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ULAM STABILITIES FOR THE DARBOUX PROBLEM FOR
PARTIAL FRACTIONAL DIFFERENTIAL INCLUSIONS

Abstract. In this article, we investigate some Ulam’s type stability concepts for the
Darboux problem of partial fractional differential inclusions with a nonconvex valued right
hand side. Our results are based upon Covitz-Nadler fixed point theorem and fractional
version of Gronwall’s inequality.

1. Introduction
The fractional calculus deals with extensions of derivatives and integrals

to noninteger orders. It represents a powerful tool in applied mathematics to
study a myriad of problems from different fields of science and engineering,
with many break-through results found in mathematical physics, finance, hy-
drology, biophysics, thermodynamics, control theory, statistical mechanics,
astrophysics, cosmology and bioengineering [15, 25, 28, 32]. There has been
a significant development in ordinary and partial fractional differential equa-
tions in recent years; see the monographs of Abbas et al. [6], Kilbas et al.
[22], Miller and Ross [24], the papers of Abbas et al. [1, 2, 3, 4, 5, 7], Vityuk
and Golushkov [34], and the references therein.

The stability of functional equations was originally raised by Ulam in 1940
in a talk given at Wisconsin University. The problem posed by Ulam was
the following: Under what conditions does there exist an additive mapping
near an approximately additive mapping? (for more details see [33]). The
first answer to Ulam’s question was given by Hyers in 1941 in the case of
Banach spaces [17]. Thereafter, this type of stability is called the Ulam–
Hyers stability. In 1978, Rassias [29] provided a remarkable generalization of
the Ulam–Hyers stability of mappings by considering variables. The concept
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of stability for a functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. Thus,
the stability question of functional equations is how do the solutions of the
inequality differ from those of the given functional equation?, or if for every
solution of the perturbed equation there exists a solution of the equation
that is close to it. Considerable attention has been given to the study of
the Ulam–Hyers and Ulam–Hyers–Rassias stability of all kinds of functional
equations; see the monographs [18, 19]. Bota–Boriceanu and Petrusel [9],
Petru et al. [26, 27], and Rus [30, 31] discussed the Ulam–Hyers stability for
operatorial equations and inclusions. Castro and Ramos [11], and Jung [21]
considered the Hyers–Ulam–Rassias stability for a class of Volterra integral
equations. Ulam stability for fractional differential equations with Caputo
derivative are proposed by Wang et al. [35, 36]. Some stability results for
fractional integral equation are obtained by Wei et al. [37]. More details
from historical point of view, and recent developments of such stabilities are
reported in [20, 30, 37].

Motivated by those papers, in this paper, we discuss the Ulam stabilities
for the following fractional partial differential inclusion

(1) cDr
θupx, yq P F px, y, upx, yqq; if px, yq P J :“ r0, as ˆ r0, bs,

where a, b ą 0, θ “ p0, 0q, cDr
θ is the fractional Caputo derivative of order

r “ pr1, r2q P p0, 1s ˆ p0, 1s, F : J ˆ E Ñ PpEq is a set-valued function
with nonempty values in a (real or complex) separable Banach space E, and
PpEq is the family of all nonempty subsets of E.

This paper initiates the Ulam stabilities of the Darboux problem for
hyperbolic fractional differential inclusions in Banach spaces when the right
hand side is nonconvex valued. We prove that the inclusion (1) is generalized
Ulam–Hyers–Rassias stable.

2. Preliminaries
In this section, we introduce notations, definitions, and preliminary facts

which are used throughout this paper. Denote L1pJq the space of Bochner-
integrable functions u : J Ñ E with the norm

}u}L1 “

ż a

0

ż b

0
}upx, yq}Edydx,

where }.}E denotes a complete norm on E.
Let L8pJq be the Banach space of measurable functions u : J Ñ E which

are essentially bounded, equipped with the norm

}u}L8 “ inftc ą 0 : }upx, yq}E ≤ c, a.e. px, yq P Ju.

As usual, by ACpJq we denote the space of absolutely continuous functions
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from J into E, and C :“ CpJq is the Banach space of all continuous functions
from J into E with the norm }.}8 defined by

}u}8 “ sup
px,yqPJ

}upx, yq}E .

Let θ “ p0, 0q, r1, r2 ą 0 and r “ pr1, r2q. For f P L1pJq, the expression

pIrθfqpx, yq “
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fps, tqdtds

is called the left-sided mixed Riemann–Liouville integral of order r, where
Γp.q is the (Euler’s) Gamma function defined by Γpξq “

ş8

0 tξ´1e´tdt; ξ ą 0.
In particular,

pIθθfqpx, yq “ fpx, yq, pIσθ fqpx, yq

“

ż x

0

ż y

0
fps, tqdtds, for almost all px, yq P J,

where σ “ p1, 1q.
For instance, Irθf exists for all r1, r2 P p0,8q, when f P L1pJq. Note also

that when f P CpJq, then pIrθfq P CpJq, moreover
pIrθfqpx, 0q “ pI

r
θfqp0, yq “ 0; x P r0, as, y P r0, bs.

Example 2.1. Let λ, ω P p0,8q and r “ pr1, r2q P p0,8q ˆ p0,8q then

Irθx
λyω “

Γp1` λqΓp1` ωq

Γp1` λ` r1qΓp1` ω ` r2q
xλ`r1yω`r2 , for almost all px, yq P J.

By 1´ r we mean p1´ r1, 1´ r2q P r0, 1qˆ r0, 1q. Denote by D2
xy :“ B2

BxBy ,
the mixed second order partial derivative.

Definition 2.2. [34] Let r P p0, 1s ˆ p0, 1s and f P L1pJq. The Caputo
fractional-order derivative of order r of f is defined by the expression

cDr
θfpx, yq “ pI

1´r
θ D2

xyfqpx, yq.

The case σ “ p1, 1q is included and we have
pcDσ

θ fqpx, yq “ pD
2
xyfqpx, yq; for almost all px, yq P J.

Example 2.3. Let λ, ω P p0,8q and r “ pr1, r2q P p0, 1s ˆ p0, 1s then

cDr
θx

λyω “
Γp1` λqΓp1` ωq

Γp1` λ´ r1qΓp1` ω ´ r2q
xλ´r1yω´r2 , for almost all px, yq P J.

Consider the following Darboux problem of partial differential equations

(2)

$

’

’

’

&

’

’

’

%

cDr
θupx, yq “ fpx, yq, if px, yq P J,

upx, 0q “ ϕpxq, x P r0, as,

up0, yq “ ψpyq, y P r0, bs,

ϕp0q “ ψp0q,
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where ϕ : r0, as Ñ E, ψ : r0, bs Ñ E are given absolutely continuous func-
tions.

In the sequel, we need the following lemma given by the authors [2].

Lemma 2.4. [2] Let 0 ă r1, r2 ≤ 1, and µpx, yq “ ϕpxq ` ψpyq ´ ϕp0q. A
function u P C is a solution of the fractional integral equation

(3) upx, yq “ µpx, yq ` Irθfpx, yq,

if and only if u is a solution of the problem (2).

Let pX, }¨}q be a Banach space. Denote PclpXq “ tY P PpXq : Y closedu,
PbdpXq “ tY P PpXq : Y boundedu, PcppXq “ tY P PpXq : Y compactu
and Pcp,cvpXq “ tY P PpXq : Y compact and convexu.

Definition 2.5. A multivalued map T : X Ñ PpXq is convex
(closed) valued if T pxq is convex (closed) for all x P X. T is bounded
on bounded sets if T pBq “ YxPBT pxq is bounded in X for all B P

PbdpXq pi.e. supxPB supyPT pxq }y} ă 8q. T is called upper semi-continuous
(u.s.c.) on X if for each x0 P X, the set T px0q is a nonempty closed subset
of X, and if for each open set N of X containing T px0q, there exists an
open neighborhood N0 of x0 such that T pN0q Ď N. T is said to be com-
pletely continuous if T pBq is relatively compact for every B P PbdpXq. T
has a fixed point if there is x P X such that x P T pxq. The fixed point set
of the multivalued operator T will be denoted by FixT. A multivalued map
G : X Ñ PclpEq is said to be measurable if for every v P E, the function
x ÞÝÑ dpv,Gpxqq “ inft}v ´ z}E : z P Gpxqu is measurable.

For more details on multivalued maps see the books of Aubin and Cellina
[8], Górniewicz [10], Hu and Papageorgiou [16] and Kisielewicz [23].

For each u P C, define the set of selections of F by

SF,u “ tw P L
1pJq : wpx, yq P F px, y, upx, yqq; px, yq P Ju.

Let pX, dq be a metric space induced from the normed space pX, } ¨ }q.
Consider Hd : PpXq ˆ PpXq ÝÑ R` Y t8u given by

HdpA,Bq “ max
!

sup
aPA

dpa,Bq, sup
bPB

dpA, bq
)

,

where dpA, bq “ inf
aPA

dpa, bq, dpa,Bq “ inf
bPB

dpa, bq. Then pPbd,clpXq, Hdq is a

metric space and pPclpXq, Hdq is a generalized metric space (see [23]).

Definition 2.6. A multivalued operator N : X Ñ PclpXq is called
a) γ-Lipschitz if and only if there exists γ ą 0 such that

HdpNpuq, Npvqq ≤ γdpu, vq for each u, v P X,

b) a contraction if and only if it is γ-Lipschitz with γ ă 1.
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Now, we consider the Ulam stability of fractional differential inclusion
(1). Let ε be a positive real number and Φ : J Ñ r0,8q be a continuous
function. We consider the following inequalities

Hdp
cDr

θupx, yq, F px, y, upx, yqqq ≤ ε, if px, yq P J.(4)
Hdp

cDr
θupx, yq, F px, y, upx, yqqq ≤ Φpx, yq, if px, yq P J.(5)

Hdp
cDr

θupx, yq, F px, y, upx, yqqq ≤ εΦpx, yq, if px, yq P J.(6)

Definition 2.7. Problem (1) is Ulam–Hyers stable if there exists a real
number cF ą 0 such that for each ε ą 0 and for each solution u P C of the
inequality (4), there exists a solution v P C of problem (1) with

}upx, yq ´ vpx, yq}E ≤ εcF ; px, yq P J.

Definition 2.8. Problem (1) is generalized Ulam–Hyers stable if there
exists θF P Cpr0,8q, r0,8qq, θF p0q “ 0 such that for each ε ą 0 and for
each solution u P C of the inequality (4), there exists a solution v P C of
problem (1) with

}upx, yq ´ vpx, yq}E ≤ θF pεq; px, yq P J.
Definition 2.9. Problem (1) is Ulam–Hyers–Rassias stable with respect
to Φ if there exists a real number cF,Φ ą 0 such that for each ε ą 0 and
for each solution u P C of the inequality (6), there exists a solution v P C of
problem (1) with

}upx, yq ´ vpx, yq}E ≤ εcF,ΦΦpx, yq; px, yq P J.

Definition 2.10. Problem (1) is generalized Ulam–Hyers–Rassias stable
with respect to Φ if there exists a real number cf,Φ ą 0 such that for each
solution u P C of the inequality (5), there exists a solution v P C of problem
(1) with

}upx, yq ´ vpx, yq}E ≤ cF,ΦΦpx, yq; px, yq P J.

Remark 2.11. It is clear that

(i) Definition 2.7 ñ Definition 2.8,
(ii) Definition 2.9 ñ Definition 2.10,
(iii) Definition 2.9 for Φpx, yq “ 1 ñ Definition 2.7.

Remark 2.12. A function u P C is a solution of the inequality (4) if and
only if there exists a function g P C (which depends on u) such that

(i) }gpx, yq}E ≤ ε,
(ii) cDr

θupx, yq ´ gpx, yq P F px, y, upx, yqq; if px, yq P J.

One can have similar remarks for the inequalities (5) and (6). So, the
Ulam stabilities of the fractional differential equations are some special types
of data dependence of the solutions of fractional differential equations.
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We need the following lemma.

Lemma 2.13. (Covitz–Nadler) [13] Let pX, dq be a complete metric space.
If N : X Ñ PclpXq is a contraction, then N has fixed points.

In the sequel we will make use of the following generalization of Gron-
wall’s lemma for two independent variables and singular kernel.

Lemma 2.14. (Gronwall lemma) [14] Let υ : J Ñ r0,8q be a real function
and ωp., .q be a nonnegative, locally integrable function on J. If there are
constants c ą 0 and 0 ă r1, r2 ă 1 such that

υpx, yq ≤ ωpx, yq ` c
ż x

0

ż y

0

υps, tq

px´ sqr1py ´ tqr2
dtds,

then there exists a constant δ “ δpr1, r2q such that

υpx, yq ≤ ωpx, yq ` δc
ż x

0

ż y

0

ωps, tq

px´ sqr1py ´ tqr2
dtds,

for every px, yq P J.

3. Main results
In this section, we present conditions for the Ulam stability of prob-

lem (1).

Lemma 3.1. If u P C is a solution of the inequality (4) then there exists
f P SF,u such that u is a solution of the following integral inequality

(7) }upx, yq ´ µpx, yq ´ Irθfpx, yq}E ≤
εar1br2

Γp1` r1qΓp1` r2q
; if px, yq P J.

Proof. By Remark 2.12, for px, yq P J, there exists g P C such that }gpx, yq}E
≤ ε and

cDr
θupx, yq ´ gpx, yq P F px, y, upx, yqq.

Then, there exists f P SF,u such that for px, yq P J, we get

upx, yq “ µpx, yq ` Irθ rfpx, yq ` gpx, yqs.

Thus, for px, yq P J we obtain

}upx, yq ´ µpx, yq ´ Irθfpx, yq}E “ }I
r
θgpx, yq}E

≤ Irθ }gpx, yq}E

≤ εar1br2

Γp1` r1qΓp1` r2q
.

Hence, we obtain (7).

Remark 3.2. One can obtain similar results for the solutions of the in-
equalities (5) and (6).
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Consider the following Darboux problem of partial differential inclusions

(8)

$

’

’

’

&

’

’

’

%

cDr
θupx, yq P F px, y, upx, yqq, if px, yq P J,

upx, 0q “ ϕpxq, x P r0, as,

up0, yq “ ψpyq, y P r0, bs,

ϕp0q “ ψp0q,

where ϕ : r0, as Ñ E, ψ : r0, bs Ñ E are given absolutely continuous func-
tions.

In the sequel, we present a result for the problem (8) with a nonconvex
valued right hand side. Our considerations are based on the fixed point
theorem for contraction multivalued maps given by Covitz and Nadler [13].

Theorem 3.3. Assume that the following hypotheses hold

pH1q There exists l P L8pJ, r0,8qq such that

HdpF px, y, uq, F px, y, uqq ≤ lpx, yq}u´ u}E for every u, u P E,

and
dp0, F px, y, 0qq ≤ lpx, yq, a.e. px, yq P J,

pH2q F : JˆE ÝÑ PcppEq is such that F p., ., uq : J Ñ PcppEq is measurable
for each u P E.

If

(9)
l˚ar1br2

Γp1` r1qΓp1` r2q
ă 1,

where l˚ “ }l}L8 , then problem (8) has at least one solution on J.

Remark 3.4. For each u P C, the set SF,u is nonempty since by pH2q, F
has a measurable selection (see [12], Theorem III.6).

Proof. Transform the problem (8) into a fixed point problem. Consider the
multivalued operator N : C Ñ PpCq defined by

Npuq “ th P C : hpx, yq “ µpx, yq ` Irθfpx, yq; px, yq P Ju,

where f P SF,u. Clearly, from Lemma 2.4, the fixed points of N are solutions
to (8).

We shall show that N satisfies the assumptions of Lemma 2.13. The
proof will be given in two steps.

Step 1. Npuq P PclpCq for each u P C.
Indeed, let punqn≥0 P Npuq such that un ÝÑ ũ in C. Then, ũ P C and

there exists fnp., .q P SF,u such that, for each px, yq P J,

unpx, yq “ µpx, yq `
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fnps, tqdtds.
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Using pH1q and the fact that F has compact values, we may pass to a
subsequence if necessary to get that fnp., .q converges to f in L1pJ,Eq, and
hence f P SF,u. Then, for each px, yq P J,

unpx, yq ÝÑ ũpx, yq

“ µpx, yq `
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fps, tqdtds.

So, ũ P Npuq.
Step 2. There exists γ ă 1 such that

HdpNpuq, Npuqq ≤ γ}u´ u}8 for each u, u P C.

Let u, u P C and h P Npuq. Then, there exists fpx, yq P F px, y, upx, yqq such
that for each px, yq P J

hpx, yq “ µpx, yq `
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fps, tqdtds.

From pH1q it follows that

HdpF px, y, upx, yqq, F px, y, upx, yqqq ≤ lpx, yq}upx, yq ´ upx, yq}E .

Hence, there exists w P F px, y, upx, yqq such that

}fpx, yq ´ wpx, yq}E ≤ lpx, yq}upx, yq ´ upx, yq}E ; px, yq P J.

Consider U : J Ñ PpEq given by

Upx, yq “ twpx, yq P E : }fpx, yq ´ wpx, yq}E ≤ lpx, yq}upx, yq ´ upx, yq}Eu.

Since the multivalued operator upx, yq “ Upx, yq X F px, y, upx, yqq is mea-
surable (see Proposition III.4 in [12]), there exists a function fpx, yq which
is a measurable selection for u. So, fpx, yq P F px, y, upx, yqq, and for each
px, yq P J,

}fpx, yq ´ fpx, yq}E ≤ lpx, yq}upx, yq ´ upx, yq}E .

Let us define for each px, yq P J

hpx, yq “ µpx, yq `
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fps, tqdtds.



834 S. Abbas, M. Benchohra

Then for each px, yq P J, we have

}hpx, yq ´ hpx, yq}E ≤
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1

ˆ }fps, tq ´ fps, tq}Edtds

≤ 1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1

ˆ lps, tq}ups, tq ´ ups, tq}Edtds

≤ l˚}u´ u}8
Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1dtds.

Thus, for each px, yq P J we obtain

}h´ h}8 ≤
l˚ar1br2

Γp1` r1qΓp1` r2q
}u´ u}8.

By an analogous relation, obtained by interchanging the roles of u and u, it
follows that

HdpNpuq, Npuqq ≤
l˚ar1br2

Γp1` r1qΓp1` r2q
}u´ u}8.

So by (9), N is a contraction and thus, by Lemma 2.13, N has a fixed point
u, which is a solution to problem (8).

Theorem 3.5. Assume that the assumptions pH1q, pH2q and the following
hypothesis hold

pH3q Φ P L1pJ, r0,8qq and there exists λΦ ą 0 such that, for each px, yq P J
we have

pIrθΦqpx, yq ≤ λΦΦpx, yq.

If the condition (9) holds, then (1) is generalized Ulam–Hyers–Rassias stable.

Proof. Let u P C be a solution of the inequality (5). By Theorem 3.3, there
exists v which is a solution of the problem (8). Hence, for each px, yq P J,
we have

vpx, yq “ µpx, yq `
1

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1fvps, tqdtds,

where fv P SF,v. By differential inequality (5), for each px, yq P J, we have

}upx, yq ´ µpx, yq ´ Irθfupx, yq}E ≤ IrθΦpx, yq,

where fu P SF,u. Thus, by pH3q for each px, yq P J, we get

}upx, yq ´ µpx, yq ´ Irθfupx, yq}E ≤ λΦΦpx, yq.
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Hence for each px, yq P J, it follows that

}upx, yq ´ vpx, yq}E ≤ }upx, yq ´ µpx, yq ´ Irθfupx, yq}E
` }Irθ rfupx, yq ´ fvpx, yqs}E

≤ λΦΦpx, yq

`
l˚

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1

ˆ }ups, tq ´ vps, tq}Edtds.

From Lemma 2.14, there exists a constant δ “ δpr1, r2q such that

}upx, yq ´ vpx, yq}E ≤ λΦΦpx, yq

`
δl˚λΦ

Γpr1qΓpr2q

ż x

0

ż y

0
px´ sqr1´1py ´ tqr2´1Φps, tqdtds

≤ p1` δl˚λΦqλΦΦpx, yq

:“ cF,ΦΦpx, yq.

Finally, the inclusion (1) is generalized Ulam–Hyers–Rassias stable.

4. An example
Let

E “ l1 “
!

w “ pw1, w2, . . . , wn, . . .q :
8
ÿ

n“1

|wn| ă 8
)

be the Banach space with norm

}w}E “
8
ÿ

n“1

|wn|.

Consider the following infinite system of partial hyperbolic fractional differ-
ential inclusions of the form

(10) cDr
θupx, yq P F px, y, upx, yqq; a.e. px, yq P J “ r0, 1s ˆ r0, 1s,

where pr1, r2q P p0, 1s ˆ p0, 1s,

u “ pu1, u2, . . . , un, . . .q,
cDr

θu “ p
cDr

θu1,
cDr

θu2, . . . ,
cDr

θun, . . .q,

F px, y, upx, yqq

“ tv P E : }f1px, y, upx, yqq}E ≤ }v}E ≤ }f2px, y, upx, yqq}Eu;

px, yq P r0, 1s ˆ r0, 1s, and f1, f2 : r0, 1s ˆ r0, 1s ˆ E Ñ E,

fk “ pfk,1, fk,2, . . . , fk,n, . . .q; k P t1, 2u, n P N,

f1,npx, y, unpx, yqq “
xy2un

e10`x`yp1` }un}Eq
; n P N,
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and

f2,npx, y, unpx, yqq “
xy2un
e10`x`y

; n P N.

We assume that F is compact valued. For each px, yq P J and all z1, z2 P E,
we have

}f2px, y, z2q ´ f1px, y, z1q}E ≤ xy2e´10´x´y}z2 ´ z1}E ,

then the hypotheses pH1q and pH2q are satisfied with lpx, yq “ xy2

e10`x`y . We

shall show that condition (9) holds with a “ b “ 1. Indeed l˚ “
1

e10
, and

l˚ar1br2

Γp1` r1qΓp1` r2q
“

1

e10Γp1` r1qΓp1` r2q
ă

4

e10
ă 1,

which is satisfied for each pr1, r2q P p0, 1s ˆ p0, 1s. The hypothesis pH3q is
satisfied with Φpx, yq “ xy2 and λΦ “ 8. Indeed, for each px, yq P r0, 1s ˆ
r0, 1s, we get

pIrθΦqpx, yq “
Γp2qΓp3q

Γp2` r1qΓp3` r2q
x1`r1y2`r2 ≤ 8xy2 “ λΦΦpx, yq.

Consequently, Theorem 3.5 implies that the inclusion (10) is generalized
Ulam–Hyers–Rassias stable.
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