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Abstract. We examine the conditional regularity of the solutions of Navier—Stokes
equations in the entire three-dimensional space under the assumption that the data are
axially symmetric. We show that if positive part of the radial component of velocity
satisfies a weighted Serrin type condition and in addition angular component satisfies some
condition, then the solution is regular.

1. Introduction
We will consider the Navier—Stokes equations in entire three-dimensional
space
ou

E%—u-Vu—uAu—l—Vp:O in (0,7) x R3,

(1) divu=0 in (0,7) x R3,
u(0,x) = up(x) in R3,

where u : (0,7) x R? — R3 is the velocity field, p : (0,T) x R® — R is the
pressure, 0 < T < o0, v is the viscosity coefficient, ug is the initial velocity
and the forcing term is, for the sake of simplicity, considered to be zero.

Up to now, it is not known whether equations (1) have global in time
smooth solutions. In this paper, we analyze the special class of solutions
which are axially symmetric, i.e. are in the form

u(t, ) = up(t,r,2)e, + ug(t,r,z)eg + uy(t,r, 2)es,
where r = (/2?2 + 13, e, = (%4,%2,0), g = (—2,7L,0) and e, = (0,0,1),

hence cylindrical coordinates u,., ug, u, do not depend on the angle 6. In this
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case, equations (1) have a simpler form. However, the issue of existence of
smooth axially symmetric solutions is still open and there are only partial
results. The first of them deal with flows without swirl (i.e. ug = 0) and there
is proved that solutions remain smooth if the data were smooth (see [5], [11]
and [6] for another proof). In the case of ug # 0, there are many conditional
results. Let us mention some of them: there is no blow-up solutions if in
addition one of the following conditions is satisfied

2) uy € L9(0, T: L*(Q2)) with j + g “lfors>3, ([3)),
3) wg € L(0,T; L*(Q)) with (21 +2 < for s> 4, (9)),
(@) U e 190, () with z + z — 9fors> g (1],
(5) rue L7(0,T; L*(9)), ([2]),

2 3
(6)  rdus e LY0,T; L°(Q)) with = + = +d =1
q s

for 5 > g,q > landde (—1,1) (14]),

2
(7)  rug e LU0, T; L*(Q)) with = + 3 +d<1
q s

S

—14
fors>4,q>2andde[0, 5 )([4]),
s

(8) rlug € L0, T: L(Q)) with d < g (1)),

where u, = —max{—u,,0}. We will denote 25, = {x € R? : r < §;} and
u,” = u+u, is positive part of radial component. Our main result is following
THEOREM 1. Let u be a weak solution to problem (1) satisfying the energy
inequality with ug € W22(R3), rug(0) € L®(R3) and (1 + r)Vugy € L}(R3).
Let ug be axisymmetric. If, in addition, u,” a positive part of radial component
of velocity satisfies

(9) rlut e LY(0,T; L (Qs,))

for some s € (3,0), we (1,00) and d e (—1,1) such that 2 + 2 +d =1 and
for some positive §; and

(10) =%y e L*((0,T) x R?)

for some positive 0y, then (u,p), where p is the corresponding pressure, is
azially symmetric strong solution to problem (1), which is unique in the class
of all weak solutions satisfying the energy inequality.
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REMARK 1. If ruy(0) € L®(R?), then weak solutions of (1) satisfies rug €
L®(0,T;R3). Hence, the assumption (10) is arbitrary close to this properties
of weak solutions.

REMARK 2. It is worth to mention that the norm
_ d
HUHLZJ’S =|r U||Lw(R+;Ls(R3))

is scaling invariant if and only if % + % +d = 1. Indeed, for such exponents we
get HUHLZMS = ’|UAHL;”Sa where uy (t,7) = Au(M, \2x). Therefore, conditions
(2), (4), (5), (6) and (9) involve scaling invariant norms.

In order to prove Theorem 1, we write the equations (1) in cylindrical

coordinates

1, 1 U
(11) Up ¢+ UplUpr + UzUpz — ;Ue +Dr— V[; (T‘Unr)’r + Up pp — 7;] =0,

1 1 Ug
(12)  ugy + upug, + usug, . + S ugUr — V[;(Tue,r)m +ug . — 72] =0,
1
(13) Uy g+ Upllzy + UUzz + P — 1/[; (Tuz,r),,« + Uz,zz] =0,

(14) Uy p + % t Uz = 0,

where the last one is a continuity equation. If we denote w = curlu, then in
cylindrical coordinates, we have
Uug
Wr = —Ufz, WY = Upz — Uzr, Wz =Ugy + ?
Therefore, the equations for w in cylindrical coordinates are following
1

Wy
(15) wr,t—’_uT‘wT‘,T+uzw7‘,z_ur,rwr_uryzwz—u[; (TWT‘,T) 7»+w7”,zz_r72:| = 0’
s

Uy Ug 1 we
(16) we7t+u7«w977«+uzw9,z—7w9+27wr—1/[;(rw97r)7r+w9,zz—ﬁ] =0,

1
(17) wz7t+urwz,r+uzwz,z—uz,rwr—uz,zwz—u[; (rwz,r) 7,—1—(412722] = 0.

We will prove Theorem 1 by contradiction. Therefore, suppose that 0<t* <T
is the time of the first blow-up of solution, i.e. the smaller positive number
such that supe(g ) [|[Vu(t, )| L2ms) = 0. Then, for 0 < < ¢*, the equations
(11)—(17) are satisfied in ((0,%) x R?) in strong sense. We will show that if
u,f and ug satisfy assumptions of Theorem 1, then |[Vu(t, )| 2(s) remains
uniformly bounded for ¢ € (0,¢*) and we will get contradiction.

We shall obtain a uniform estimate for ¢t € (0,t*). For this purpose,
p—2 Ug

—3; and integrate over R3. Then

Ug
rmoy,

we multiply equation (12) by
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integrating by parts and continuity equation (14) yield

(18) ] H fv“@gg
pdt rH

ugpl wl |ug P
(1—p ‘ r |t
+ f r2 M)Jr T

U, |Ug

1 T
(+MJTW

Next, we multiply equation (16) 2% and then in a similar way, we
get
-1) we |5
(19) H q JVGQ
th ro roe
wele 1 U, |wp |9
1-a?) [ |25+ -a) [ |22
. a)fra L+ a)J AL
+ 2
Uy Uug (,UQ a—2 wg
Summing up above equalities, we obtain
alel)+ H e
p dt q dt re

+V(1_M2)ﬂu9p12 +r(l -« )J o) 1

rel roe| p2

4v(g — 1 wo |2
pRcenct
+

U, |ug |P U, |wp |4

1 2 - o ||

+ +u)f ( a)f i b
wp |4~ 2we U, |ug|P

=2 | — 1+ —
TUHZTQ ( M)JT P

+(1—a)J“7f

We will show that for some exponents p, ¢, « and g, the right hand side can
be estimated.

q
7’ =2L+ 1 +p)lh+ (1—a)ls.

e

2. Estimate of I3

PROPOSITION 1. Assume that v € (0,3), q € (ﬁﬂ), p = (4_27)‘1, I E

(—1,1) and a € (0,1). Then for e1,e2,e3 > 0, the following estimate
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2 1 1
@n|m<qfﬁ“)\ “Wp fﬁf2+cfﬁq
ral r
holds, where
2(¢—1)

)

(22) o= 20— 2(1+p)— (1-a),
and C = 0(77 q, a7€1752763)'

Proof. Using Young inequality, we get

wp 9~ 2]we| Uug|5— Uez |u@\2’g wg |2-1
T e ||
reo 7’1+a77 ro
up P2 |ug,» ]ue|4 P wp [2a—1)
<€1f’ ‘T‘T +C(1/€1)J2[1+a_] o
Ug [P—2 |u
—81J" o ’% +C(1/€1)J|rue|7
lug|*—P—7 |wg|2(a— Ve |wg|2(a—1(—a)
2+2a pp+y— (q Dg 2a(q—1)a+74(q;1)a ' r2a(g—1)(1—a) ~

It is well known that (18) leads to the estimate |ruglre < [r(uo)slre=,
thus applying this estimate and next Young inequality with exponents (51

2—q>
q q :
ST)a’ 2(q71)(17a))’ we obtain
4—p—~y]-9_
u9 P=2|ug . |2 |u9‘[ Pz
|| < e + &2 (-1
rH 75 [2+20—pp+y—=L=d]

+ €3

Lol

where C' depends on a, £1, 82, ez and [r(ug)g|ro. By simple calculations, we
4(g—1
get [4—p—9]zt, =pand 531 [2+2a—up+7—%a] =pu+2. m

3. Estimate of I,
We begin with the following

REMARK 3. Assume that g € (1,0), a and g¢ satisfy —2 +¢p < a < €.
Then there exists a constant C' = C(gq, a, £9) such that

wy |4 1
(23) JLHQ ﬁewﬁcjra‘ﬂew
Proof. From Lemma 2.2 [3], we have |[“|, < c(q)|wgllq for all ¢ € (1,00).
2
Thus, we only have to verify that pralati=e0) i A, weight (see comment
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before Lemma 2.6 [3]). In view of Example 1.2.5 [10], it holds if
2
-2 < —q(a+ p —e9) <2(q—1),

le. —24+¢gp<a<eg. m

PROPOSITION 2. Assume that @ = ||r'~%ug|p < 00 for some &y € (0, 3).
Then for all v € (0,3), q € (ﬁﬂ), ae(l— q(4_7)5°, ﬁ —3d9) N (0,1),

4(¢—1)
(24) pe (8o—1,00 + ——) n (~1,1),
4=
and for €4, €5 € (0, 1), the following estimate holds
| u |ue P ug |P 1 weld 1 woy |9
@) b= [ e [ e 2 B e [
where
(4 —7)q ol 2(q—1)
p=Uo T - 2Dy
2 2
and
C = 0(547 €5,0,4, 50> s w)
Proof. We denote k = —@(1 —a). Then the assumption concerning g
and Young inequality with exponents ( qiil, q) yield
_ p(g=1) _
_ | YU P U ? 1-60,, |2 Uy
|I2| o J r rﬂ’ o j T;H—% ”I“ UQ’(I Tl+a+%—ﬁ—p50

q 1
r2—Kq—op "

ug P 1 Uy
S 84J‘W’ ﬁ + C(q”y’W754)J‘T’1+a

We define gy by equality —xqg — dgp = —q[(4;7) do — 2((1;1) (1 —a)] = —qeo.
Then the assumption (24) leads to —2 4+ g9 < a < &, hence we can apply
Remark 3 and we get

Uug |P 1
’IQ| < 64[‘7””‘ ﬁ + C(qvfyaw7€47a>,u)f

g 1

we
r2_50q ’

7106

Using the assumption on a, we deduce that b = 1 — L2 satisfies b € (0, 1),
11

hence we can apply Young inequality with exponents (3, =) and then we
get

wela 1
Tioz r2—€o0q

wo

bq. ﬂ‘(l_b)q < €5J‘:Jz’q:2 +C(€5,b)f ﬁ’q' .

TC( ,,na

2
TOt+E
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Propositions 1 and 2 immediately give
COROLLARY 1. Assume that @ = |[r'~%ug| o < o0 for some & € (0, 2).
Then for all v € (0.3). g € (3%,2), ae (1= {20 %5 — o) 0 (0.1),

(26) e (50—1,5O+ﬁ)m(—1,1),

and for €1, €2, €3 € (0, 1), the following estimate holds

@) I+l <o [ [ e 122 Hv]

where

p|2
2

Cf“’”
/raOé

(1_0’)7

(4 —7)q
2 b

2(g—1)

~
p= 0<=2M—§(1+N)—

and
C = 0(817 £€2,€3,04,(4, 607 v, w)
The above estimate involve many exponents and it is not clear at once,

whether we can get the estimate with useful range of exponents. Therefore,
we formulate

COROLLARY 2. Assume that @ = |r1=%ug| = < o for some &y € (0, §).
Then for € € (0,1) such that

(28) 4(1 —2e)(1 — e)e < dy,

and for all e1,e9,e3 € (0,1), the following estimate holds

(29) \11|+|12§51ﬂ“9‘p12 ﬂ”e €3J‘V’52 ,
rilor

where p = 2(1 — %), q = 2(1 —€), b= ﬁ and o = —2(1 — 2¢)(1 + €)e and

C = C(e1,e2,€3,00,w,€). In particular, for such exponents we have

&0 J Il < cta 2

and

2 3 1
1 — 4+ - —(1 < —(1 1
(31) Oo+q (+a)_2( + 7e) <

Proof. We have to verify the assumptions of Corollary 1. Therefore we put
v =2(1—¢). Then y€ (0,3) and g € (5 2v’ 2) and we set a = 1 — 2(1 — £2)e.

Then condition (28) implies a € (1 — (4((]7)5)0, 4é7 —dp). Finally, ¢ is positive,
hence p = ﬁ satisfies (26), thus assumptions of Corollary 1 are satisfied and

we get (27) with p = w =2(1-e?)and a = 2;&—%(1—%#)—@(1—@ =
—2(1 —2¢e)(1 + ¢)e.
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In order to get (30), we have to verify that r~9% is A, weight. It is
equivalent to % -2 <ac< % and holds true, because ¢ is small enough.

Finally, by direct calculations we obtain inequality (31). m

4. Estimate of I3

PROPOSITION 3. Assume that s € (3,00), w e (1,00) and d € (—1,1) are
such that 2 + 2 +d =1. If g€ (1,0), a € (—1,1) and §; > 0, then for all
ea,¢5 € (0, 1) the following estimate

@ a2 G vs | ]v\“’@
holds, where

9
2

1o+ g [ 22

TO[

w

[f |rduj\5daz] )
971

C = C(e4, 5,01, 8,w,q).

REMARK 4. Recall that Qg, denotes {z € R?: r < §;}. It is known that if
u is weak solutions of (1), then with the help of Sobolev embedding theorem,

= [lw1®, s

and

we deduce that u € L%((O,T) x ), hence function g(t) is integrable on
(0,T). However, up to now, there is no proof of integrability of f(¢) on (0,7)
and its integrability is our main assumption in proving smoothness of axially
symmetric solutions. For weak solutions, we have u, € L*(0,T; L*(€4))
and %= € L?(0,T; L*(Y)), i.e. the exponents satisfy too weak conditions:
%—F%z%amd%—k%—l:%.

Proof. Let n = n(r) be smooth cut off function such that n(r) = 1 for
r < 61/2 and n(r) = 0 for r > 0;. Then we can write

I;»,:J"”’T wquFJ(l—n)un
T T

TO&
We first estimate I3 ;. We set a = ﬁ, b= % + 3. Then a > 1 and

b > 3 and applying Young inequality with exponents (a, ﬁ), we obtain
nu |wg |9 ole 1

P T (R
) r T.O[ T-Oé r

2
a
(,Ug‘I1 +ﬁ 7(;
<e ’Tfa‘ﬁﬁ-c(el,a) |pu,”|e=Trae=T .

To estimate the last integral on the right hand side, we use twice Holder
inequality with exponents (%, 7%5) and (32,6 — 2)

q
Tia’ = I371 + 1372.

2 a
T

wg a

+
T

. /r]u Ta
wy |4

TOC
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w@ b— b
/rnCK

2
—a_ 2-a |Wwylq b(2—a)
+ o= +|30(a— a_
JmuT ‘a lra—1 . 771’ < [J|nu |2( 1)7«2( 1) .
b— 3¢ 122
= A N WAL
77“ r o ro
2 b3 1
b(2—a) wy |2 b we 3q|®
[nut | 2= oD p2@D | 7’ : il
;,nOé Ta
( 2
w ab b(2—a b—3 wg q
+ a— a— —_
gag{ﬂra’ ] -I-C(&Q,b){J‘MuTP( 1) 2 1)] [J ra”,

where we also applied Young inequality with exponents (g, %). By definition

we have 2(52) =s, gg:‘i% = ds and % = 2, thus

1

wpld 1 w343

(33) fase |2 ﬂ”zmra\ }
q

+cler, e2,w, 8) () - U hadi }

TO(
In order to estimate I3 2, we put a = 4 and b = 5 and proceeding analogously
we get

1
wele 1 wy|3q|3
(34) 1—3,2 SEIJ‘TO‘ 72+62|:f 7”‘70“ :|
|

Clearly {|(1 — n)u S8 < (2/6) 5/3S|u+\ 5. Finally, applying Sobolev
embedding theorem in estimates (33) and (34) we get (32). m

we

TOL

COROLLARY 3. Assume that s € (3,0), w € (1,00) and d € (—1,1) are
such that 2 + 3 +d =1 and w = |r1=%ug| = < o for some 6o € (0, §) and
81 is positive. Then for all € € (0, 4;) such that

(35) 4(1 —2¢)(1 — e)e < dy,

the following estimate
o f \

q
2

[S14S)

(36

alzel+

41/q—1 f’v‘ j’ugpl

v<1—a>ﬂ§filq§ ct+ 001 2]
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holds, where p = 2(1—¢?), ¢ = 2(1—¢), u = 1—;? and a = —=2(1—2¢)(1 +e¢)e,

2
g(t) :S|u7—’i_|%07 f() [SQ |rdu+| dl’] ndC—C(y,e,éo,él,w,s,w). In
particular, if f(t) is mtegmble on (0,t*), then
(37) sup

o [2], <ol [Bol,+ 2ol |

where C' = C'(C, [ fl 110, [0l 2 (r3))-

Proof. The assumptions of Corollary 2 and Proposition 3 are satisfied, hence
we get (36). If f(¢) is integrable on (0,t*), then by Gronwall lemma, we
obtain (37). =

Proof of Theorem 1. Under the assumptions of Theorem 1, we get estimate
(37), where the right hand side is finite by the assumption concerning uy.

For such ¢ and « inequality (30) holds, thus we deduce that sup ‘ Tta
te(0,t%)

is finite, where exponents ¢ and « satisfy (31). Therefore, we can apply

Theorem 1(i) ([4]) and we deduce that u is regular on (0,t*), i.e. there is no

blow-up at time t = t*, which gives the contradiction. m

q

REMARK 5. The condition (9) can be weakened a bit. Namely, it is enough
to assume that

[SQl ruf |*dz] s
L+ ™ (55 + 15215)

where d, w, s, p, q are as in Theorem 1. Indeed, from (36) we have

S| 2]") < ot s+ aon (|2 +|22]7),

hence arguing similarly as in |7], we can write

ih{1+l+<u‘ ‘ >]§C [1+ f(t) +9(t)]

LI (] + 515)
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(38) te f(t) = is integrable on (0,7,
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