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Abstract. This paper is concerned with the existence of at least one solution of the
nonlinear 2k-th order BVP. We use the Mountain Pass Lemma to get an existence result
for the problem, whose linear part depends on several parameters.

1. Introduction
There has recently been an increased interest in studying the existence of

solutions for boundary value problems (BVPs) of higher order differential
equations (cf. [1, 4–6, 9]). Most of the earlier discussions were devoted to
the fourth order BVPs, for example see [3, 7]. In this paper, we consider the
depending on real parameters family of 2kth order (k ≥ 2) BVP,
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p´1qk xp2kq `
k
ř

j“1
λjx

p2k´2jq “ p´1qi´1 f
`

t, xp2i´2q
˘

,

xp2jq p0q “ xp2jq p1q “ 0, j “ 0, . . . , k ´ 1,

,

where f : r0, 1s Ñ R is a continuous function. Here, i is a fixed integer
1 ≤ i ≤ k. Notice that the nonlinear term f depends only on the 2i´ 2-th
derivative of unknown function. It is seen that for some unions of lambdas,
the differential operator that corresponds to the left-hand side of (1) is
invertible and is not for others (see [4]). The second case, commonly called a
resonance one, needs additional conditions of Landesman–Lazer type and was
examined in [3], [4]. Here, we focus on the the nonresonant case. Jurkiewicz
[6] established the existence of infinitely many solution for (1), by applying
the Rabinowitz’s theorem about unbounded sequence of critical points.
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Theorem 1. [6] Assume that λ P ∆` psee p. 55q and let f be odd with
respect to the second variable, i.e. fpt,´uq “ ´fpt, uq for all t P r0, 1s and
u P R. If f satisfies the following conditions

(i) lim sup
uÑ0

f pt, uq

u
ă
π2k ` Λ p1q

π2i´2
(definition of Λ – (2)),

(ii) lim inf
uÑ`8

f pt, uq

u
“ `8,

(iii) there exist k P r0, 1{2q and N ą 0, such that
şw
0 f pt, uq du ≤ kwf pt, wq ,

for |w| ≥ N, t P r0, 1s ,
then the problem p1q possesses infinitely many solutions.

It is well known that in a lot of problems of the form Lu “ Npuq, where
L is a linear operator and N – a nonlinear one, the existence of at least m
solution is obtained if an asymptotic behaviour of N near 0 and near 8 is
similar to µ0I and µ8I, respectively (I – the identity operator), and there
are exactly m eigenvalues of L in the interval pµ0, µ8q. Assumptions (i) and
(ii) of Theorem 1 mean that in this interval sit infinitely many eigenvalues,
although we generalize the notion of eigenvalue as you will see in Section
2: the eigenvalues are k-dimensional vectors, which forms a sequence pHnq

k ´ 1-dimensional hyperplanes and the segment in Rk joining points with all
coordinates 0 except 2pk` 1´ iq-th, where there are limits µ0 from condition
(i) and µ8 from (ii), respectively, intersects all these hyperplanes. Thus, it is
natural to ask if there is at least m solution to (1), if in assumption (ii), the
limit is a number µ8 such that the above mentioned segment intersect exactly
H1, . . . ,Hm. The present paper is an answer to this question for m “ 1. This
enables us to drop the assumption of oddness of f.

2. Preliminaries
Assume that k ≥ 2 and i “ 1, . . . k ´ 1 are fixed positive integer numbers

and let

(2) Λ pxq “
k
ÿ

j“1

p´1qk´j λj
`

x2π2
˘k´j

.

Definition 1. (see [4], [5]) A point λ“pλ1, . . . λkq P Rk will be called a
k-dimensional eigenvalue iff the homogeneous problem

(3)
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p´1qk xp2kq ptq ` λ1x
p2k´2q ptq ` λ2x

p2k´4q ptq

` . . .` λk´1x
2 ptq ` λkx ptq “ 0,

xp2jqp0q “ xp2jqp1q “ 0, for j “ 0 . . . k ´ 1,

has a nonzero solution. The set of all such k-tuples will be denoted by σk.
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It can be proved that the set σk has the form

σk “
ď

nPN
Hn,

where Hn is a hyperplane of the form Hn :“
 

λ P Rk |
`

n2π2
˘k
` Λ pnq “ 0

(

(see [4], [5]).

Theorem 2. (see [4]) Let s P N and n1, n2, . . . , ns P N be such that ni ‰ nj,
i ‰ j.

(1) If s ≤ k, then W “
Şs
i“1Hni ‰ ∅ is an affine subspace in Rk and

dimW “ k ´ s.
(2) If s ą k, then

Şs
i“1Hni “ ∅.

Shortly, hyperplanes Hn are in a general position.

Let us put ∆` :“
Ş

nPNtλ P Rk | Λpnq ≥ 0u. It is easily seen that ∆` ‰ ∅.
Indeed, putting

D` :“

$

’

’

’

’

&

’

’

’

’

%

tλ P Rk | λs ≤ 0 if s is odd and λs ≥ 0 if s is evenu,
if k is an even number,

tλ P Rk | λs ≥ 0 if s is odd and λs ≤ 0 if s is evenu,
if k is an odd number,

we see that D`Ă∆`. Furthermore, due to the inequality pn2π2qk`Λpnq ą 0,
n “ 1, 2, . . . , we get ∆` X σ

k “ ∅.

Definition 2. (see [8]) A sequence tynu Ă X is a Palais–Smale sequence
for ϕ P C1 pX,Rq, if tϕ pynqu is bounded while ϕ1 pynq Ñ 0 as nÑ8.

Definition 3. (see [8]) We say ϕ P C1 pX,Rq satisfies (P.-S.) condition, if
any Palais–Smale sequence has a (strongly) convergent subsequence.

Theorem 3. (Mountain Pass Lemma (MPL), [8], Theorem 6.1) Let X be
a real Banach space and ϕ P C1 pX,Rq such that ϕ satisfies (P.-S.) condition
and ϕp0q “ 0. Furthermore

(1) there exist α ą 0 and r ą 0 such that ϕ pyq ≥ α for all y P BB p0, rq ;
(2) there exists y0 P X such that ϕ py0q ă α with }y0} ≥ r.

Then ϕ possesses a critical value c ≥ α.

If x is a solution to (1) and y “ xp2i´2q, then we have (see [4], [5] and [6])

y ptq “ p´1qi´1
ż 1

0
Hi pt, sq f ps, y psqq ds,
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where

(4) Hi pt, sq “
8
ÿ

n“1

p´1qi´1 pnπq2i´2

pn2π2qk ` Λ pnq
¨ sin pnπsq sin pnπtq .

Putting

pTiyq ptq “ p´1qi´1
ż 1

0
Hi pt, sq f ps, y psqq ds,

we see that Ti maps C – the space of real continuous functions on r0, 1s –
into itself.

Let pHizqptq “ p´1qi´1
ş1
0Hipt, sqzpsqds and pfyqpsq “ f ps, y psqq (both

operators act in C), then Ti can be described as a composition of Hi and f .
Consider the unique extension of the operator Hi to the Hilbert space L2

denoted also Hi for simplicity. The operator Hi is continuous, self-adjoint and
σ pHiq “ σp pHiqYσc pHiq , where σp pHiq “

 

pnπq2i´2 ¨ rpn2π2qk `Λpnqs´1 |
p “ 1, 2, . . .

(

and σc pHiq “ t0u (see [6]). Moreover, if λ P ∆` then σ pHiq Ă

r0,`8q and Hi is a positive operator. This implies that there exists a unique
positive and self-adjoint Si such that S2

i “ Hi (see [2], Theorem 2.2.10).
Below, the norm without subscript stands for the norm in the space L2; the
supremum norm in the space of continuous functions will be denoted by } ¨ }C .

Remark. Hereinafter, it will be assumed that λ P ∆`.
If we reason in the similar way as in [4], we can deduce that

pSizq ptq “
8
ÿ

n“1

pnπqi´1
b

pnπq2k ` Λ pnq
¨

ż 1

0
sin pnπsq z psq ds ¨ sin pnπtq .

(i) The function

Si pt, sq “
8
ÿ

n“1

pnπqi´1
b

pnπq2k ` Λ pnq
sin pnπsq sin pnπtq

is continuous.
(ii) Operator Si maps L2 into C and it has the form

pSizq ptq “

ż 1

0
Si pt, sq z psq ds.

It easy to see that the sequence pnπq2i´2 ¨r
`

n2π2
˘k
`Λ pnqs´1 is decreasing,

thus by Theorem 2.2.5 [2], it is easy to calculate the norms of Hi and Si,
treating them as operators from L2 into itself

(5) }Hi} “ π2i´2 ¨
´

π2k ` Λ p1q
¯´1

and }Si} “ πi´1 ¨
´

π2k ` Λ p1q
¯´ 1

2
.

After [6], one can notice that
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• (1) has a solution if Ti “ Hi ˝ f has a fixed point;
• fixed points of the operator Si˝f˝Si in L2 are also fixed points of Ti “ Hi˝f

in C;
• if ψ : C Ñ R is defined by the formula

ψy “

ż 1

0

ż yptq

0
f pt, uq dudt,

then functionals ψ and ψ ˝ Si are Fréchet differentiable on C and L2,
respectively and pψ1 pyqqh “ xfy, hyL2 , pψ ˝ Siq

1 y “ pSi ˝ f ˝ Siq y.

Let ϕi : L2 Ñ R, be the functional of the form

(6) ϕi pyq “
1

2
xy, yyL2 ´ pψ ˝ Siq y.

We have

(7) ϕ1i pyq “ y ´ pSi ˝ f ˝ Siq y,

for y P L2.

Due to the above arguments, solutions to (1) are critical points of ϕi.

3. Main result
Lemma 1. [6] Assume that there are k P r0, 1{2q and N ą 0, such that for
|w| ≥ N, we have

ż w

0
f pt, uq du ≤ kwf pt, wq

then the functional ϕi satisfies the (P.S.) condition.

Remark. If f is odd then functions R Q w ÞÑ
şw
0 f pt, uq du and R Q w ÞÑ

w ¨ f pt, wq are even for any t P r0, 1s . Therefore, to verify assumption of
Lemma 1, it is sufficient to check the inequality for w ≥ N ą 0.

Now we can prove the main theorem.

Theorem 4. Assume that λ P ∆` and let f : r0, 1sˆRÑ R be a continuous
function that satisfies the following conditions

(i) lim sup
uÑ0

f pt, uq

u
ă
π2k ` Λ p1q

π2i´2
,

(ii’) lim inf
uÑ`8

f pt, uq

u
ą
π2k ` Λ p1q

π2i´2
,

(iii) there exist k P r0, 1{2q and N ą 0, such that for |w| ≥ N, we have
ż w

0
f pt, uq du ≤ kwf pt, wq ,

for each t P r0, 1s . Then problem p1q possesses at least one nonzero solution.
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Proof. We shall use the Mountain Pass Lemma. The considered functional
has the form

ϕi pyq ptq “
1

2
}y}2 ´

ż 1

0

ż pSiyqptq

0
f pt, uq dudt.

It is obvious that ϕi p0q “ 0, furthermore we explained on the page 56, that

π2k ` Λ p1q

π2i´2
“ }Hi}

´1 .

Due to assumption, there exist δ ą 0 and ε1 P p0, }Hi}
´1
q such that

f pt, uq

u
≤ }Hi}

´1
´ε1, for |u| ≤ δ.

This implies that

f pt, uq ≤p}Hi}
´1
´ε1qu, for u P r0, δs ,

and
f pt, uq ≥p}Hi}

´1
´ε1qu, for u P r´δ, 0q .

Thus we have, for w P r0, δs ,
ż w

0
f pt, uq du ≤ p}Hi}

´1
´ε1q

ż w

0
udu “ p}Hi}

´1
´ε1q

1

2
w2,

and, for w P r´δ, 0q ,
ż w

0
fpt, uqdu “ ´

ż 0

w
fpt, uqdu ≤ ´p}Hi}

´1
´ε1q

ż 0

w
udu “ p}Hi}

´1
´ε1q

1

2
w2.

The above calculations imply that

(8)
ż w

0
f pt, uq du ≤ p}Hi}

´1
´ε1q

1

2
w2,

for |w| ≤ δ.

Let y P L2, the kernel Si of Si is a positive continuous function. Therefore,
let Bi ą 0 be its maximal value. This and the Hölder’s inequality imply that

}Siy}C ≤ Bi
ż 1

0
|y psq| ds ≤ Bi

ˆ
ż 1

0
|y psq|2 ds

˙

1
2

“ Bi }y} .

Therefore, if }y} “ r, where r “ B´1δ, we get

}Siy}C ≤ δ.

Now, the last estimate together with (8), give us the following condition
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ϕi pyq “
1

2
}y}2 ´

ż 1

0

ż pSiyqptq

0
f pt, uq dudt

≥ 1

2
}y}2 ´ p}Hi}

´1
´ε1q

1

2

ż 1

0
ppSiyq ptqq

2 dt

“
1

2
}y}2 ´ p}Hi}

´1
´ε1q

1

2
xSiy, SiyyL2

“
1

2
}y}2 ´ p}Hi}

´1
´ε1q

1

2
xHiy, yyL2

≥ 1

2
}y}2 ´ p}Hi}

´1
´ε1q

1

2
}Hi} }y}

2
“

1

2
}Hi} }y}

2 ε1

“
1

2
}Hi} r

2ε1.

Thus ϕi pyq ≥ α, α “ 1
2 }Hi} r

2ε1, for y P BB p0, rq , r “ B´1i δ, and assump-
tion (1) of MPL holds. Assumption (ii) implies the existence of such N ą 0
and ε2 ą 0, that

f pt, uq

u
≥ }Hi}

´1
p1` ε2q , for u ą N and t P r0, 1s .

Then
(9) f pt, uq ≥ }Hi}

´1
p1` ε2qu, for u ą N and t P r0, 1s .

Because the function f pt, uq ´ }Hi}
´1
p1` ε2qu is continuous on r0, 1s ˆ

r0, N s , there exists M ą 0 such that
(10) f pt, uq ≥ }Hi}

´1
p1` ε2qu´M, for u P r0, N s and t P r0, 1s .

The inequalities (9) and (10) led us to the following conclusion
f pt, uq ≥ }Hi}

´1
p1` ε2qu´M, for u ≥ 0, t P r0, 1s .

Integrating the above inequality, we get

(11)
ż w

0
f pt, uq du ≥ 1

2
}Hi}

´1
p1` ε2qw

2 ´Mw,

for w ≥ 0 and uniformly for t P r0, 1s .
We have explained that

Hiu “
8
ÿ

n“1

ξ2n ¨ xen, uyL2
en and Siu “

8
ÿ

n“1

ξn ¨ xen, uyL2
en,

where

ξ2n “
pnπq2i´2

pnπq2k ` Λ pnq
and en ptq “

?
2 sin pnπtq .

Furthermore

ξ21 “
π2i´2

π2k ` Λ p1q
“ }Hi} .
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It easily seen that

(12) Sie1 “ ξ1e1 “
a

}Hi}e1 ≥ 0.

For any real τ, we have from (11) and (12)

ϕi pτe1q “
1

2
xτe1, τe1yL2 ´

ż 1

0

ż pSipτe1qqptq

0
f pt, uq dudt

≤ 1

2
τ2 ´

1

2
}Hi}

´1
p1` ε2q

ż 1

0
pSi pτe1qq

2
ptq dt

`M

ż 1

0
pSi pτe1qq ptq dt

“
1

2
τ2 ´

1

2
τ2 }Hi}

´1
p1` ε2q xSie1, Sie1yL2

`Mτ

ż 1

0
pSi pe1qq ptq dt

“
1

2
τ2 ´

1

2
τ2 }Hi}

´1
p1` ε2q }Hi} `Mτ

a

}Hi}

ż 1

0
e1 ptq dt

“ ´
1

2
ε2τ

2 `M
a

}Hi}
2
?

2

π
τ.

Let τ ą 0. The above estimate implies that ϕi pτe1q Ñ ´8 and }τe1} “ τ Ñ
`8 as τ Ñ `8.

Therefore, there exists τ0 ą r such that ϕi py0q “ ϕi pτ0e1q ă 0 ă α and
assumption (2) of MPL is satisfied. Due to MPL, we get the assertion.

It has to be emphasized that we do not assume oddness of a nonlinear
part.

Example. Let us consider the following problem
#

up8q ´ π2up6q ` π4up4q ´ π6u2 ` π8u “ f
`

t, up4q
˘

,

up2jqp0q “ up2jqp1q “ 0, for j “ 0 . . . 3,

where

f pt, wq “

$

’

&

’

%

w3 ` 5π4 ` 1, for w ă ´1,

w2 ` 5π4 ´ 1, for w P r´1, 1s ,

w2 arctan pwq ` 5π4 ´ 1
4π, for w ą 1.

It is seen that }H3}
´1
“ 5π4, furthermore it is easy to verify that f is

continuous, satisfies conditions (i)–(iii) of Theorem 4 and does not satisfy
assumptions of Theorem 1.
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