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Abstract. This paper is concerned with the existence of at least one solution of the
nonlinear 2k-th order BVP. We use the Mountain Pass Lemma to get an existence result
for the problem, whose linear part depends on several parameters.

1. Introduction

There has recently been an increased interest in studying the existence of
solutions for boundary value problems (BVPs) of higher order differential
equations (cf. [1, 4-6, 9]). Most of the earlier discussions were devoted to
the fourth order BVPs, for example see [3, 7]. In this paper, we consider the
depending on real parameters family of 2kth order (k > 2) BVP,

k . 4
(1) (_1)k 2(2k) + Z )\jl’(2k_2j) _ (_1)1—1 ¥ (t,$(27’_2)) ’
=1

i

@) (0)=2z®) (1) =0, j=0,....,k—1,

where f : [0,1] — R is a continuous function. Here, ¢ is a fixed integer
1 < i < k. Notice that the nonlinear term f depends only on the 2¢ — 2-th
derivative of unknown function. It is seen that for some unions of lambdas,
the differential operator that corresponds to the left-hand side of (1) is
invertible and is not for others (see [4]). The second case, commonly called a
resonance one, needs additional conditions of Landesman—Lazer type and was
examined in (3|, [4]. Here, we focus on the the nonresonant case. Jurkiewicz
[6] established the existence of infinitely many solution for (1), by applying
the Rabinowitz’s theorem about unbounded sequence of critical points.
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THEOREM 1. [6] Assume that A € Ay (see p. 55) and let f be odd with
respect to the second variable, i.e. f(t,—u) = —f(t,u) for allt € [0,1] and
u € R. If f satisfies the following conditions

(i) lim supf (2 w) < W%Tr—;i(l) (definition of A — (2)),

u—0
(i) timinfl G~ Lo
UuU—+00 u

(iii) there exist k € [0,1/2) and N > 0, such that §; f (t,u)du < kwf (t,w),
for jw| > N, te[0,1],

then the problem (1) possesses infinitely many solutions.

It is well known that in a lot of problems of the form Lu = N(u), where
L is a linear operator and N — a nonlinear one, the existence of at least m
solution is obtained if an asymptotic behaviour of N near 0 and near oo is
similar to pol and ps 1, respectively (I — the identity operator), and there
are exactly m eigenvalues of L in the interval (1, ftop). Assumptions (i) and
(ii) of Theorem 1 mean that in this interval sit infinitely many eigenvalues,
although we generalize the notion of eigenvalue as you will see in Section
2: the eigenvalues are k-dimensional vectors, which forms a sequence (Hy,)
k — 1-dimensional hyperplanes and the segment in R* joining points with all
coordinates 0 except 2(k + 1 — i)-th, where there are limits uo from condition
(1) and po from (ii), respectively, intersects all these hyperplanes. Thus, it is
natural to ask if there is at least m solution to (1), if in assumption (ii), the
limit is a number pq, such that the above mentioned segment intersect exactly
Hi,...,H,,. The present paper is an answer to this question for m = 1. This
enables us to drop the assumption of oddness of f.

2. Preliminaries

Assume that £k > 2 and ¢ = 1,...k — 1 are fixed positive integer numbers
and let

k .
(2) A(z) = Z (—1)F7 Aj (x2772)k_7 .

DEFINITION 1. (see [4], [5]) A point A=()\1,...\x) € R* will be called a
k-dimensional eigenvalue iff the homogeneous problem

(—1)F 2R () + A 262D (1) + Mg R4 (1)
(3) +.oo+ A2’ (t) + Az (t) =0,
2)(0) =2 (1) =0, forj=0...k—1,

has a nonzero solution. The set of all such k-tuples will be denoted by o*.
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It can be proved that the set o has the form

of = UH”’

neN

where H, is a hyperplane of the form H, := {\ € R¥ | (n27r2)k +A(n) =0}
(see 4], [5]).

THEOREM 2. (see [4]) Let s € N and ny,ng,...,ns € N be such that n; # n;,
1# ],

(1) If s < k, then W = (\i_y Hn, # 0 is an affine subspace in R* and
dimW =k —s.
(2) If s>k, then (\;_, Hp, = 0.

Shortly, hyperplanes H, are in a general position.

Let us put Ay =), cn{A € RF | A(n) > 0}. It is easily seen that A # 0.
Indeed, putting

{AeRF| \* <0if s is odd and \* > 0 if 5 is even},
if k£ is an even number,
{AeRF| X* >0 if s is odd and \* < 0 if 5 is even},

if k£ is an odd number,

D+:

we see that Dy = A . Furthermore, due to the inequality (n?72)* +A(n) > 0,
n=1,2,...,weget AL no¥ =10

DEFINITION 2. (see [8]) A sequence {y,} < X is a Palais—Smale sequence
for p € C1 (X, R), if {¢ (yn)} is bounded while ¢’ (y,) — 0 as n — .

DEFINITION 3. (see [8]) We say ¢ € C! (X, R) satisfies (P.-S.) condition, if
any Palais—-Smale sequence has a (strongly) convergent subsequence.

THEOREM 3. (Mountain Pass Lemma (MPL), [8], Theorem 6.1) Let X be
a real Banach space and ¢ € C' (X, R) such that ¢ satisfies (P.-S.) condition
and ¢(0) = 0. Furthermore

(1) there exist « > 0 and r > 0 such that ¢ (y) > « for all y € 0B (0,7);
(2) there exists yo € X such that ¢ (yo) < a with |lyo| > 7.

Then ¢ possesses a critical value ¢ > «.

If 2 is a solution to (1) and y = (3*=2) then we have (see [4], [5] and [6])

, 1
y(t) = (~1)! fo Hi(t,5) f (5,9 (s)) ds.
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where

0 qyi—1 nw
TN YACHN B o S

(n2m2)" + A (n)

)2i—2

- 8in (nws) sin (nnt) .

Putting
, 1
(Tiy) () = (1) fo Hi(t,5) f (5,9 (s)) ds,

we see that T; maps C — the space of real continuous functions on [0, 1] —
into itself.

Let (H;z)(t) = Y- ISO s)ds and (fy)(s) = f (s,y(s)) (both
operators act in C) then T; can be descrlbed as a composition of H; and f.
Consider the unique extension of the operator H; to the Hilbert space L?
denoted also H; for simplicity. The operator H; is continuous, self-adjoint and
o (H;) = o (H;) U o (H;), where oy, (H;) = {(nm)* =2 [(n*7%)* + A(n)] 7! |
p=1,2,...} and o. (H;) = {0} (see [6]). Moreover, if A € Ay then o (H;) <
[0, 4+00) and H; is a positive operator. This implies that there exists a unique
positive and self-adjoint S; such that S? = H; (see [2], Theorem 2.2.10).
Below, the norm without subscript stands for the norm in the space L?; the
supremum norm in the space of continuous functions will be denoted by |- ¢

REMARK. Hereinafter, it will be assumed that A e A,.
If we reason in the similar way as in [4], we can deduce that
0
(Siz) (t) = Z f sin (nws) z (s) ds - sin (nnt) .
n=1 (mr ¥+ A(n

(i) The function

Si(t,s) = Z ( (7)1;) N )Sin (nms) sin (nrt)
n=1 nm + n

is continuous.
(ii) Operator S; maps L? into C' and it has the form

fS (t,s)

It easy to see that the sequence (nm)* 2 [(n? ) +A (n)]~! is decreasing,
thus by Theorem 2.2.5 [2], it is easy to calculate the norms of H; and S,
treating them as operators from L? into itself

N

(5) |H;| = 7%2. (71'% +A (1)) and [ Sy = 7 (Tr% +A (1))

After [6], one can notice that
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e (1) has a solution if 7; = H; o f has a fixed point;

e fixed points of the operator S;ofoS; in L? are also fixed points of T; = H;of
in C,

e if ¢ : C' — R is defined by the formula

1 ry(t)
uzy:jo L £ (¢, u) dudt,

then functionals ¢ and v o S; are Fréchet differentiable on C and L?,
respectively and (¢ (y)) h = (fy, hy 2, (¥ 0S;) y = (SiofoS;)y.
Let ¢; : L2 — R, be the functional of the form

1
(6) 0i (y) = 3 &syype — (o Si)y.
We have
(7) @i (y) =y — (Siof oSy,
for y € L?.

Due to the above arguments, solutions to (1) are critical points of ;.

3. Main result

LEMMA 1. (6] Assume that there are k € [0,1/2) and N > 0, such that for
|w| > N, we have

fwf(t,u)dug kwf (t,w)
0

then the functional @; satisfies the (P.S.) condition.

REMARK. If f is odd then functions R 3w — §; f (t,u) du and R 5 w —
w - f(t,w) are even for any ¢t € [0,1]. Therefore, to verify assumption of
Lemma 1, it is sufficient to check the inequality for w > N > 0.

Now we can prove the main theorem.

THEOREM 4. Assume that A € Ay and let f : [0,1] xR — R be a continuous
function that satisfies the following conditions

f(t,u) - 72k £ A (1)

i) 1 :
(i) i sup=—/ i
t 2k L A1
(ii") liminff( X > 42_ ( ),
u—+m0 1 w22

(iii) there exist k € [0,1/2) and N > 0, such that for |w| > N, we have

fwf(t,u)dug kwf (t,w),
0

for each t € [0,1]. Then problem (1) possesses at least one nonzero solution.
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Proof. We shall use the Mountain Pass Lemma. The considered functional
has the form

' IR 1 r(Siy)(t)
)@ =gl = [ f ) dua

It is obvious that ¢; (0) = 0, furthermore we explained on the page 56, that
w2k + A (1)

1
1202 = ”Hl“ .

Due to assumption, there exist § > 0 and &1 € (0, |H;| ") such that

[t u)

< |H;| 7' =1, for |u| <.
u

This implies that
f(tu) <(|Hi| " —er)u, for ue[0,d],
and
ft,u) >(|Hy|| ™" —e1)u, for ue[—6,0).
Thus we have, for w € [0, 4],

w _ w - 1
| #ewdus g =) | Cudu = (g o) g

and, for w e [—6,0),

w 0 0 1

| stwdu = = [ pttwdn < (I -2 [ uda = (20 50t
0 w w

The above calculations imply that

(8) . ftu)du < (JHi| ™ —e1) 5w,

for |w| <.

Let y € L2, the kernel S; of S; is a positive continuous function. Therefore,
let B; > 0 be its maximal value. This and the Holder’s inequality imply that

1
1 1 3
ISwle < B [ ly(lds < B, ( | y(s)\zds) ~ Bilyl.

Therefore, if |y| = r, where r = B~14, we get
[Siylle < o

Now, the last estimate together with (8), give us the following condition



Ezistence of solutions for higher order BV P with parameters. . . 59

(Say)(t
1 (1) ,“ |—ff £ (4, ) dudt

> Wl = (e} [ (S @2

5 Wl = (LE ™ —e0)5 (Siy, Sy
1 _ 1
S Il = (L™ =210) (g, )0

1 2 -1 1 2 1 2
> Syl = (I —e0) 5 IHal Iyl = 5 Ll Lyl e

1
= — HHlH T2€1.
2

Thus ¢; (y) > a, a = L |H;| r?ey, for y € 0B (0,7), r = B; !4, and assump-
tion (1) of MPL holds. Assumption (ii) implies the existence of such N > 0
and e9 > 0, that

t
f(uu) > |Hyl| "' (14¢e2), foru> N andtel[0,1].

Then
(9) f(tu) > |Hi| ™' (1 +e2)u, foru> N andte[0,1].
Because the function f (t,u) — ||H;| ™ (1 + &) u is continuous on [0, 1] x
[0, N], there exists M > 0 such that
(10)  f(t,u) > |Hi| " (1 +ex)u— M, foruel[0,N] andte [0,1].
The inequalities (9) and (10) led us to the following conclusion

ftou) > |Hi| " A +e)u—M, foru>0,tel0,1].

Integrating the above inequality, we get
w
1 _
(11) J f(t,u)du > §HH1H Y1+ e2) w? — Muw,
0

for w > 0 and uniformly for ¢t € [0,1].
We have explained that

0 0
Hiu = Z 2. (ensu)p, en and Sju = Z n - {en, u)p, €n,
n=1 n=1

where 9i_9
€2 = (mr()g?—i—A(n) and ey (t) = V2sin (nmt) .

Furthermore A
21—2
0
w2k + A (1)

& = = |H;|.
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It easily seen that

(12) Sie1 = §1e1 = /| H;|er > 0.

For any real 7, we have from (11) and (12)

1 L r(Si(rex))(t)
i (Te1) 2<7'€1,7'61>L2—f J f (t,u) dudt
0 JO
1 2 1 -1 ! 2
< 57 = T (1 2) [ (S (ren))? 1)
0

1
# M | (5, (ren) (1)

1 1 -
= 57 = ST H T (14 22) (Sier, Sien) s
1
+M7’J (Si(e1)) (t)dt
0
1 2 1 2 —1 1
= 572 = ST IHT (1 + e2) |Hil + M7 HZ»\L er (1) dt
1 24/2
= —ger’+ M ]|H,~|;FT,

Let 7 > 0. The above estimate implies that ¢; (Te;) — —o0 and |re;| =7 —
+00 as 7 — +00.

Therefore, there exists 79 > r such that ¢; (yo) = ¢; (70e1) < 0 < « and
assumption (2) of MPL is satisfied. Due to MPL, we get the assertion. =

It has to be emphasized that we do not assume oddness of a nonlinear
part.

EXAMPLE. Let us consider the following problem
u® — 72u(® 4 i@ — 76y 4 78y = f (¢, u),
u9)(0) = u®)(1) =0, forj=0...3,
where
w3 + 57t + 1, for w < —1,
ft,w) =1 w?+ 51t -1, for we[-1,1],

w? arctan (w) + 574 — ir, for w> 1.

It is seen that |Hs| ' = 57%, furthermore it is easy to verify that f is
continuous, satisfies conditions (i)—(iii) of Theorem 4 and does not satisfy
assumptions of Theorem 1.
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