o xU) from Axy 3" onto (o xU)(Ax D).

In view of the foregoing statement, Theorem may be regarded as
a part of Isomorphism Theorem for interactions. However, the following
problem still remains open.

PrROBLEM 2. Can the Isomorphism Theorem be extended to the general
finely representable actions case?
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